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Linear and nonlinear light scattering and absorption in free-electron nanoclusters
with diffuse surface: General considerations and linear response
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Both linear and nonlinear scattering and absorption of a laser pulse by spherical nanoclusters with free electrons
and with a diffuse surface are considered in the collisionless hydrodynamics approximation. The developed model
of forced collective motion of electrons confined to a cluster permits one consistently to introduce into the theory
all the sources of nonlinearity, as well as the inhomogeneity of the cluster near its boundary. Two different
perturbation theories corresponding to different laser intensity ranges are developed in this context, and both cold
metal clusters and hot laser-heated or -ionized clusters are considered within the same approach. In the present
article, after developing the full nonlinear model, the linear response to the laser field of the free-electron cluster
with diffuse surface is investigated in detail, especially the properties of the linear Mie resonance (width and
position). Under certain conditions, depending on the various cluster parameters secondary resonances are found.
The properties of resonance-enhanced third-order harmonic generation and nonlinear laser absorption and their
dependence on the shape of the diffuse surface will be presented separately.
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I. INTRODUCTION

Since the pioneering work of Lord Rayleigh [1], the linear
electromagnetic response of small metallic particles has been
extensively studied, especially scattering and absorption of the
applied electromagnetic field by particles with radii smaller
than the wavelength of the applied field. The next important
contribution to the theory was made by Mie [2] who discovered
the surface plasmon modes (the Mie resonances) effectively
excited in small metal particles by the electromagnetic field.
An incomplete list of subsequent progress in this domain
includes Refs. [3–23]. Some of these works [3,6,17,18] already
noted the important role of the diffuseness of the particle
surface for the properties of the dipole Mie resonance in small
metal particles. This holds, in particular, for the explanation of
the red shift of the Mie-resonance frequency in simple metal
clusters (the term, which we will use hereafter for nano-sized
particles) with respect to its value for a steplike cluster bound-
ary. Obviously, the role of the diffuseness of the cluster surface
increases with decreasing cluster radius, and for small metal
clusters or, more generally, free-electron nanoclusters it may be
decisive even for the linear electromagnetic cluster response,
not to speak of the nonlinear response, for which the role of the
cluster surface is generally much more important. However,
even for the linear response there are still insufficiently studied
points concerning the role of the diffuse surface for such small
nanoclusters. On the other hand, less attention has been paid so
far to the nonlinear electromagnetic response of nanoclusters,
and, in particular, to third-harmonic generation (THG) by the
cluster. The latter is becoming increasingly important now in
practical applications, in particular, in the medical-biological
area [24–26].
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The first theoretical works on the nonlinear electromagnetic
cluster response [27,28] appeared more than 100 years after
Lord Rayleigh’s seminal article [1]. Thereafter, this was
extensively investigated with respect to harmonic generation
by the cluster [29–47] as well as nonlinear laser absorption
[48–55]. References [32–34] noted the important role of the
cluster surface in the process of THG. A simple model of THG
by a small metallic cluster was developed in Refs. [35–37],
which involved a noncompressible electron cloud oscillating
under the action of the applied electromagnetic field with
respect to the positively charged ion core. In this model,
the collective electron motion near the sharp-edged cluster
surface is responsible for THG, and the effect is proportional
to the gradient of the electron density on the surface of the
cluster, assuming that the electron density extends to regions
outside the cluster. This model permits one qualitatively to
understand the mechanism of harmonic generation in free-
electron clusters, including its resonant enhancement near the
third-order resonance of the laser field with the dipole Mie
resonance, and to evaluate the THG yield. Later, the results
obtained within this simple model about resonance-enhanced
THG in the process of collective electron motion in clusters
was confirmed experimentally for cold metal (gold and silver)
clusters [56–58], for hot laser heated/ionized argon clusters
[59], as well as in computer simulations by different methods.

In this article, a collisionless hydrodynamic model is
developed in order to explore both the linear and the nonlinear
electromagnetic response of small nanoclusters with free
electrons and with a diffuse surface to an incident laser field. It
permits us properly to take into account all the nonlinearities
that are naturally present in the hydrodynamic equations for
the collective motion of an electron gas in the restricted volume
of a nanocluster, as well as the nonuniformity of the ion
and electron density in the diffuse surface of the nanocluster.
Within the same approach, we consider cold metal clusters,
which also may be embedded in dielectric surroundings, and
arbitrary hot clusters laser-heated/ionized by a strong pump
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laser pulse, which may be positively charged due to outer
ionization. The one-dimensional version of this model was
developed earlier in Ref. [60] and applied to both linear
scattering and absorption and to third-harmonic generation
in thin free-electron nanofilms with diffuse boundaries. Here
this approach is modified and generalized to spherical free-
electron nanoclusters with diffuse surface. As for nanofilms,
two different perturbation theories corresponding to different
ranges of the laser intensity are developed, and the decisive
role of the diffuse surface of the cluster in all of the considered
processes is revealed.

