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The classical microcanonical ensemble approach to high-harmonic generation (HHG) in rare gases subjected
to intense laser fields is studied. We show that the ensemble spectrum is a “sampled” version of the single
trajectory spectrum. Unlike the radiation of the single ensemble member, the total ensemble radiation possesses
all the basic HHG features: odd laser harmonics, plateau, and cutoff. The sampling theorem for uniform grids is
used to explain why the ensemble spectrum can be computed accurately with a very small number of ensemble
members compared to the Monte Carlo method. Furthermore, The phase space relevant to harmonic generation
is found to be significantly smaller than the field free microcanonical ensemble. In addition we demonstrate the
seeding effect that was predicted and observed in quantum simulation. For circular polarization, we verify that
the harmonic generation is highly suppressed even when the argument of the three-step model does not apply.
All the findings are numerically calculated for the xenon atom.
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I. INTRODUCTION

High-harmonic generation (HHG) has been an active field
of research for the last 20 years [1–3]. Experimentally it
was observed that rare-gas atoms subjected to intense laser
pulses can emit light in frequencies which greatly exceed the
several first harmonics [4–6]. In fact, harmonics beyond 100
were observed. Such high harmonics are qualitatively well
explained by the three-step model (also known as the ”simple
man model”) conceived by Corkum [7] and formalized by
Lewenstein et al. [8]. In short, this model assumes a fraction
of the wave-function tunnels outside the joint potential of
the atom and driving laser. Then, driven by the laser field,
the escaped wave packet repeatedly collides with the core
and creates high harmonic radiation. The propagation of the
wave packet outside the atomic potential is calculated using
the classical equation of motion. Semiclassical propagator
methods have also been successfully used [9] to calculate the
spectrum in this regime (see [2] for more methods). In this
article, however, we consider low enough intensities so that
tunneling effects are not so dominant. The Keldysh parameter
in our model is roughly 2, contrary to the three-step model
where it is much smaller than unity.

The classical microcanonical ensemble approach of
Leopold and Percival [10] has been used successfully in the
past for calculating atom ionization rates in laser fields [10]
and for describing atomic and molecular dynamics ([11]
and references therein). In the microcanonical approach, the
ensemble contains all the trajectories (or initial conditions) of
a classical electron orbiting the atom with the same energy.
This energy is taken to be the quantum ground-state energy
(field free). Finally, ensemble integration over all possible
different initial conditions is carried out using the Monte
Carlo method. Each trajectory corresponds to a different
realization so the trajectories do not interact with each other.
This scheme was also applied to the calculation of HHG
radiation [11–15]. In HHG, the radiation spectrum of a single
member of the ensemble (i.e., a single classical electron
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trajectory of an electron-atom-laser system) contains features
which are not observed either in quantum simulation [16]
or in experiments [4,5]. Yet, after the ensemble average is
taken and the radiation from all possible trajectories (ensemble
members) is coherently summed, the unobservable features
vanish and the typical HHG features (plateau, cutoff, and odd
harmonics) emerge quite clearly.

The main purpose of this article is to isolate this “ensemble
effect” and determine what is the simplest and smallest
subensemble for which only the observed HHG features
appear. Since only bound, nonchaotic trajectories are con-
sidered, this classical description is limited to the part of
the spectrum which is dominated by the bound states. The
three-step cutoff associated with ionization and recombination,
for example, cannot be obtained from this model. Nonetheless
the model provides interesting insights into the classical nature
of harmonic generation. Comparison to the quantum spectrum
is left for future work where different alternatives of choosing
and combining these subensembles and other subensembles
need to be considered.

