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Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital
angular nodes in the two-dimensional momentum distribution
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We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized
femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px

or 3py state. The photoelectron momentum distributions show distinct signatures of the orbital structure of the
initial state as well as the carrier-envelope phase of the applied pulse. Our ab initio results are compared with
results obtained using the length-gauge strong-field approximation, which allows for a clear interpretation of
the results in terms of classical physics. Furthermore, we show that ionization by a circularly polarized pulse
completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying
orbital symmetry in individual systems or during chemical reactions.
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I. INTRODUCTION

The recent decades have shown substantial progress in
strong-field physics with pulsed lasers. Pulses with field
strengths equivalent to the field of the Coulomb interaction in
ground-state atoms and durations of only a few femtoseconds
are now available for a large range of wavelengths [1,2].
This development has facilitated the opening of exciting
research areas, such as attoscience [1,2], which, in turn, has
set entirely new standards for the interrogation of atomic and
molecular dynamics. Strong-field ionization is a process of
special relevance and importance within strong-field physics,
since ionization triggers other strong-field phenomena, such as
high-order harmonic generation, the key process for generating
coherent attosecond pulses in the XUV regime. In strong-field
studies there is also an interest in creating unique quantum
targets by molecular alignment and orientation techniques
[3]. Spatial control of molecules is of importance within
attoscience, femtochemistry, and molecular reactivity among
others. Recent experiments not only succeeded in alignment
of molecules but also in three-dimensional (3D) orientation,
thus giving complete control over the spatial orientation [4–9].

The development described here motivates a detailed
investigation of ionization of oriented targets by strong laser
pulses with special emphasis on orbital structure (e.g., effects
of orbital symmetry). The bulk of experimental and theoretical
works within strong-field physics have dealt with linearly
polarized laser pulses, and there is now a growing interest in
the study of ionization of atoms and molecules by elliptically
polarized pulses [10–14]. The effects of angular orbital
structure in the ionization by linearly polarized fields have
previously been studied for direct electrons [15,16] as well as
for rescattered electrons [17,18]. When it comes to the probing
of angular orbital structure through photoelectron angular
distributions or momentum distributions, the use of a strong
circularly polarized probe rather than a linearly polarized
one has, however, two major advantages: (i) In the circularly
polarized field, an electron born in the continuum is constantly
driven away from the nucleus, owing to the polarization. This
dynamics minimizes rescattering effects as well as interference
between wave packets launched at different instants of time

during the driving pulse. Thus, the use of circularly polarized
laser pulses entails a cleaner ionization signal with respect to
orbital structure. (ii) The polarization plane is two dimensional,
which permits for a more transparent interrogation of angular
orbital structure as we shall see in the present work. In fact,
it has recently been shown experimentally that strong-field
ionization of 3D-oriented C7H5N molecules by a circularly
polarized field polarized in the nodal planes of the outermost
orbitals provides a unique probe of the angular nodal structure
[19].

In this paper we focus on the case where the laser polariza-
tion plane is perpendicular to the nodal plane. We calculate,
by solving the time-dependent Schrödinger equation (TDSE),
the photoelectron momentum distribution for ionization of an
argon atom initially prepared in a 3px or 3py state modeling
an oriented target with a single nodal plane. The 3px and
3py states, in particular, serve as models for investigating
ionization of a molecular orbital with π symmetry. In the
strong near-infrared laser field, the ionization is tunnelinglike
and the photoelectron is born in the continuum at a relatively
large distance from the center of mass. After the ionization,
the circularly polarized field drives the electron away from the
core, which in turn minimizes the importance of the detailed
structure of the molecular potential at small distances. The
calculations are compared with results obtained using the
length gauge strong-field approximation (LG-SFA) [20–22],
which facilitates interpretation using semiclassical theory [23].
Our results show distinct effects of the angular nodal structure
of the initial orbital. For example, the angular nodal structure
of px , py and dxy orbitals is readily mapped out, showing that
strong-field ionization by a circularly polarized laser pulse
directly probes the nodal structure. These are rather simple
systems, so in order to further stress the potential of the method,
we show that the angular nodal structure of a benzene molecule
is mapped uniquely to the momentum distribution.

