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Double photoionization of excited lithium and beryllium
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We present total, energy-sharing, and triple differential cross sections for one-photon, double ionization of
lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic
orbital with numerical grid method based on the finite-element discrete-variable representation and exterior
complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for
ground-state and excited helium, serve to highlight important selection rules and show some interesting effects
that relate to differences between inter- and intrashell electron correlation.
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I. INTRODUCTION

Double photoionization (DPI) processes, in which two
electrons are ejected into the continuum following absorption
of a single photon, offer a powerful method for exploring the
effects of electron correlation. The joint angular distribution
provides the most sensitive probe of electron correlation,
as well as the most significant challenges to ab initio
theory, since its accurate description cannot be obtained
with independent particle models nor, at energies close to
threshold, with perturbative methods. While DPI from simple
closed-shell atoms has been relatively well studied, there has
been far less theoretical work on DPI from excited states. To
our knowledge, theoretical results for differential DPI cross
sections from excited states have been calculated only for
helium [1] and only for excited S states. Excited atomic targets
with L �= 0 can be aligned and then offer the possibility
of studying the dependence of DPI cross sections on the
direction of photon polarization, posing additional challenges
to theory. Indeed, the first experimental measurements on the
orientation dependence of DPI cross sections have recently
been performed on laser-excited and aligned lithium [2]. These
initial measurements only examined orientation dependence
of the total cross sections, but given the continued rapid
developments in trapping, laser preparation, and advanced
detection techniques, coupled with the availability of intense
vacuum ultraviolet (VUV) optical sources, it should not be
long before results from kinematically complete experiments
on DPI from excited atomic targets become available. With that
anticipation in mind, we present the results of calculations on
fully differential angular distributions for DPI from aligned
lithium and beryllium atoms in excited P states, along with
comparisons to analogous processes in helium.

The results presented here were obtained with a grid-
based application of the exterior complex scaling (ECS)
method [3], recently extended to handle many-electron targets
[4]. This modification of the finite-element discrete-variable
representation (FEM-DVR) approach uses atomic orbitals,
constructed from DVR functions in the first few elements,
to describe the inner-shell electrons while the remainder of
the DVR representation is used to represent the continuum
portions of the wave function. This method, which was used in
our recent study of DPI from ground-state beryllium [4], along
with other aspects of the theoretical formulation, are briefly

described in the following section. Computational details are
then presented in Sec. III, followed by results for lithium and
beryllium. We conclude with a brief summary.

II. THEORETICAL METHOD

The idea behind the hybrid orbital with FEM-DVR ap-
proach is conceptually simple. The goal is to derive an effective
two-electron Hamiltonian that can be represented with an
exterior-scaled FEM-DVR basis. To treat double continuum
processes in an N-electron atom with two “active” electrons,
one expands the wave function in configurations in which two
electrons are represented by a FEM-DVR product basis of
radial functions χ and spherical harmonics Ylm, and the rest
are represented by atomic orbitals ϕ with a fixed occupancy in
each configuration. Such an expansion (suppressing the spin
functions for simplicity) takes the form:

�(1, . . . N) =
∑
i,j

Ci,j |ϕn1 (1) ϕn2 (2) · · · ϕnN−2 (N − 2)

×χi(rN−1) Ylimi
(�N−1) χj (rN ) Ylj mj

(�N )|. (1)

The radial grid is partitioned into a number of finite elements,
with DVR basis functions in each element. We use this
underlying DVR basis to form a set of atomic orbitals, which
are themselves constructed as linear combinations of DVR
functions, but only using the M DVR functions that span the
first few elements:

ϕα(r) =
M∑

j=1

Uαjχj (r). (2)

Since the primitive DVR polynomial basis functions have com-
pact support within the finite-element boundaries, the entire
basis of orbitals and DVR functions can be kept orthonormal.
This hybrid approach, as we have shown, takes advantage of a
key simplification in the calculation of two-electron integrals
when using FEM-DVR basis functions, namely, that the radial
portion of the electron-electron repulsion matrix elements are
diagonal in the DVR index of each electron [4,5].