This paper is organized as follows. The next section
describes the physical model, the assumptions made, and the
methods used to acquire the solution. Section III starts by pre-
senting the relation between the seemingly disordered single
member HHG spectrum and the structured HHG spectrum
of the ensemble average. The calculation is carried out for a
specific subensemble whose members all move on the same
circle around the nucleus in the absence of a driving laser. Then
in Sec. III B the effect of the circle’s radius value is examined.
We find that there is a small number of distinct radii that give
rise to significant HHG spectra. Section III C discusses the
implication of the sampling theorem and sheds some light on
the convergence of the result with so few integration points.
This part is unique to our approach which is based on an evenly
spaced grid and not on the Monte Carlo method. In the last two
subsections, our approach is applied to some more complex
physical scenarios. In Sec. III D the seeding effect [17], which
was predicted and demonstrated using quantum theory and
quantum simulation, is shown to appear quite clearly already
at the classical level. We finish Sec. III by applying the model
to the circular polarization case and find that there is no HHG
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radiation. Even though this result is expected, the mechanism
responsible for it is rather different from that of the three-step
model. Finally, in Sec. IV we conclude.

II. METHOD

A. Ensemble description

One can consider the ensemble of Leopold and Percival
as a different realization of a single atom or as a statistical
description of many atoms. We adopt the first point of view.
The circular ensemble is defined in the following way: Let
all ensemble members be aligned so that the axis of rotation
is along z. The laser pulse polarization is along x and the
field-free initial conditions of the electron in the ith member
are

xi(t = 0) = r0 cos ϕi,
(1)

yi(t = 0) = r0 sin ϕi,

where ϕi is the initial azimuthal angle of the electron in the
ith member (later on we drop the index i but it is assumed
that different ϕ values correspond to different members). r0

is the field-free radius, which is the same for all members.
The reason for this specific laser-atom orientation is that
quantum simulations [16] have shown that this alignment’s
HHG spectrum is considerably stronger than that of other
orientations. If ensemble members are allowed to be oriented
in the −z direction as well, then by symmetry the x component
of the motion stays the same, but the y component changes its
sign. This leads to a cancellation of the y polarization, but the
x (driving) polarization is left unchanged. For this reason it is
enough to consider just the +z orientation, and keep in mind
that the total induced dipole is only in the x direction.

Velocities are chosen so that in the absence of a laser field,
a closed circular trajectory of radius r0 is produced; i.e., the
field-free (ff) solution of xi is

xi,ff = r0 cos(ωff t + ϕi), (2)

where the field-free rotation frequency ωff is given by ω2
ff(r0) =

1
r0

∂V
∂r

∣∣
r0

. ωff should not be confused with ωrotation which is the
electron rotation frequency “dressed” by the external field. In
principle, elliptical orbits should also be included. We observe,
though, that in the parameter space explored in this work,
even mild ellipticity causes the trajectory to immediately
ionize. Nevertheless, it is not claimed that orbits with small
enough ellipticity, especially the ones which are close to the
core, do not contribute to the HHG spectrum. Even though
some argument in favor of this simple “circular ensemble”
have been given, we recall that the main motivation is to study
the simplest case for which the “ensemble effect” takes place.

B. The equations of motion

The equations of motion are

ẍ = −∂V (r)

∂x
+ A(t) sin(ωLt),

(3)

ÿ = −∂V (r)

∂y
.

V (r) is the atomic field-free potential, A(t) is the slow varying
envelope of the laser pulse, and ωL is the laser frequency.
Each atom has only a single active electron. The equations
of motion are solved using the Runge-Kutta 45 method. For
V (r) we use the Xe 5p Hartree-Slater potential, which takes
into account the effect of the other electrons in the atom on
the valence electron. Even though a single classical orbit does
not model the 5p level, the 5p Hartree-Slater potential is used
to simulate the potential the single active electron experiences
in the inner shells of the atom.

The driving laser pulse parameters are the following. The
laser frequency is 0.0925 a.u. (krypton fluorine) and the pulse
duration is about 200 optical cycles (∼0.3 ps). The envelope
of the pulse is super-Gaussian of power 4. Finally, for a
nonrelativistic motion, the radiation is proportional to the
acceleration of the charge. Thus, the spectrum is the Fourier
transform of the acceleration ẍ. In the calculation of the
spectrum, a Blackman window is used to suppress the effects
of side lobes (this is of particular importance for the single
member spectrum where the acceleration is not zero at the
edge of the calculation window).