This paper is organized as follows. In Sec. II we briefly
review the basic theory behind the computations. In Sec. III
we discuss the results and in Sec. IV we give our conclusions.
Atomic units [h̄ = a0 = me = 1] are used throughout, unless
stated otherwise.
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II. THEORY

We investigate an oriented target, modeled by an Ar atom
initially prepared in a 3px or 3py state, interacting with a
circularly polarized few-cycle pulse also in the xy plane. The
electric field is defined as �E = −∂t

�A with the vector potential
�A(t),

�A(t) = A0√
2
f (t)

⎛
⎝ cos (ω0t + φ)

sin (ω0t + φ)
0

⎞
⎠ . (1)

Here A0 denotes the amplitude, ω0 the carrier frequency,
φ the carrier-envelope phase (CEP), and f (t) = sin2(ω0t

2N
)

the envelope, with N the number of optical cycles. The
laser field couples primarily to the least bound electron,
which in turn motivates the use of the single-active electron
approximation (SAE). Hence, our analysis is restricted to
the outermost electron, the remaining being described by
an effective potential [24]. The photoelectron momentum
distribution is given by

∂3P

∂qx∂qy∂qz

= |〈�−
�q (�r)|�(�r,T )〉|2, (2)

where �−
�q (�r) is a continuum scattering wave function of

asymptotic momentum �q and �(�r,T ) is the wave packet
at the end of the pulse T . We calculate the wave packet
by expanding in a spherical harmonic basis for the angular
part and reduced radial wave functions flm(r,t) defined on a
radial grid, �(�r,t) = ∑lmax

l=0

∑l
m=−l(flm(r,t)/r)Ylm(θ,φ), and

then solving the TDSE in the velocity gauge using a split-step
method. The details are described elsewhere [25,26]. The
scattering states entering in Eq. (2) are obtained by solving
the time-independent Schrödinger equation for the effective
potential.

The LG-SFA [20,21], which completely neglects the
Coulomb interaction in the final state as well as all intermediate
states, offers a simple formula for the momentum distribution,

∂3P

∂qx∂qy∂qz

=
∣∣∣∣
∫ T

0

〈
�V

�q (�r,t)∣∣ �E · �r∣∣�i(�r,t)
〉
dt

∣∣∣∣
2

, (3)

where �V
�q is a Volkov wave function with asymptotic

momentum �q and �i is the initial state. In the evaluation of
Eq. (3) it is accurate to use the asymptotic form of the initial
state, �i(�r,t) = ∑

lm Clmrν−1 exp (−κr)Ylm(θ,φ) exp (iIpt),
since ionization primarily occurs at large distances from the
nucleus. Here Ip denotes the ionization potential, κ = √

2Ip,
and ν = Z/κ with Z the charge of the residual ion. The
spatial integration in Eq. (3) can be performed analytically
within this approximation, while the one-dimensional (1D)
time integral is evaluated effectively using the saddle-point
approximation [27], which is accurate in the parameter regime
considered in this paper [28,29].

III. RESULTS

A. Imprints of nodal planes in momentum distributions

Figure 1 shows the TDSE results for the momentum
distributions in the xy plane of polarization for the 3px [1(a)

FIG. 1. (Color online) Momentum distributions from the single-
active-electron TDSE calculation for the [(a) and (b)] 3px and
[(c) and (d)] 3py states of Ar in the xy polarization plane for the
following choice of laser parameters: angular frequency ω = 0.057,
corresponding to 800 nm, peak intensity I = 1.06 × 1014 W/cm2,
carrier-envelope phase [(a) and (c)] ϕ = −π/2, [(b) and (d)] ϕ = 0,

and number of optical cycles N = 3.

and 1(b)] and 3py [1(c) and 1(d)] initial states of Ar, probed
by an 800-nm three-cycle laser pulse with peak intensity
I = 1.06 × 1014 W/cm2 and CEP ϕ = −π/2 [1(a) and 1(c)]
and ϕ = 0 [1(b) and 1(d)]. The distributions are calculated
using a 4096-points radial grid extending to rmax = 400,
maximum angular momentum lmax = 40, and a time step of
0.005. Notice that the ionization potential for the Ar(3p) state
is 15.76 eV. The low-energy part

√
q2

x + q2
y < 0.1 has been

removed for better graphical display. For the 3px state with
φ = −π/2 [Fig. 1(a)] and 3py state with φ = 0 [Fig. 1(d)],
we observe a distribution with a single dominant peak, which,
as we shall discuss in more detail below, is located near
�q ≈ − �A(T/2). In the two other cases we observe a splitting
of this peak into two nearly symmetric peaks. As we now
show these main features are explained using the LG-SFA.
Figure 2 shows the momentum distributions obtained by using
the LG-SFA in the plane of polarization for the 3px [2(a) and
2(b)] and 3py [2(c) and 2(d)] initial states of Ar, at 800-nm light
and peak intensity I = 1.06 × 1014 W/cm2, CEP ϕ = −π/2
[2(a) and 2(c)], ϕ = 0 [2(b) and 2(d)], and three optical
cycles N = 3.