When the core electrons are constrained to doubly occupy
a set of orbitals, the effective two-electron Hamiltonian is
particularly simple and takes the form:

H = h(1) + h(2) + 1

r12
, (3)
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where 1/r12 is the Coulomb repulsion between the active
electrons and the one-body operator h is

h = T − Z

r
+

∑
o

2Jo − Ko, (4)

where T is the one-electron kinetic energy operator, Z/r the
nuclear attraction, the sum runs over all the doubly occupied
orbitals, and 2Jo and Ko are the direct and exchange com-
ponents, respectively, of the core interaction with the active
electrons. Equations (3) and (4) apply directly to the case of
Be, where the core consists of the doubly occupied 1s orbital.

When a core orbital is to be only partially occupied in
each configuration, a frozen core ansatz is still well defined
by using Eq. (1) and giving that core orbital the same partial
occupancy in each configuration, but it is then not possible to
uniquely define an energy-independent effective two-electron
Hamiltonian without further approximation [6]. This is the
case for the three-electron lithium atom, when we constrain
one of the core electrons to occupy a 1s orbital, while allowing
the other two electrons to be unconstrained. An effective two-
electron Hamiltonian for lithium is obtained by starting with a
frozen core ansatz for the three-electron wave function:

�(1,2,3) = A[�(12)ϕ1s(3)], (5)

where �(12) is presumed to be antisymmetric and A anti-
symmetrizes the coordinates of electron 3 with those of 1
and 2. If we ignore exchange scattering with the frozen-core
electron (i.e., assume A = 1), then we can substitute Eq. (5)
into the Schrödinger equation and integrate out the coordinates
of electron 3 to obtain an effective two-electron Hamiltonian
as in Eq. (3), where the one-body operators are now given as

h(r) = T − 3

r
+ J1s(r). (6)

One could attempt to refine the ansatz by including a semiem-
pirical local exchange potential in Eq. (6) [7], but we have
not done so here. We will refer to the combination of Eqs. (3)
and (6) as an effective potential frozen-core approximation, to
distinguish it from a frozen-core expansion with full exchange.
The frozen-core models, both with and without full exchange,
have been applied to DPI from ground-state lithium [8,9] as
well as low-energy electron-impact ionization of helium [7].
The models were found to give results that were in good mutual
accord and that agreed with available experimental data [8,10].

Some care is needed when working with an unconstrained
primitive DVR basis and an effective two-electron Hamilto-
nian to suppress the appearance of unphysical (bosonic) states
that result from overpopulation of core orbitals by more than
two electrons. In our hybrid orbital-DVR approach, for sym-
metries in which there are core orbitals, the atomic orbitals are,
by construction, orthogonal to the other primitive DVR func-
tions used in the representation of the effective Hamiltonian,
so the imposition of proper orthogonality constraints is
straightforward. For the target atoms considered here, we
can use the complete basis of primitive DVRs for all basis
functions with l �= 0, since there are no restrictions in those
symmetries. For calculations on beryllium, we must exclude
all two-electron configurations involving a 1s orbital, since it
is doubly occupied in the core, while for lithium, only one
configuration, namely 1s2 is excluded from the expansion.

The amplitude for double photoionization is constructed
from a solution of the driven equation for the first-order wave
function (scattered wave) that is obtained when the radiation
field is treated as a perturbation:

(E0 + ω − H )�+
sc = (ε · µ)�0 , (7)

where H is the effective Hamiltonian as given above, ω is
the photon frequency, ε is the photon polarization vector,
µ is the electronic dipole operator, and �0 is the wave
function describing the initial state of the atom with energy
E0. Equation (7) must be solved with outgoing-wave boundary
conditions. Those boundary are rigorously applied by trans-
forming the radial coordinates of the electrons according to the
exterior complex scaling (ECS) transformation, which scales
those coordinates by a phase factor beyond some radius R0,
as discussed for example in [5]. The scattered wave �+

sc is
expanded in coupled spherical harmonics,

�+
sc =

∑
l1l2

ψl1,l2 (r1,r2)

r1r2
YLM

l1,l2
(r̂1,r̂2), (8)

and then used to compute the amplitude f (k1,k2) for double
photoionization producing photoelectrons with momenta k1

and k2.
The DPI amplitude can be expressed as a coherent sum of

partial-wave amplitudes [11,12]:

f (k1,k2) =
∑
l1,l2

(
2

π

)
i−(l1+l2)eiηl1 (k1)+iηl2 (k2)