The article is organized as follows. Section II contains
the statement of the problem of the nonlinear laser-cluster
interaction in the hydrodynamic approximation, allowing for
fully nonlinear scattering and absorption of the laser field by
the cluster. We also present an outline of the corresponding
static problem both for cold metal clusters and for hot
laser-heated/ionized clusters. In Eq. (7) we define a crucial
dimensionless parameter A, whose value (zero or nonzero)
determines the type of perturbation theory that one has
to employ. For cold and for hot clusters, respectively, the
cluster parameter A can be represented as the squared ratio
of a quantum length or the Debye screening length over
the cluster radius. For A = 0, in the static regime complete
local compensation of the positive and negative charges takes
place in all parts of the cluster. We will hereafter refer to
this case as the charge compensation approximation (CCA).
The main effect of nonzero A then is a deviation of the
static electron density from the ion-charge density near the
cluster surface. With the CCA and without the CCA, two
different perturbation theories will be developed, which work
in different ranges of the laser intensity. Section III contains
the general theory of harmonic generation by free-electron
nanoclusters due to the nonlinear collective electron motion.
Specific results for the basic case of the linear cluster response
are presented in Sec. IV. In this article, we restrict ourselves
to a detailed investigation of the linear response of the
free-electron cluster with diffuse surface. Concrete results for
the dynamical problems of nonlinear scattering and absorption
and, in particular, of THG will be considered in a separate
paper. Section IV A is based on the linear cluster response
in the CCA (both for neutral and for positively charged
clusters), while Sec. IV B goes beyond the CCA (both for
neutral cold metal clusters and for hot laser heated/ionized
clusters). Concluding remarks terminate the article in
Sec. V.

II. HYDRODYNAMIC APPROACH TO THE NONLINEAR
LASER-CLUSTER INTERACTION AND THE CLUSTER

DIPOLE RESPONSE

We are interested in the dynamics of the electron subsystem
of the cluster and will assume that the ion subsystem is frozen
on the time scale of the laser-cluster interaction. We will also
neglect electron-ion and electron-electron binary collisions in
the process of the collective electron motion in the restricted
volume of the nanocluster affected by the laser field. Under
these conditions, the electron density ne(t,r), the electron
current q(t,r) = nev(t,r) with v(t,r) the average electron
velocity, and the electron pressure tensor Pαβ(t,r) satisfy the

collisionless hydrodynamic equations

∂ne

∂t
+ div q = 0, (1a)

∂qα

∂t
+ γωpqα + ∂(Pαβ/me + qαqβ/ne)

∂xβ

+ ene

me

(
Eα + EL

α

)
+ e

mec
eαβγ qβ

(
Hγ + HL

γ

) = 0, (1b)

∂Pαβ

∂t
+ 1

ne

(q · ∇)Pαβ + Pαγ

∂(qβ/ne)

∂xγ

+ Pβγ

∂(qα/ne)

∂xγ

+Pαβ div (q/ne) + e

mec
(eαγ δPβγ + eβγ δPαγ )

× (
Hδ + HL

δ

) = 0. (1c)

In Eqs. (1), me is the electron mass, e is the absolute value
of the electron charge, c is the speed of light, EL(t,r) and
HL(t,r) are the electric and magnetic components of the
external electromagnetic field acting on the cluster, and E(t,r)
and H(t,r) are the self-consistent electric and magnetic fields
of the ions and electrons of the cluster. (Because we consider
nonmagnetic clusters in a nonmagnetic medium, the magnetic
field and the magnetic induction are always identical.) The
tensor eαβγ denotes the completely antisymmetric Levi-Civita
tensor, and summation over repeated indices is always implied.
The origin of the coordinate system will always be at the center
of the spherical cluster.

Equations (1) describe the collective dynamics of the free
electron gas in a nanocluster exposed to the laser field if
the nanocluster diameter, for which we assume the range of
1–100 nm, is smaller than the electron mean free path due
to binary collisions. However, the collective interaction of the
electrons confined within the cluster with the cluster surface is
included. Indeed, it is the presence of the electron interaction
with the nanocluster surface that allows us to ignore binary
collisions and justifies the hydrodynamic approximation in
the collisionless regime. The relative weakness of the binary
collisions in the nanocluster permits us to omit in Eq. (1c) the
dissipative terms with the transport coefficients. Their pres-
ence in the conventional hydrodynamic equations is directly
connected with the Boltzmann collision integral [61–63]. This
is the main approximation of our hydrodynamic model.