We use S(ω) or S(ω,ϕ) when needed for the single member
(complex) spectrum, and C(ω) for the averaged collective
ensemble (complex) spectrum. The averaged collective
ensemble spectrum power is

|C(ω)|2 =
∣∣∣∣ 1

2π

∫ 2π

0
S(ω,ϕ)dϕ

∣∣∣∣
2

. (4)

For the spectrum, we take all the signal including the turn on
and turn off and not only the stationary parts of it (unlike [16]).
This test is more strict than when considering only the flat
part of the pulse.

C. Hyper Raman lines

The radiation spectrum of a classical electron orbiting the
nucleus while being driven by an external laser field shows a
strong presence of the “dressed” electron rotation frequency,
ωrotation. Due to the nonlinearity of the equation of motion
for a nonharmonic potential, combinations of ωrotation and ωL

(hyper Raman lines [18] or satellites [12]) also appear. For
the classical one-dimensional anharmonic oscillator in very
strong fields, it has been shown [18] that dissipation highly
suppresses the hyper Raman lines while hardly affecting the
laser harmonics. Unfortunately, it is not clear what is the
physical source of dissipation in a basic classical atom-laser
system.

In spite of that, this work shows that the strong dependence
of the hyper-Raman-lines phase on the initial conditions, leads
to their mutual cancellation when the total ensemble radiation
spectrum is calculated.

III. RESULTS

A. The relation between single member spectrum
and ensemble spectrum

Figure 1 shows the numerical calculation of an HHG
spectrum for the parameters given in Sec. II B and a laser
pulse peak intensity of 6 × 1013 W/cm2.
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FIG. 1. (Color online) (a) A typical HHG radiation spectrum
generated by a classical electron trajectory in an atom driven by
a laser field. The spectrum contains many hyper Raman lines
which are combinations of the laser frequency and the electron
rotation frequency. (b) HHG averaged radiation spectrum of a
classical trajectories ensemble. The ensemble average filters out all
the unobserved hyper Raman lines and leaves only the odd laser
harmonics. The ensemble averaged spectrum shows the three basic
HHG features: odd laser harmonics, plateau, and cutoff.

For each value of ϕ, corresponding to a different member or
realization in the ensemble, the spectrum S(ω,ϕ) is calculated.
A typical S(ω,ϕ) is plotted in Fig. 1(a). Next, the ensemble
average of the acceleration along x is calculated, and its Fourier
transform, the ensemble average spectrum |C(ω)|2, is plotted
in Fig. 1(b).

We make the following observation:
(1) The single member spectrum S(ω) can contain any

combination of the laser frequency and the rotation frequency
(i.e., hyper Raman lines).

(2) Only odd laser harmonics appear in the ensemble
spectrum C(ω).

(3) Only in C(ω) does a plateau and cutoff appear in the
spectrum. In contrast, S(ω) decays far too slow to agree with
typical observed or calculated spectra.

Even in such a simple ensemble, all the basic HHG features
appear. The essence of the observed plateau is a nonlinear
effect; decreasing the laser intensity by a factor of just 4
causes a fast linear decay (on a log scale) in the spectrum
with no plateau. Next we wish to see the relation between the
single member and ensemble spectra, and study the cause
of cancellation of all frequencies which are not odd laser
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FIG. 2. (Color online) (a) The thick red curve is a zoom-in on
Fig. 1(a). The thin black curve is a zoom-in on Fig. 1(b). The ensemble
HHG spectrum (thick red) in the plateau zone is a sampled version of
the single member HHG spectrum (thin black) at odd laser harmonics.
(b) Using the normalized spectrum 〈P (ω)〉 [see Eq. (5)], one can see
that all ensemble members are in phase just for odd laser harmonics,
while they destructively interfere for other frequencies.