×Fl1,l2 (k1,k2)YLM
l1,l2

(k̂1,k̂2), (9)

where the radial amplitudes Fl1,l2 (k1,k2), which are evaluated
along a hypersphere ρ0 in the (r1,r2) plane just inside the
ECS turning point R0, are computed using a surface-integral
formulation that amounts to the integration of the Wronskian
between the scattered wave decomposition of the full solution
ψl1,l2 (r1,r2) and two partial-wave testing functions [5,11,12]:

Fl1,l2 (k1,k2) = ρ0

2

∫ π/2

0

[
ϕ

k1
l1

(r1)ϕk2
l2

(r2)
∂

∂ρ
ψl1,l2 (r1,r2)

− ψl1,l2 (r1,r2)
∂

∂ρ
ϕ

k1
l1

(r1)ϕk2
l2

(r2)

] ∣∣∣∣
ρ=ρ0

dα,

(10)

where the integration is over the hyperspherical angle α ≡
tan−1 (r2/r1). The testing functions ϕk

l themselves are partial-
wave components of the continuum eigenfunctions of the
one-body operator h defined in Eq. (3). Their numerical
construction is detailed in Ref. [4].

The triply differential cross sections (TDCS) are computed
from the amplitudes in Eq. (9) by

d3σ

dE1d�1d�2
= 4π2ω

c
k1k2|f (k1,k2)|2, (11)

in the length gauge. Integration of the TDCS over the angles
�1 and �2 of the electrons yields the singly differential cross
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section (SDCS) which is given simply by

dσ

dE1
= 4π2ω

c
k1k2

(
2

π

)2 ∑
l1l2

|Fl1,l2 (k1,k2)|2. (12)

With this definition of the SDCS, the total integrated cross
section for double photoionization at photon energy ω with
excess energy E = ω + E0 is

σ =
∫ E

0

dσ

dE1
dE1. (13)

Since the SDCS is symmetric about E/2, one can alternatively
define the total cross section as

σ =
∫ E/2

0

dσ̃

dE1
dE1, (14)

where the scaled SDCS is defined as
dσ̃

dE1
= 2

dσ

dE1
, (15)

so that the total DPI cross section is computed by integrating
the scaled cross section over half the available energy range.
This definition is commonly used in previous theoretical work,
so we continue to use the latter definition of the SDCS here.

III. COMPUTATIONS

For the calculations on Li and Be, the driven equation for
the scattered wave was solved with radial grids that extended
to 70.0 bohr and had finite-element boundaries at 2.0, 7.0,12.0,
20.0, 30.0, 40.0, and 50.0 bohr. We used 15th-order DVR in
each element. The complex turning point R0 was located at
40.0 bohr and the rotation angle was 30◦. Partial waves up to
lmax = 9 were included in the expansions. The 1s orbital, along
with a complementary set of atomic s-type atomic orbitals,
was formed using DVR functions only from the first two
elements. The initial-state (1s)1s2p,2P and (1s2)2s2p,1,3P
target states for Li and Be, respectively, were obtained from
full configuration-interaction calculations with the effective
two-electron Hamiltonian using functions defined on the real
portion of the radial grid out to 20.0 bohr.

For purposes of comparison, we will also show results
for 1s2p,1,3P helium. The bound states were described on
four finite elements with boundaries at 5.0, 10.0, 18.0, and
26.0 bohr, while the continuum state calculations used four
additional finite-element boundaries at 34.0, 42.0, 54.0, and
70.0 bohr with the ECS turning point at R0 = 42.0 bohr. We
again used lmax = 9 for these calculations. We are confident
that the results given below are converged with respect to
grid size, DVR order, extraction radius, and number of partial
waves included. This was confirmed with calculations using
fewer functions than those reported. We have also checked that
calculations in the length and velocity gauges gave virtually
identical results, so only length gauge results will be presented.