Equations (1) can be directly obtained from the collisionless
Vlasov kinetic equation for the electron distribution function
fe(t,r, p) (with nonrelativistic electron momentum p = mev),

∂fe

∂t
+ (v · ∇)fe − e

{(
Eα + EL

α

) + eαβγ

vβ

c

(
Hγ + HL

γ

)}
× ∂fe

∂p α

= 0, (2)

by integrating Eq. (2) over momentum, respectively, with
factors 1, vα , and vαvβ . In this case [62,63], ne = ∫

fed
3p, q ≡

nev = ∫
vfed

3p, and Pαβ = me

∫
(vα − vα)(vβ − vβ)fed

3p.
The third-order velocity moments that arise in the derivation of
Eq. (1c) disappear for the local-equilibrium distribution func-
tion, which is established due to the interaction of the electrons
with the cluster boundary. Actually, this only requires that the
local-equilibrium distribution function be even with respect to
inversion of the various components of the relative-velocity
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vector v − v (the central symmetry), without the requirement
of total spherical symmetry in velocity space, which may be
violated in the presence of the strong linearly polarized laser
field. Qualitatively, this situation can be interpreted in terms
of different longitudinal and transverse electron temperatures
with respect to the direction of the electric-field vector of
the applied laser pulse. Then, beyond the local-equilibrium
approximation, third-order velocity moments could only result
in the dissipative transport terms, which are due to binary
collisions [61–63]. These are disregarded in our hydrodynamic
model for nanoclusters with the diameters smaller than the
binary-collision mean free path.

On the other hand, the second (relaxation) term in Eq. (1b)
with the dimensionless relaxation constant γ , which is nor-
malized to the bulk plasma frequency ωp =

√
4πe2zinion/me,

was introduced phenomenologically. Here zi is the mean
ionic charge and nion is the reference bulk ion density of the
cluster substance. We include this collisionlike term, which
simulates weak binary collisions, because the solution of the
hydrodynamic equations (1) even in the collisionless case
implies the limit of γ → + 0, which may not coincide with
the result of direct substitution γ = 0.

Note that Eqs. (1) form a closed system of equations
for the electron density, the mean electron velocity, and all
components of the electron pressure tensor. As is usually
done in conventional hydrodynamics [61–63], the pressure
tensor can be presented in the form Pαβ = Pδαβ + παβ ,
with P = Pαα/3 the scalar pressure and παβ the stress
tensor (παα = 0). In the isotropic case with a spherically
symmetric velocity distribution function, παβ vanishes in the
local-equilibrium approximation. It may only reappear beyond
the local-equilibrium approximation through the Boltzmann
integral as a dissipative term connected with viscosity, as was
the case for the third-order moments. However, παβ may not
vanish in the presence of a strong linearly polarized laser field,
if the spherical symmetry of the local-equilibrium distribution
is reduced to only inversion symmetry. In this case, in contrast
to the third-order moments, the nondissipative contribution
to the stress tensor παβ may be nonzero in the collisionless
case (with respect to the binary collisions) due to the applied
laser field. In this case, the actual values of the stress-tensor
components, which are induced by the laser field, may only be
found self-consistently as a result of solution of Eqs. (1). For
this reason, in what follows we do not divide the pressure tensor
into two parts as indicated above and do not rewrite Eq. (1c) in
a form similar to conventional hydrodynamics but will rather
work with the complete pressure tensor Pαβ and the system of
Eqs. (1).

The hydrodynamic equations (1) are essentially nonlinear.
Perturbation expansions with respect to the incident laser wave
[specified by EL(t,r) and HL(t,r)] of the electron density,
current, and pressure, as well as the self-consistent electric
and magnetic fields, have the form

ne(t,r) = n(0)
e (r) + 2Re

∞∑
n=1

n∑
l=0

n(nl)
e (t,r), (3a)

q(t,r) = 2Re
∞∑

n=1

n∑
l=0

q(nl)(t,r), (3b)

Pαβ (t,r) = δαβP (0)(r) + 2Re
∞∑

n=1

n∑
l=0

P
(nl)
αβ (t,r), (3c)

E(t,r) = E(0)(r) + 2Re
∞∑

n=1

n∑
l=0

E(nl)(t,r), (3d)