harmonics. Figure 2(a) shows the single member (thin black)
and ensemble (thick red) spectra. This is simply a magnified
combined version of Figs. 1(a) and 1(b). One can see how C(ω)
“samples” S(ω) at the odd harmonic frequencies below the
cutoff. Actually we observe that the absolute value of S(ω,ϕ)
is practically ϕ independent. The phase structure, however, is
very sensitive to ϕ. To probe this dependence, it is useful to de-
fine the “normalized spectrum” P (ω,ϕ) = S(ω,ϕ)/|S(ω,ϕ)|.
We selected 100 ϕ values uniformly distributed in the interval
[0,2π ], calculated their normalized spectrum and plotted the
ensembles normalized spectrum:

〈P (ω)〉 =
∑

i

S(ω,ϕi)/|S(ω,ϕi)|. (5)

Figure 2(b) shows how perfect constructive interference
occurs only at the odd laser harmonics frequencies, and that
the interference is destructive elsewhere. For ω = (2n + 1)ωL,

S(ω,ϕi) is in phase with the driving field regardless of initial
condition ϕi . Above the cutoff there is no longer constructive
interference even at the odd laser harmonics. Note that the
mechanism responsible for the cutoff and odd harmonics in
this system is completely different from that of the three-step
model.
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FIG. 3. (Color online) HHG ensemble spectrum for different
initial (field-free) radii. The y axis is the distance from the nucleus,
r0, and the x axis is the frequency in units of the laser frequency. The
color map is logarithmic. The white bands are ionized trajectories.
The main arc is the (dressed) electron rotation frequency, and the
vertical lines are odd laser harmonics. While low harmonics appear
for any radius, only a few give rise to high harmonics. Some of these
points happen when the “rotation arc” crosses a harmonic line. This
is a direct consequence of the effect shown in Fig. 2 (see text). The
classical “hot spots” of harmonics generation are sparse and constitute
less than 3% of the possible initial conditions.

B. HHG contributions from different initial field-free radii

After examining a specific r0 ensemble, it is interesting
to see what impact the value of the initial field-free radius
might have. At this point it is not clear if all radii contribute
roughly the same or if there are some preferred radii which are
considerably more dominant. For that purpose we calculated
C(ω) for different field-free radii, r0. In Fig. 3, each row is
the ensemble spectrum of a different r0. The y axis is the
initial field-free distance from the nucleus (atomic units), and
the x axis is the frequency (in units of the laser harmonics).
For clarity it is highly recommended to view the on-line color
version. Bright (red) means strong intensity. The color map is
logarithmically scaled.

The main arc crossing the figure is the electron rotation
frequency. This rotation frequency is the “dressed” field-
free rotation frequency of the electron orbit. The laser field
correction is the analog of the ac Stark effect. The other arcs
are reminiscent of the strong hyper Raman lines. The vertical
lines on the left part of the figure are odd laser harmonics.
Note that the arcs are many order of magnitudes weaker than
the harmonic lines [see Figs. 2(a) and 4(b)]. The completely
white bands correspond to trajectories which immediately
ionize. The ionization observed is the classical “over the
barrier” ionization. In our simulation, once an electron is
ionized it never returns to the atom (this is because the
assumption of zero momentum after tunneling made in the
three-step model does not apply here). On the border between
bound motion and ionization, there is a very narrow slice of
initial conditions that generates (bound) chaotic motion. This
was verified by observation of positive Lyponov exponents
for these trajectories. Chaotic motion can be suppressed by
quantum mechanics [19], so we exclude and disregard the
spectra of chaotic trajectories.

While the first few harmonics appear for all r0, it is only
a few isolated radii that give rise to the higher harmonics.
Notice that some of these points occur when the rotation
arc and vertical odd harmonic lines cross. This effect is
easily understood using the “sampling” effect discussed in the
previous subsection [Fig. 2(b)]. Below the cutoff, the ensemble
spectrum samples the one member spectrum in frequencies
which are the odd laser harmonics. Therefore, if the single
member has its peaks exactly at these points, the ensemble
spectrum will have strong “samples.” This is in complete
agreement with Ref. [12] where this effect was first observed.
It is important to note that there are other dominant points
in the spectrum for which the rotation arc does not cross a
laser harmonic vertical line (e.g., r0 = 1.82, r0 = 1.95). Their
origin is not clear yet.