The SFA results clearly reproduce the general structures of
the TDSE distributions, except for an overall angular shift and
a spiral-like interference structure. The former overall angular
shift is due partly to the Columbic interaction, and partly to
the fact that the laser field breaks the rotational invariance
perpendicular to the polarization plane [14]. This feature has
been observed experimentally in the ionization of helium by
a few-cycle circularly polarized laser pulse [11]. The spiral
structure is connected to the interaction between outgoing
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FIG. 2. (Color online) SFA momentum distributions for the [(a)
and (b)] 3px and [(c) and (d)] 3py states of Ar in the xy polarization
plane for the following choice of laser parameters: angular frequency
ω = 0.057, corresponding to 800 nm, peak intensity I = 1.06 ×
1014 W/cm2, CEP ϕ = −π/2 [(a) and (c)], ϕ = 0 [(b) and (d)],
and a number of optical cycles N = 3. The white curves show a
parametric plot of − �A(t) from Eq. (1). If no nodal planes are along the
polarization at time t = T/2, the dominating peak in the distribution
follows the simple formula �qfinal � − �A(T/2) as seen in (a) and (d). If,
on the other hand, the field peaks in the direction of the angular node
(b), (c) then the dominating peak in the distribution, splits simply
because there is no charge density in that direction.

low-energy electrons and the long-range Coulomb potential,
equivalent to the radial fans seen in the linear case [30–34].

It is well known, in the case of a spherically symmetric
initial state, that the LG-SFA momentum distribution reflects
the shape of the vector potential [28]. This is easily explained
by semiclassical theory [23]: Owing to the exponential depen-
dence of the rate on the field strength, ionization predominantly
occurs at the times t when the magnitude of the electric field is
close to the maximum | �E(T/2)|. Assuming that the (classical)
electron is born in the continuum with zero initial velocity
and that it subsequently moves under the influence of the
electric field only, we obtain �qfinal = − �A(ti) with ti the instant
of ionization [�qfinal = − �A(T/2) dominates]. However, in the
case of a nonspherical initial state, this simple argument has
to be extended to take into account the shape of the initial
state, in particular the angular nodal structure. For example,
it may happen that the field is in a nodal plane of the initial
state at t = T/2 and hence ionization will be suppressed. In
other words, in this more general case, the shape of the vector
potential, electric field, and initial state, that determine the
overall structure of the momentum distribution. The results in
Figs. 1 and 2 clearly illustrate this combined effect. Let us start
by analyzing the results for the 3px state and let us concentrate
on the LG-SFA results to make the discussion as simple as
possible. Figure 2(a) shows the SFA momentum distribution
in the plane of polarization for φ = −π/2 and the 3px initial

FIG. 3. (Color online) Electron density in the 3px state of Ar
together with a parametric plot of the electric field, corresponding
to the vector potential shown in Fig. 2, scaled by a factor. In (a)
ϕ = −π/2, the electric field at the peak of the pulse t = T/2 points
in a direction where the orbital density is largest. In (b), ϕ = 0, the
electric field at the peak of the pulse runs through the orbital node
(no electron density).

state. We observe a distribution with a single peak located near
− �A(T/2), in good agreement with the semiclassical theory.
In the case of ϕ = −π/2, �E(T/2) = Ex(T/2)x̂ points in the
direction of maximum electron density [see Fig. 3(a)], while
both �E and 3px are symmetric with respect to (x,y) → (x, −
y). This leads to a single peak situated at �q ∼ − �A(T/2) ∝ −ŷ