In all cases considered, we can perform separate calcula-
tions, in symmetry, using the two-electron effective potential
formulation with the two photoelectrons coupled to overall
singlet or triplet states. In the Be and He cases, these double
continua are reached from initial states of the same spin
and opposite parity. In the Li case, the overall spin of the
three-electron system is a doublet, so one must combine the
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FIG. 1. (Color online) Total DPI cross section of lithium from
the 1s22p, 2P excited state. RMPS and TDCC results from Ref. [8].
1 kb = 10−21 cm2.

two-electron singlet or triplet states with the remaining 1s

electron to make an overall doublet [7]. Since the spins of the
photoejected electrons are generally not detected, we combine
the two independent doublets using appropriate spin statistical
weights to obtain the physical cross sections for Li [8]:

σtotal = 2
(

1
4σS=0 + 3

4σS=1
)
. (16)

IV. RESULTS

Total double ionization cross sections for the excited 1s22p,
2P state of Li have been previously calculated using the R
matrix plus pseudostates (RMPS) and time-dependent close-
coupling (TDCC) methods [8] and are compared with the
present results in Fig. 1. The present results agree rather well
with the RMPS velocity gauge results, but are smaller than
the RMPS length and TDCC results by approximately 10%
and 20%, respectively. RMPS total DPI cross sections are
also available [13] for the 1s22s2p, 3P state of Be and are
compared with the present results in Fig. 2. In this case, the
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FIG. 2. (Color online) Total DPI cross section of beryllium from
the 1s22s2p, 3P excited state. RMPS results from Ref. [13].
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FIG. 3. (Color online) Singly differential cross sections for double ionization of 1P0 beryllium (solid curves) and 1P0 helium (dashed
curves) at 10 eV above threshold. Left, z polarization; right, x polarization.

(polynomial fitted) RMPS length and velocity gauge results
are almost identical and agree well with the present results.

Differential DPI cross sections for excited-state Li and
Be have neither been measured nor previously calculated.
For ground-state Li, TDCS results from TDCC and conver-
gent close-coupling (CCC) calculations have recently been
published [9]. We have compared those results with values
obtained using the current methodology. We find excellent
agreement with the TDCC results, and somewhat poorer
agreement with CCC, to the extent that the latter two show
small differences.

Before proceeding to the differential cross sections, it is
useful to review the dipole selection rules when the initial
state of the target atom has Po symmetry. Without loss of
generality, we can choose the z direction as the axis of
quantization and assume the initial state is aligned along that
direction (i.e., it has quantum numbers L = 1 and M = 0).
We then consider ionization by photons linearly polarized
along the x or z directions. For parallel (z) polarization, the
final continuum states are connected to the initial state by

the z component of the dipole operator and can have S or
De

0 symmetry. For perpendicular (x) polarization, the final
continuum states are connected to the initial state by the
x component of the dipole operator and can have De

±1 or
Pe

±1 symmetry. Po →Pe transitions are dipole forbidden with
one-electron targets, but are fully allowed in many-electron
atoms. Transitions to the Pe continua are not mentioned in
the two recent studies of DPI from 2P-excited Li [2,8]. We
note that while there is no selection rule that can be used to
predict the ratio of integral cross sections (either total or SDCS)
for parallel to perpendicular polarization, since more than
one total symmetry component is involved, a straightforward
application of the Wigner-Eckart theorem shows that the ratio
of D0 to Dx , for both total cross sections and SDCS at all
energy sharings, must be 4/3.

The SDCS for Be 1P0 and 3P0 at 10 eV excess energy
above threshold are shown in Figs. 3 and 4, respectively. For
comparison, we also plot results for the same excited He
states at the same excess energy. The He cross sections are
generally larger than the corresponding Be cross sections, but
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FIG. 4. (Color online) The same as in Fig. 3, but for 3P0 beryllium and 3P0 helium.
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FIG. 5. (Color online) Singly differential cross sections for double ionization of 2P0 lithium at 10 eV above threshold. Singlet (solid curves)
and triplet (dashed curves) contributions are individually labeled. Left, z polarization; right, x polarization.

the relative contributions of the various symmetry components
to the total are similar. Several selection rules are evident in
the results, namely, that the 3S and 1Pe contributions vanish
at equal energy sharing [14]. Curiously, the Pe component,
which only contributes to DPI with perpendicular polarization,
is vanishingly small at all energy sharings in the case
of the 1P0 targets, but is the dominant component in the
case of the 1P0 targets. We note the ratio of D0 to Dx is
always 4:3.