In the second band, there are some trajectories (close to the
chaotic ones) whose peaks in the spectrum are slightly shifted
from the expected odd laser harmonics. This effect can also be
observed in a simple one-dimensional anharmonic oscillator.
In one dimension, a tiny friction effect is enough to put the
peaks back in place.

We point out that in one dimension, the spatial origin of the
radiation is not a well-defined concept. Trying to isolate the
zone of radiation (say by a Gabor transformation) seriously
distorts the spectrum. In two dimensions, the electron motion
is around the initial radius (up to 15% of the radius for strong
fields) so one can tell which are the more active zones in
the atom. Moreover in terms of field-free initial conditions
(namely, r0) the radiation origin in two-dimensions can be
spatially located even more precisely. This can be seen in
Fig. 3, which suggests that HHG originates from small a
number of circular ensembles. The 5p wave function extends
until a radius of about 5 a.u., yet the classical HHG hot spots
constitute less than 3% of that distance.

C. Sampling theorem and ensemble integration

Since the acceleration ẍ(t,ϕ) is periodic in ϕ, it can be
written as

ẍ(t,ϕ) =
∑

k

a(t,k) exp(ıkϕ), (6)

where a(t,k) are complex coefficients, andk is the azimuthal
frequency. After averaging over ϕ to get the ensemble
acceleration, only the k = 0 term remains. This, however, is no
longer correct when the continuous integration is replaced by
an M points sum. The sampling theorem states that azimuthal
frequencies higher than M/2 will be “folded” or shifted
to a lower frequency. Specifically, the k = M,2M,3M, . . .,
frequencies will be folded to k = 0. All frequencies which
fold into nonzero frequencies will cancel out in the ensemble
sum, but the terms that were folded to zero will remain and
appear as an artifact in the ensemble spectrum.

In Fig. 4(a), the two-dimensional Fourier transform of
ẍ(t,ϕ) [i.e., a(ω,k)] is plotted. Each curve corresponds to a
different azimuthal frequency, and the x axis is the temporal
frequency in units of laser harmonics. The strongest peak,
located at ω = 7.72ωL, is the rotation frequency. The peak of
the kth azimuthal frequency is at ∼kMωrotation ∼kMωff . From
the figure, it is clear that if the Mth component is folded to
k = 0, then the peak of the artifact will appear at multiples of
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FIG. 4. (Color online) (a) The two-dimensional Fourier transform
over time and initial angle of the electron acceleration. The spectrum
is discrete in the azimuthal frequency. The kth marker corresponds
to the kth azimuthal frequency number. For very large M, only the
zeroth component survives the ensemble average and contributes to
HHG. (b) for M = 9 (thin red line) ensemble members, and the same
parameter as in Fig. 1, the artifacts centered around 9ωrotation are the
results of the k = 9 spectrum being folded onto k = 0 according to
the sampling theorem. If more ensemble members are considered,
the low-frequency zone remains the same but the artifacts are pushed
to higher frequencies. For comparison, the thick (blue) line is 32
ensemble members.

kMωff (often the second multiple is already too weak to be
observed).

For example, if the ensemble spectrum of Fig. 1(b) is
calculated using only four points, the spectrum will look like a
superposition of k = 0 [of Fig. 4(a)] and k = 4. By choosing
larger M, the artifacts can be pushed farther and farther to
higher frequencies away from the zone of interest. To illustrate
this, Fig. 4(b) shows the spectrum for M = 9 and for M = 32
ensemble members. Notice that the artifact appears only in
the high frequencies around 9ωrotation ∼ 9ωff and that in the
low zone the two spectra are identical as expected from the
sampling theorem. Consequently, the calculations converge
to the correct result beyond a critical member number, and
a further increase of the ensemble size does not improve the
accuracy. Let ωmax be the highest frequency of interest in
the system. The critical value of M, for which the artifact
is located at ωmax, is given by Mcrit > ωmax/ωff . In practice
because of the spectral width of the artifact, usually a slightly
larger value is taken. For xenon, M can be taken to be as small

as 16; and closer to the core where ωR is higher, it can be
even less. This understanding may lead to a simplification of
the classical scheme and substantial reduction of the needed
computer resources.