and symmetric with respect to (qx,qy) → (−qx,qy) in good
agreement with the calculated distribution. Figure 2(b) shows
the SFA momentum distribution, in the plane of polarization,
for φ = 0 and a 3px initial state. We observe two peaks,
symmetric with respect to (qx,qy) → (qx, − qy), in contrast
to the simplest single peak semiclassical prediction. In the
case of ϕ = 0, �E(T/2) = Ey(T/2)ŷ lies in the nodal plane
of 3px [see Fig. 3(b)], hence we do not have ionization in
the direction of field maximum. Thus, the single peak from
before splits into two symmetric peaks, owing to the fact that
�E and 3px are symmetric with respect to (x,y) → (−x,y),

again in good agreement with the obtained distribution. The
precise location of the peaks is determined by a competition
between the rate arising from the electric field and the density
profile of the initial state. The results shown in Figs. 2(c)
and 2(d) are explained using similar reasoning. Notice that
the signature of the nodal plane in the momentum distribution
is advanced by π/2 compared to the orbital angular nodal
structure, reflecting the π/2 phase between the electric field
and the vector potential.

The preceding discussion of Figs. 1, 2, and 3 clearly
shows that the nodal structure of the initial orbital is
mapped uniquely to the momentum distribution when the
laser polarization plane is perpendicular to the nodal plane.
This effect is even more visible in the case of a slightly
longer femtosecond pulse, where the asymmetry caused by
the CEP of the pulse is smaller. Figure 4 shows the following
SFA momentum distribution in the plane of polarization
∂2P/∂qx∂qy = ∫

(∂3P/∂qx∂qy∂qz)dqz for H(1s), H(2px),
H(2py), and H(3dxy) states obtained using the same parameters
as in Figs. 1 and 2, except that the number of optical cycles was
increased to N = 20 and I = 1.0 × 1014 W/cm2. The use of
the LG-SFA is for computational convenience and is justified
by the results presented on Ar. The binding energy of the
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FIG. 4. (Color online) SFA momentum distributions
∂2P/∂qx∂qy = ∫

(∂3P/∂qx∂qy∂qz)dqz for (a) 1s, (b) 2px , (c) 2py ,
and (d) 3dxy , obtained using the following laser parameters: angular
frequency ω = 0.057, corresponding to 800 nm, peak intensity
I = 1.0 × 1014 W/cm2, carrier-envelope phase ϕ = 0, and number
of optical cycles N = 20. The binding energy of the 2px , 2py , and
3dxy states are modified to the ground-state energy of H. The white
dashed lines show regions where ionization is suppressed.

H(2px), H(2py), and H(3dxy) have been artificially modified
to −0.5 (by modifying κ = √

2Ip) in order to compare with
the H(1s) result. Figure 4 clearly shows that the angular nodal
structure is mapped uniquely to the momentum distribution.
This is particularly clear when compared with Fig. 5, which
shows the asymptotic densities for the 1s, 2px , 2py , and 3dxy

states. The electric field is almost constant during the dominant
cycles of the field (i.e., there is no competition between the rate
arising from the electric field and the density profile). In the
case of H(1s) we observe a completely symmetric distribution
with well-resolved above-threshold ionization peaks, while
ionization is strongly suppressed along the qx axis (qy axis)
in the case of H(2px) [H(2py)] and along the qx axis and
qy axis in the case of H(3dxy), reflecting the angular nodal
structures in Fig. 5. Ionization is suppressed along the qx axis
(qy axis) in the case of H(2px) [H(2py)], owing to the yz (xz)
nodal plane which is shifted 90◦ by the vector potential. There
are two angular nodal planes for H(3dxy), namely the xz and
yz planes, suppressing ionization along the y axis and x axis.

Figure 6(a) shows the momentum distribution in the
xy plane associated with strong- field ionization of the highest
occupied molecular orbital (HOMO) of the benzene molecule
[Fig. 6(b)]; the molecule lies in the yz plane. The laser param-
eters are ω = 0.057, laser peak intensity 5.0 × 1013 W/cm2,
and N = 10 optical cycles. The asymptotic coefficients for the
HOMO are calculated in the following manner: First the wave
function is calculated using standard quantum chemistry codes
[35]. Then the asymptotic coefficients are determine by fitting
the wave function with the known asymptotic wave function

FIG. 5. (Color online) The asymptotic density for (a) H(1s),
(b) H(2px), (c) H(2py), and (d) H(3dxy). The white dashed lines
show the angular nodal planes.