Figure 5 shows SDCS for Li 2P0 at 10 eV excess energy. For
each allowed spatial symmetry, we show the individual spin
contributions, as well as the totals, the latter computed using
Eq. (16). The relative magnitudes of the various components
is somewhat different for Li than it is for Be. With parallel
polarization, 1S and 1D components are almost the same,
whereas in Be, 1S is the dominant. The triplet components

are generally smaller than the singlet contributions, a fact also
noted by Colgan et al. [8].

Figures 6 and 7 show TDCS for the 1P0 and 3P0 states of
beryllium, respectively. We have again plotted the TDCS for
the analogous states of He for comparison. The He singlet and
triplet results were results scaled, separately in both cases, so
that the major lobes at 1 = 0◦ had the same peak values as in
Be. Even with this internormalization, the He and Be TDCS
are found to be rather different, apart from the general pattern
of lobes and zeros which are largely dictated by symmetry.
It is evident that the angular distributions are very sensitive
to the orientation of the polarization. In all cases, we observe
that the “B1” selection rule [14] is satisfied, which states that
both electrons cannot go out perpendicular to the polarization
direction for final-state M not equal to zero. This is evident
for the 1 = 0◦ panels in Figs. 6 and 7 for x polarization.
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FIG. 6. (Color online) Triply differential cross sections for double ionization of 1P0 beryllium (solid lines) and 1P0 helium (dashed lines)
with z- and x-polarized light at 10 eV above threshold and equal energy sharing. The arrow indicates the direction of the fixed electron. Radii
of circles, marked to the right, give magnitude of cross sections in units of b/(eV sr2). 1 b = 10−24cm2. The right panels show an enlargement
of the same TDCS in more detail.
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We can see that no such selection rule applies when the final
state has M = 0, by examining the z-polarization results for
1 = 90◦ in both Figs. 6 and 7. For the triplet cases shown
in Fig. 7, we see another selection rule at play which prevents
back-to-back ejection, independent of the orientation of the
polarization. Note that for these equal energy sharing results,
the two photoelectrons, due to Coulomb repulsion, are never
ejected in the same direction.

Finally, we show TDCS results for 2P0 lithium in Fig. 8.
Since these are obtained from an incoherent combination
of singlet and triplet contributions, the only selection rules
that survive are those preventing back-to-back ejection for
x polarization at 1 = 0◦ and 90◦. To highlight underlying
similarities between the TDCS for Be and Li, we have taken

the TDCS for singlet and triplet Be and combined them as we
would for Li, using Eq. (16). The TDCS for this “synthetic” Li
atom, constructed from Be results, are shown in the right-hand
panels of Fig. 8. They bear a marked similarity to the true Li
results, particularly at 1 = 60◦ and 90◦.

V. CONCLUSIONS

The hybrid orbital with DVR method offers an efficient
and viable way of extending grid-based studies of DPI to
many-electron atoms with two active electrons. We have
applied this technique to obtain fully differential cross sections
from aligned, excited P states of lithium and beryllium and
have shown that the TDCS are very sensitive to the orientation
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FIG. 8. (Color online) Four left panels show triply differential cross sections for double ionization of 2P0 lithium with z- and x-polarized
light at 10 eV above threshold and equal energy sharing. The four right panels show TDCS using beryllium data, but combined as they would
be for lithium (see text). Radii of circles, marked to the right, give magnitude of cross sections in units of b/(eV sr)2.
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dependence of the ionizing radiation with respect to the
axis of quantization. Comparisons between Be and analogous
helium states shows that the differences are much larger
when comparing excited-state cross sections than ground-state
cross sections. Finally, we have been able to show that
similarities between Be and Li can be revealed when the TDCS
for singlet and triplet excited Be P states are incoherently
combined to produce cross sections for a “synthetic” Li
atom. It is our hope that these results will prompt future
experiments aimed at kinematically complete measurements
of DPI with aligned atomic targets, thereby extending the body

of such information that currently includes only ground-state
targets.
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