H(t,r) = 2Re
∞∑

n=1

n∑
l=0

H (nl)(t,r), (3e)

where the index n denotes the order of nonlinearity
with respect to the incident field. For a monochromatic
external field, each nth-order term can be Fourier
expanded. The corresponding summation index is denoted
by l, where, of course, 0 � l � n for the nth-order
term. Hence, we have n(nl)

e (t,r) = n(nl)
e (r) e−i(n−l)ωt ,

q(nl)(t,r) = q(nl)(r) e−i(n−l)ωt , P (nl)
αβ (t,r) = P

(nl)
αβ (r) e−i(n−l)ωt ,

E(nl)(t,r) = E(nl)(r) e−i(n−l)ωt , and H (nl)(t,r) =
H (nl)(r) e−i(n−l)ωt . In Eq. (3c) and hereafter, δαβ is the
Kronecker symbol. For the order n of nonlinearity in the laser
field, the nth-order harmonic frequency nω corresponds to
the amplitudes with l = 0, but the nth-order amplitudes with
nonzero l � n corresponding to lower frequencies can also be
present in Eqs. (3). Note that some of these amplitudes with
particular l may identically vanish, and all the nonvanishing
amplitudes should be found from the total set of nonlinear
hydrodynamic equations (1) and the linear Maxwell equations

div E = 4πe(zini − ne), div H = 0, (4a)

rot E = −1

c

∂ H
∂t

, rot H = 1

c

∂ E
∂t

− 4πeq
c

. (4b)

In Eqs. (4), ni(r) is the spherically symmetric spatial
density of the positive ions in the cluster with diffuse surface.
The electron density, pressure, and self-consistent electric
field E(t,r) in Eqs. (3) are divided into two parts, namely
the zeroth-order static contributions n(0)

e (r), δαβP (0)(r), and
E(0)(r), which exist before the action of the laser field, and the
contributions induced by the external laser field, which in a
nonlinear medium formally include all orders n = 1,2 . . . ,∞
of the perturbation expansion with respect to the laser field. The
electron current as well as the self-consistent magnetic field
H(t,r) vanish in the initial equilibrium without the laser field,
and the condition n = 1 in all these quantities corresponds
to the linear approximation with respect to the laser field.
Only the first (electrostatic) Maxwell equation should be used
in the corresponding zeroth-order static (quasi-equilibrium)
problem, prior to the action of the laser pulse (or prior to
the action of the probe pulse in the case of a nanocluster
laser-heated/ionized by strong pump wave).

For the spherically symmetric cluster that we consider, a
jellium model ion density with diffuse surface can be presented
as ni(r) = nion for r − R � −σ/2, ni(r) = 0 for r − R �
σ/2, and ni(r) = niong((r − R)/σ ) for |r − R| < σ/2, where
R is the cluster radius. The parameter σ characterizes the
small diffuseness of the cluster surface (it is implied that
the condition σ � R is always met). The dimensionless
function g(x) specifies the profile [with the dimensionless
argument x = (r − R)/σ , |x| < 1/2] of the ion density in
the diffuse cluster surface. Over the distance σ , it drops
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FIG. 1. (Color online) The model profiles of the diffuse surface
gi(x) with different smoothness (i = 1 − 5, see text) for spherical
clusters, with x = (r − R)/σ .

in our model from its reference bulk value nion to zero. If
σ = 0, then ni(r) = 0 for r > R and ni(r) = nion for r � R

(the steplike ion density). For σ �= 0, the simplest continuous
trapezoidal profile g(x) ≡ g1(x) = −x + 0.5 can be used to
model the ion background inside the diffuse cluster surface.
Alternatively, as shown in Fig. 1, different polynomial profiles
can be used with smoother behavior at x = ±1/2: g(x) ≡
g2(x) = 2x3 − 1.5x + 0.5 (with continuous first deriva-
tive), g(x) ≡ g3(x) = −6x5 + 5x3 − 1.875x + 0.5 (with con-
tinuous second derivative), g(x) ≡ g4(x) = 20x7 − 21x5 +
8.75x3 − 2.1875x + 0.5 (with continuous third derivative), or
g(x) ≡ g5(x) = (1 − tanh(tan(πx)))/2 (a completely smooth
profile). To avoid the edge singularities in the following calcu-
lations, using the completely smooth profile is most preferable.

Before considering the dynamical problem, let us discuss
the equilibrium cluster state without the laser field. In this
case, Eqs. (1), (3), and (4) result in two equations for the
zeroth-order static functions n(0)

e (r), P (0)(r), and E(0)(r) (the
latter is defined from E(0)(r) ≡ E(0)(r)n, with n = r/r

the unit radius vector):

dP (0)

dr
+ en(0)

e E(0) = 0,
1

r2

d(r2E(0))

dr
= 4πe

(
zini − n(0)

e

)
.