[22]. Benzene has two degenerate HOMO orbitals: The first
one (not shown) has a nodal plane coinciding with the xy

plane, whereas the second, (C2−1,C21,C4−1,C41,C6−1,C61) =
(0.74, − 0.74, − 0.27,0.27,0.04, − 0.04) and Ip = 9.24 eV
[contours in Fig. 6(b)] has a nodal plane coinciding with the
xz plane. The first degenerate orbital does not contribute to
ionization in the xy plane, from symmetry arguments. The
second degenerate orbital has one additional nodal plane in
yz, which makes it similar to the H (3dxy). However, note
that the charge density is not fourfold symmetric, and one
node is shallower than the other. All these features are indeed
mapped uniquely in the momentum distribution [Fig. 6(a)],
which reveal two nodal structures, one of which is more clear

FIG. 6. (Color online) (a) SFA momentum distribution in the xy

polarization plane for a benzene molecule oriented in the yz plane.
(b) Plot of the participating orbital. The calculation is performed
with the following laser parameters: angular frequency ω = 0.057,
corresponding to 800 nm, peak intensity I = 5.0 × 1013 W/cm2, and
number of optical cycles N = 10.
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than the other. The benzene case demonstrates the potential of
this method for interrogating the orbital structure of large and
complex molecules.

B. Carrier-envelope phase effects in circularly polarized fields

In Figs. 1 and 2, we note that changing the CEP from ϕ =
−π/2 to ϕ = 0 does not correspond to a counterclockwise
rotation of angle π/2, contrary to what one might expect:
CEP effects for atoms and linear molecules aligned along
the propagation axis of the applied circularly polarized field
were characterized in terms of simple rotations of the total
system around the propagation axis [36]. This characterization,
however, only holds when the initial state is invariant with
respect to rotations around the propagation direction or when
the system initially is described by a uniform incoherent
mixture of magnetic substates. The latter point was not
discussed explicitly in [36] and we use the opportunity to do
so now. Note that CEP effects have been described generally
in a Floquet-type approach [37,38].

Consider an atom or a linear molecule, described within the
SAE approximation, interacting with a laser pulse described
by the vector potential �A(t) defined in Eq. (1). We assume
that the field-free Hamiltonian H0 is invariant under rotations
around the z axis. Furthermore, we assume that the probability
for a specific magnetic quantum number PM is uniform. The
ensemble average of ∂3P/∂qx∂qy∂qz is defined as [39]

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]
= Tr (ρ(φ; t)P̂�q), (4)

where t is any time after the pulse, ρ(φ; t) is the density matrix
of the total system, φ is the CEP, and P̂�q = |�−

�q 〉〈�−
�q | projects

on the exact scattering states |�−
�q 〉 with asymptotic momentum

�q. The density matrix is given by

ρ(φ; t) =
J∑

M=−J

PM |�nJM (φ; t)〉〈�nJM (φ; t)|. (5)

Here PM = 1
2J+1 and |�nJM (φ; t)〉 = U (φ; t,0)|nJM〉, where

U is the time-evolution operator for the total system and
|nJM〉 the field-free initial state, with J denoting the total
angular momentum of the system, M the corresponding
magnetic quantum number, and n the remaining quantum
numbers. We note, in passing, that the Hamiltonian and hence
the time-evolution operator have a parametric dependence on
φ through the interaction with the external field. We evaluate
the ensemble average Eq. (4) by using the position-eigenstate
basis and thereby obtain

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]

= 1

2J + 1

J∑
M=−J

∣∣∣∣
∫

d�r(�−
�q )∗�nJM (φ; t)

∣∣∣∣
2

. (6)

By using the relation [40]
∫

d�D
(J )
M ′M (α,β,γ )D(J )∗

M ′′M (α,β,γ ) = 8π2

2J + 1
δM ′M ′′ , (7)

where D
(J )
M ′M (α,β,γ ) are the Wigner rotation functions,

(α,β,γ ) the Euler angles, and d� = sin(β)dβdαdγ , Eq. (6)
can also be expressed as

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]

= 1

8π2

∫
d�

∣∣∣∣
∫

d�r(�−
�q )∗�nJM ′ (�,φ; t)

∣∣∣∣
2

. (8)

Here �nJM ′ (�,φ; t) is a solution to the TDSE corresponding
to the rotated initial state D(�)|nJM ′〉, with D the rota-
tion operator and � = (α,β,γ ). However, �nJM ′ (�,φ; t) =
exp(−iĴzφ)�nJM ′ (�′,φ = 0; t) with �′ = (α − φ,β,γ ) [36].
Thus