D. Seeding

Fleischer and Moiseyev [17] considered a one-dimensional
quantum forced oscillator that in addition to the standard laser
pulse excitation, a very weak “seed” pulse, of much higher
frequency was added. They showed that a HHG spike pattern of
2ωL spacing emerges around the seed’s frequency. Calculating
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FIG. 5. (a) A typical single member “seeded” HHG spectrum for
Ilaser = 3 × 1013 W/cm2, Iseed = 3 × 108 W/cm2. The seed signal is
hardly visible. (b) After doing the ensemble average, a comb pattern
of 2ωlaser spacing appear as in Ref [17]. (c) For comparison, the
ensemble average without seed is plotted.
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FIG. 6. (Color online) The HHG spectrum (x axis) as a function
of r0, the distance from the nucleus (y axis), is shown for (a) circular
polarization and (b) linear polarization. The field strength is the same
as in Fig. 3 for both cases. [Plot (b) is the same as Fig. 3. It was plotted
again for comparison.] There are no vertical lines of odd harmonics
and no hot spots of HHG for circular polarization. The reason for the
effect is different from that provided by the three-step model.

the classical ensemble spectrum for such excitation, a very
similar result appears. In Fig. 5(a), the HHG spectrum
was calculated for the following parameters: r0 = 2.16 a.u.,
Ilaser = 3 × 1013 W/cm2, Iseed = 3 × 108 W/cm2, and ωseed =
60ωlaser. One can see in Fig. 5(a) that for the single member
spectrum, the seed is almost unobservable. Yet, after taking the
ensemble average (50 points were enough) a clear “comb” pat-
tern emerges. The quantum results are for a one-dimensional
case, so there is no point in quantitative comparison. The
classical seeding can be easily understood by treating the seed
as a small perturbation in the accelerated system defined by
xnew = xold − ∫

dt2[AL(t) sin(ωLt) + Aseed(t) sin(ωseedt)]. A
simple Taylor expansion shows there are even laser harmonics
centered around ωseed.

E. Circular polarization

For circular polarization in radially symmetric atoms or
molecules, the HHG spectrum is highly attenuated with respect
to linear polarization [6]. In quantum mechanics, the reason for
this attenuation can be attributed to the symmetry properties
of the Hamiltonian [20]. In the strong field approximation,
the three-step-model explanation is that the electron misses
the core and only the tail of the wave packet hits the nucleus
and causes some radiation. For the intensities discussed here,
however, the orbits are roughly circular for both polarizations.
Nonetheless, we find that in our model, HHG radiation is
practically zero for circular polarization. Figure 6(a) shows
the ensemble spectra for different initial radii. Except for
the first harmonic, no harmonic lines appear at all. The
laser field amplitude is identical to the linear case shown in
Fig. 3. For a convenient comparison the linear polarization
case is plotted in Fig. 6(b). The single member spectrum
of the circular polarization is comparable to that of the
linear polarization. In the linear case, however, constructive
interference was observed for odd harmonics [Fig. 2(b)],
while for circular polarization there is no such “phase
clamping.” This phase mechanism is very different from the
“missing the core” argument in which each trajectory hardly
radiates.

IV. CONCLUSION

In this work it was demonstrated how the known generic
features of a high-harmonic spectrum emerge by averaging
over different evenly spaced initial conditions. The fact that
the ensemble average spectrum is a “sampled” version of the
single member spectrum explains some of the “hot spots” in
classical HHG. In addition, for xenon atoms, it was found that
the classically active HHG zones are a small faction (∼3%)
of the extent of the initial-state wave function. The sampling
theorem was used to show that very few ensemble members
are needed to get accurate results if a uniform grid is used for
the initial condition angle. This result is not true if the standard
Monte Carlo approach is taken.