(5)

These equations should be complemented by the equation
of state of the electron gas, which relates the equilibrium
electron pressure, the equilibrium electron density, and the
gas temperature. For metal clusters at room temperature,
the zero-temperature approximation can be used with good
accuracy, and the relation between the electron pressure and
the electron density can be taken from the Thomas-Fermi
model as P (0) = 2

5n(0)
e εF (n(0)

e ), with the local Fermi energy
εF (n(0)

e ) = (3π2)2/3h̄2(n(0)
e )2/3/(2me). Equations (5) can be

rewritten in dimensionless form by introducing the dimension-
less radial variable ρ = r/R, the dimensionless equilibrium
electron density n0(ρ) = n(0)

e (r)/(zinion) (with respect to the
bulk electron density), the dimensionless equilibrium electron
pressure p0(ρ) = P (0)(r)/P0, with the electron bulk pressure
P0 = 2

5zinionεF (zinion), the dimensionless static electric field
E0(ρ) = E(0)(r)/(4πezinionR) (with E0(ρ) = E0(ρ)n), and the
dimensionless ion-density profile �i(ρ) = ni(r)/nion. With

these notations, Eqs. (5) take the form

A
dp0

dρ
+ n0E0 = 0,

dE0

dρ
+ 2E0

ρ
= �i(ρ) − n0, (6)

with the dimensionless equation of state p0 = n
5/3
0 for cold

metal clusters.
The dimensionless parameter A, which occurs in Eq. (6), is

generally defined as

A = P0

4πe2z2
i n

2
ionR

2
. (7)

For the current case of cold metal clusters it can be presented as
A = (lQ/R)2, with lQ = 31/3π1/6h̄/[e

√
20me(zinion)1/6]. Typ-

ical values of the quantum length lQ are in the range of 0.01 −
0.1nm. This is smaller than even the minimal surface diffuse-
ness, which is of the order of the interatomic distance in metals
(about 0.3 nm). It is much smaller than the nanocluster radius,
which typically is of the order of R ∼ 10 nm. Hence, the pa-
rameter A is very small indeed, about A ∼ 10−5. A similar sit-
uation occurs for the case of hot clusters heated by a pump laser
prepulse to a temperature T that exceeds the Fermi tempera-
ture, so that classical Boltzmann statistics are applicable. For
such laser-heated clusters the equation of state is P (0) = n(0)

e T .
If we set P0 = zinionT , we again obtain the dimensionless
Eqs. (6), but now with the dimensionless equation of state p0 =
n0 for hot laser-heated clusters. In this case, the parameter A

can be written as A = (lD/R)2, with lD =
√

T/(4πe2zinion)
the conventional Debye screening length. Again, values of the
parameter A are typically small. Typical values of the Debye
length for a cluster at a temperature T ∼ 100 eV (and still
with the reference bulk electron density) are in the range of
0.1 − 1 nm, so for clusters with radius R ∼ 10 nm we have
A ∼ 10−3. However, the parameter A increases with decreas-
ing ion density (e.g., due to expansion of the hot laser-heated
cluster).

In view of the above, to a first approximation the parameter
A can be set equal to zero. In the case of A = 0, regardless
of the equation of state, Eqs. (6) have the obvious solution
n0(ρ) = �i(ρ), E0(ρ) = 0, if we consider neutral clusters
(either cold metal clusters or hot laser-heated clusters). This
means that in this case exact local compensation of positive and
negative charges occurs throughout the whole cluster volume.
For diffuse (but not for steplike) cluster surface, deviation
of the parameter A from zero leads to violation of the local
compensation of the negative charge of the electrons and the
positive charge of the ion background at least in the narrow
range of the cluster surface and to creation of a charged double
layer. (For a steplike cluster surface, violation of the local
compensation of the positive and negative charges near the
surface and spill-out of the electrons outside the cluster surface
can only occur due to quantum-mechanical effects, including
the metal work function and tunneling, which are not taken
into account in this work.) For this reason, the case of A = 0
is referred to hereafter as the CCA (the charge compensation
approximation). Note that the CCA is formally equivalent
to the approximation of a cold plasma, which is widely
used in conventional plasma physics [61–63], because the
condition

√
A � 1 can be rewritten in the form of vT � Rωp

or vF � Rωp for hot or cold clusters, respectively, with vT

and vF the thermal or the Fermi velocity of the electrons.
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However, unlike the common case of an extended plasma,
whether the plasma can be considered as cold depends on the
cluster radius (see the right-hand side of conditions above).
In the context of our study, the interpretation of the case
A = 0 as the CCA seems more relevant for the confined
plasma of nanoclusters. Also, deviation of the parameter A

from zero results in the appearance of a static electric field
in the cluster-surface region, which traps the electrons in the
cluster. For a cold metal cluster, this electric field is of the order
of 4πezinionlQ ∼ 108 V/cm. In spite of the smallness of A, its
influence may be important for those processes, for which the
cluster surface plays a decisive role (e.g., for third-harmonic
generation [36,37,60]).