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]
= 1

8π2

∫
d�

∣∣∣∣
∫

d�r (�−
�q )∗ exp(−iĴzφ)

×�nJM ′ (�′,φ = 0; t)

∣∣∣∣
2

. (9)

The rotation of a scattering wave function with asymptotic
momentum �q can be accomplished just by rotating the
asymptotic momentum [i.e., exp(iĴzφ)�−

�q = �−
�q ′ , where �q ′ =

Rz(−φ)�q, with Rz the 3 × 3 orthogonal matrix that generates
counterclockwise rotations around the z axis] [40]. This means
that

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]
= 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0
sin(β)dβdαdγ

×
∣∣∣∣
∫

d�r (�−
�q ′ )

∗�nJM ′ (�′,φ = 0; t)

∣∣∣∣
2

.

(10)

Finally this expression can be rewritten as

[
∂3P

∂qx∂qy∂qz

(�q,φ)

]
= 1

8π2

∫ 2π

0

∫ 2π−φ

−φ

∫ π

0
sin(β)dβdαdγ

×
∣∣∣∣
∫

d�r (�−
�q ′ )

∗�nJM ′ (�,φ = 0; t)

∣∣∣∣
2

=
(

∂3P

∂qx∂qy∂qz

( �q ′,φ = 0)

)
, (11)

owing to the uniformity of the distribution function over the
orientations, G(�) = 1/(8π2). Thus a change in the CEP from
φ = 0 to φ = φ′ corresponds to a rotation of the system
around the z axis by φ′. This is illustrated in Fig. 7,
which shows the ensemble average of the exact momentum
distribution in the xy polarization plane for Ar atoms initially
in an incoherent mixture of 3px or 3py states for two different
values of the CEP, φ = −π/2 and φ = 0. Notice that the
validity of Eq. (11) does not require the SAE or the dipole
approximation, which can easily be checked by going through
the steps leading to Eq. (11) and maintaining full retardation
and accounting for all electrons.
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FIG. 7. (Color online) Ensemble average of the SAE, TDSE
momentum distributions in the xy polarization plane for argon
initially in a uniform incoherent mixture of 3px and 3py states.
The laser parameters are as follows: angular frequency ω = 0.057,
corresponding to 800 nm, peak intensity I = 1.06 × 1014 W/cm2,
carrier-envelope phase (a) φ = −π/2, (b) φ = 0, and number of
optical cycles N = 3.

The pure 3px and 3py states of Ar, of course, do not
fulfill the requirements for the validity of Eq. (11) and hence
the CEP effects observed in this paper are not in general
simple rotations. It is, nevertheless, still possible to express
momentum distributions for 3px in terms of momentum
distributions for 3py . Symmetry considerations immediately
lead to the following formula:

∂3P3py

∂qx∂qy∂qz

(φ + π/2) = Rz(π/2)
∂3P3px

∂qx∂qy∂qz

(φ), (12)

where φ is the CEP. This geometric correspondence
is illustrated in Figs. 1 and 2, where we note that

∂3P3py
/(∂qx∂qy∂qz)(φ = 0) = Rz(π/2)∂3P3px

/(∂qx∂qy∂qz)
(φ = −π/2).

IV. CONCLUSION

We have investigated strong-field ionization of Ar(3px) and
Ar(3py) in the presence of a strong circularly polarized laser
pulse by calculating the photoelectron momentum distribution
using the TDSE. These systems model the ionization from an
oriented target with a single angular nodal plane interacting
with a circularly polarized laser pulse, a scenario that could
be realized in an oriented molecular target. Our results are
compared with results obtained using the LG-SFA and, up
to a relatively small rotation of the distribution that is well
understood as a combined field and potential effect [14],
good agreement is observed, emphasizing the LG-SFA as a
valuable tool for studying ionization by circularly polarized
pulses. More importantly, both TDSE and LG-SFA results
show distinct signatures of the initial states as well as the
temporal shape of the applied pulse, which indicate that
strong-field ionization by circularly polarized pulses may serve
as a probe for revealing nodal structure and also changes
that may occur during chemical reactions. This assertion
is strengthened by strong-field calculations that involve
orbitals with different angular symmetry including aligned
benzene.
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