The classical origin of seeding and circular polarization
effects were discussed and the dramatic impact of the ensemble
average was once more demonstrated. The “ensemble effect”
in all the examples, is attributed to the relative phase between
ensemble members, and not to the spectral shapes of the
radiation of individual members.

ACKNOWLEDGMENTS

Support by the ISF Grant 96/07 is acknowledged. R.U.
thanks the B.L. Maas research fund for its support.

[1] A. L’Hullier, K. J. Schafer, and K. C. Kulander, J. Phys. B 24,
3315 (1991).

[2] M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Prog. Phys.
60, 389 (1997).

[3] J. G. Eden, Prog. Quantum Electron. 28, 197 (2004).

[4] X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompre, and
G. Mainfray, Phys. Rev. A 39, 5751 (1989).

[5] A. L’Huillier and Ph. Balcou, Phys. Rev. Lett. 70, 774 (1993).
[6] K. S. Budil, P. Salieres, Anne L’Huillier, T. Ditmire, and M. D.

Perry, Phys. Rev. A 48, R3437 (1993).

063405-6

http://dx.doi.org/10.1088/0953-4075/24/15/004
http://dx.doi.org/10.1088/0953-4075/24/15/004
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1016/j.pquantelec.2004.06.002
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevLett.70.774
http://dx.doi.org/10.1103/PhysRevA.48.R3437


CLASSICAL HARMONIC GENERATION IN . . . PHYSICAL REVIEW A 81, 063405 (2010)

[7] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[8] M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, and

P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[9] G. van de Sand and J. M. Rost, Phys. Rev. Lett. 83, 524

(1999).
[10] J. G. Leopold and I. C. Percival, J. Phys. B 12, 709 (1979).
[11] Y. Duan, W. K. Liu, and J. M. Yuan, Phys. Rev. A 61, 053403

(2000).
[12] G. Bandarage, A. Maquet, T. Menis, R. Taieb, V. Veniard, and

J. Cooper, Phys. Rev. A 46, 380 (1992).
[13] P. Botheron and B. Pons, Phys. Rev. A 80, 023402 (2009).
[14] C. H. Keitel and P. L. Knight, Phys. Rev. A 51, 1420 (1995).

[15] S. Chu, K. Wang, and E. Layton, J. Opt. Soc. Am. B 7, 425
(1990).

[16] K. C. Kulander and B. W. Shore, J. Opt. Soc. Am. B 7, 502
(1990).

[17] A. Fleischer and N. Moiseyev, Phys. Rev. A 77, 010102(R)
(2008).

[18] Ph. Balcou, A. L’Huillier, and D. Escande, Phys. Rev. A 53,
3456 (1996).

[19] H. J. Korsch and M. V. Berry, Physica D (Amsterdam) 3, 627
(1981).

[20] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett. 80,
3743 (1998).

063405-7

http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevLett.83.524
http://dx.doi.org/10.1103/PhysRevLett.83.524
http://dx.doi.org/10.1088/0022-3700/12/5/016
http://dx.doi.org/10.1103/PhysRevA.61.053403
http://dx.doi.org/10.1103/PhysRevA.61.053403
http://dx.doi.org/10.1103/PhysRevA.46.380
http://dx.doi.org/10.1103/PhysRevA.80.023402
http://dx.doi.org/10.1103/PhysRevA.51.1420
http://dx.doi.org/10.1364/JOSAB.7.000425
http://dx.doi.org/10.1364/JOSAB.7.000425
http://dx.doi.org/10.1364/JOSAB.7.000502
http://dx.doi.org/10.1364/JOSAB.7.000502
http://dx.doi.org/10.1103/PhysRevA.77.010102
http://dx.doi.org/10.1103/PhysRevA.77.010102
http://dx.doi.org/10.1103/PhysRevA.53.3456
http://dx.doi.org/10.1103/PhysRevA.53.3456
http://dx.doi.org/10.1016/0167-2789(81)90045-2
http://dx.doi.org/10.1016/0167-2789(81)90045-2
http://dx.doi.org/10.1103/PhysRevLett.80.3743
http://dx.doi.org/10.1103/PhysRevLett.80.3743