Formally, in the case of neutral clusters the solution of
Eqs. (6) with A �= 0 may be extended to the region outside the
cluster boundary ρ = 1 + σ/(2R), which results in an electron
halo around the cluster. Even without the quantum spill-out
effect mentioned above, this situation could be realized in our
model for clusters with diffuse surface in vacuum. However,
it is unlikely for a cold neutral metal cluster embedded into a
surrounding nonconducting bulk medium such as a transparent
dielectric. Assuming the latter case, we rule out the presence of
an electron halo by making sure that the electron density vanish
everywhere at ρ > 1 + σ/(2R), that is, outside the exterior
of the diffuse cluster surface. In some cases the cluster may
be positively charged. Especially, this may be the case for
hot laser-heated clusters in vacuum, when electrons actually
have escaped from the cluster during the interaction of the
cluster with the strong pump laser pulse. For the subsequent
interaction of the charged cluster with the probe laser pulse,
an outer-ionization degree η defined as

η = 1 −
∫ ρlim

0
n0(ρ)ρ2dρ

/ ∫ 1+σ/(2R)

0
�i(ρ)ρ2dρ (8)

will take into account the global lack of compensation of the
positive and negative charges of the cluster. Here, allowing
for the possible presence of an electron halo outside the
cluster surface, we have introduced a limiting radius of
integration ρlim � 1 + σ/(2R), beyond which the electron
density vanishes. The boundary condition

E0(ρ = ρlim) = η

∫ 1+σ/(2R)

0
�i(ρ)ρ2dρ

/
ρ2

lim (9)

should then be imposed on the solutions of Eqs. (6) at
this upper limit ρ = ρlim. Note that in the CCA, that is in
the approximation of A = 0, the solution of Eqs. (6) for a
positively charged cluster results in local compensation of
the positive and negative charges in the central part of the
cluster as far as possible (with a sharp boundary at some radius
Rc), while leaving the rest (near-surface) zone of the cluster
completely without electrons. Of course, the latter zone is
generally unstable and is affected by Coulomb explosion. The
radius Rc of the globally neutral core of the charged cluster
with given outer-ionization degree η is defined by the condition

η = 1 −
∫ Rc/R

0
�i(ρ)ρ2dρ

/ ∫ 1+σ/(2R)

0
�i(ρ)ρ2dρ. (10)

Hence, for A = 0, we have n0(ρ) = �i(ρ) and there-
fore E0(ρ) = 0 for ρ � Rc/R, while n0(ρ) = 0 and

FIG. 2. (Color online) The electron density n0(ρ) near the cluster
surface as a result of solution of Eqs. (6) for cold neutral metal
clusters in vacuum [with a halo] and in a surrounding dielectric matrix
[without halo] (a) and hot laser heated/ionized clusters in vacuum (b).
For (a)A = 10−5, σ/R = 3 × 10−2. For (b) A = 10−3, σ/R = 10−1,
η = 0, 0.1, and 0.2. For the ion density of the cluster surface region,
the completely smooth profile g5(x) is used (see Fig. 1).

E0(ρ) = [
∫ ρ

Rc/R
�i(ρ)ρ2dρ]

/
ρ2 for Rc/R < ρ < 1 + σ/(2R).

Nonzero A results in a diffuse transition range from the inner
neutral core to the positively charged shell. In Fig. 2, examples
of a numerical solution of Eqs. (6) at A �= 0 both for cold neu-
tral metal clusters (without and with the electron halo, for com-
parison) and for hot laser heated/ionized clusters are presented.

For completeness, a well-known fact [64] should be
noted here: for hot clusters with classical Boltzmann
statistics of the electrons, in equilibrium a residual
nonzero electron density should exist, in principle, ev-
erywhere outside the cluster. This is because the static
Eqs. (6) together with p0 = n0 and E0 = −∂ϕ0/∂ρ (where
ϕ0(ρ) is the dimensionless static electric potential) yield
n0(ρ) = n0(0) exp{[ϕ0(ρ) − ϕ0(0)]/A}. If we choose, as it
is natural, that ϕ0(ρ) → 0 at ρ → ∞, then n0(ρ) →
n0(0) exp(−ϕ0(0)/A) ≡ n0(0) exp[−ϕ0(0)(R/lD)2] at ρ →
∞. Because the dimensionless static electric potential ϕ0(0) =
− ∫ 0

∞ E0(ρ)dρ is approximately 10A (the coefficient was
estimated numerically), this residual constant electron density
is relatively very small and does not play any role for
nanoclusters under the conditions considered. The negligibility
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of the relative residual electron density was also justified
by our numerical solutions of Eqs. (6) for hot laser-heated
nanoclusters for all the cluster parameters used. On the other
hand, the electron halo in the immediate vicinity of the cluster
surface may be appreciable, especially for neutral clusters.

For the dynamical problem, we will assume an incident
linearly polarized plane electromagnetic wave that propagates
in the positive x direction and has its electric-field vector in
the z direction, so that

E(in)(t,r) = 2Re{E0eze
ik1·r−iωt }, (11a)

H (in)(t,r) = c

ω
[k1 × E(in)], (11b)

where E0 is the complex amplitude of the laser electric field
with intensity I0 = √

ε1c|E0|2/(2π ), ω the laser frequency,
k1 = k1ex the fundamental wave vector with k1 = √

ε1ω/c,
and ex and ez are Cartesian unit vectors. We have assumed that
the cluster is surrounded by a transparent nonmagnetic dielec-
tric medium with real dielectric permittivities εn ≡ ε(nω) for
different harmonics and that E0 is the electric field amplitude
of the incident laser wave in the dielectric. The dielectric sur-
roundings may be especially of interest for cold metal clusters.
In this case, the amplitude EL of the external field inside the
cluster, which should be considered as the electric field in a
small spherical hole in the dielectric, is connected with the
corresponding electric-field amplitude E0 of the laser wave
by the condition EL = (2 + ε1)E0/3 [65]. The electric and
magnetic fields EL(t,r) and HL(t,r), which enter Eqs. (1b)
and (1c) and act as external fields on the cluster electrons, are

EL(t,r) = 2 + ε1

3
E(in)(t,r) = 2Re{ELeze

ik1·r−iωt }, (12a)

HL(t,r) ≡ H (in)(t,r) = c

ω
[k1 × E(in)]. (12b)

Solutions of the Maxwell equations (4) should be given
separately in the range 0 < r/R < ρlim (inside the cluster
including its diffuse surface and including the electron halo, if
necessary, where free electrons are present) and in the outside
range r/R > ρlim [in the surrounding dielectric medium for
cold metal clusters with ρlim = 1 + σ/(2R) or in the vacuum
outside the electron halo both for cold metal clusters and
for hot laser-heated/ionized clusters], where the first and
the last equations from Eqs. (4) for the nth-order nonlinear
terms should be replaced, respectively, by div E(nl) = 0 and
rot H (nl) = {iεn−l(n − l)ω/c}E. In the outer range, the self-
consistent electromagnetic field coincides with the scattered
radiation both at the fundamental laser frequency and at
the harmonic frequencies, which are generated due to the
cluster’s hydrodynamical nonlinearities. In the following, we
restrict ourselves to the dipole approximation. This requires
that the inequality knR � 1 for the order n of nonlinearity
(with kn = √

εnnω/c) be satisfied. This is the case for the
small nanoclusters that we consider and, at least, for infrared
fundamental laser radiation and harmonics of moderate order.
We should also restrict ourselves to the nonrelativistic case,
when the typical electron velocity (either the Fermi velocity
in the case of cold metal nanoclusters or the thermal velocity
for hot laser-heated/ionized nanoclusters) is small compared
with the speed of light. In the dipole approximation, both the
radiation and the absorption of the free-electron nanocluster

are determined by the time-dependent electric dipole moment

d(t) = −e

∫
rned

3r = 2Re
∞∑

n=1

n∑
l=0

d(nl)(t). (13)

The quantity d(nl)(t) = −e
∫

rn(nl)
e d3r ∼ e−i(n−l)ωt denotes

the nth-order dipole moment for particular l, which is nonlin-
early induced by the electric component of the external electro-
magnetic field at the cluster center, that is, by the field EL(t) ≡
EL(t,r = 0) = 2Re{ELeze

−iωt } ≡ 2ReEcL(t). The external
magnetic field at the cluster center is HL(t) ≡ HL(t,r = 0) =
2Re{(c/ω)[k1 × E0ez]e−iωt } ≡ 2ReHcL(t). Here EcL(t) =
ELeze

−iωt and HcL(t) = −√
ε1E0eye

−iωt are the correspond-
ing complex external electric and magnetic fields. For the order
n of nonlinearity, for free-electron nanoclusters the scattered
radiation at the frequency nω is mainly determined by the
corresponding time-dependent electric dipole moment of the
cluster d(n0)(t) ∼ e−inωt (if it is not identically zero due to
symmetry, as is the case for even harmonics for spherical
clusters, for which higher multipoles should be taken into
account). The term d(nn−1)(t) ∼ e−iωt in Eq. (13) is responsible
for the nonlinear corrections (at n > 1) to linear absorption (at
n = 1) at the fundamental laser frequency, so the mean power
Q absorbed by the cluster is generally expressed as

Q =
∞∑

n=1

Qn = 2ω Im
∞∑

n=1

d(nn−1) · (EcL)�. (14)

Let us turn to a solution of the Maxwell equations in the
range r/R > ρlim outside the cluster and the possible electron
halo. The scattered electric field at the harmonic order n can
be presented as

E(n0)(t,r) = rot {g(n0)(r)[n × d(n0)(t)]}, (15)

with g(n0)(r) = ikn[1 + i(knr)−1]eiknr/(εnr). The correspond-
ing magnetic field is H (n0)(t,r) = √

εn(ikn)−1rot E(n0)(t,r).
At large distances satisfying the condition knr � 1 the
scattered electric field is

E(n0)(t,r) = k2
n

εn

[d(n0) − n(n · d(n0))]
eiknr

r
, (16)

with H (n0)(t,r) = √
εn [n × E(n0)(t,r)], while on the halo lim-

iting boundary r = Rρlimn near the cluster surface, provided
that knr � 1, we obviously obtain

E(n0)(t,r = Rρlimn) = 3n(n · d(n0)) − d(n0)

εn(Rρlim)3
. (17)

With our definitions, the intensity In of the dipole radiation
scattered at the nth-order harmonic frequency nω is given by
the expression

In = 4(nω)4√εn

3c3
|d(n0)|2. (18)

Note that this is only the main contribution to the harmonic
intensity at the frequency nω, because corrections to this
expression arise from orders of nonlinearity higher than
n (with l �= 0). Assuming that the perturbation expansion
converges sufficiently fast, we will neglect these corrections.
The nonvanishing electric dipole moment of the cluster
d(n0)(t), which determines the intensity of generation of the
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nth-order harmonic by the cluster, can be found through the
corresponding electron density contribution n(n0)

e (t,r). The
latter can be determined by solving the corresponding inner
dynamical problem for the cluster electrons.

III. HARMONIC GENERATION BY THE COLLECTIVE
ELECTRON MOTION IN A CLUSTER: THE GENERAL

FORMALISM

By substituting Eqs. (3) into Eqs. (1) and collecting both
the same order of nonlinearity n and the same time dependence

e−i(n−l)ωt , a set of equations for the amplitudes with different
n and l can be obtained. The amplitudes with l = 0 form
a closed system of equations, which is independent of the
amplitudes with l �= 0. On the other hand, the equations for the
amplitudes l �= 0 contain the amplitudes with l = 0 as source
terms. These amplitudes describe higher-order corrections to
the main nonlinear contributions and, in particular, nonlinear
absorption of the fundamental wave. The system of equations
for the amplitudes with l = 0 and with n � 1, which describe
nth-order harmonic generation, is

−inωn(n0)
e + div q(n0) = 0, (19a)

n∑
m1=0

n−m1∑
m2=0

{
(−im1ω + γωp)q(m10)

α n(m20)
e n([n−m1−m2]0)

e + n([n−m1−m2]0)
e

(
n(m20)

e

me

∂P
(m10)
αβ

∂xβ

+ ∂
(
q(m10)

α q
(m20)
β

)
∂xβ

)

− q(m10)
α q

(m20)
β

∂n([n−m1−m2]0)
e

∂xβ

}
+

n∑
m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

{
e

me

(
E(m10)

α + δ1m1E
cL
α

)
n(m20)

e n(m30)
e n([n−m1−m2−m3]0)

e

+ e

mec
eαβγ q

(m10)
β

(
H (m20)

γ + δ1m2H
cL
γ

)
n(m30)

e n([n−m1−m2−m3]0)
e

}
= 0, (19b)

n∑
m1=0

n−m1∑
m2=0

{
− im1ωP

(m10)
αβ n(m20)

e n([n−m1−m2]0)
e + n([n−m1−m2]0)

e

(
q(m10)

γ

∂P
(m20)
αβ

∂xγ

+ P (m10)
αγ

∂q
(m20)
β

∂xγ

+P
(m10)
βγ

∂q(m20)
α

∂xγ

+ P
(m10)
αβ

∂q(m20)
γ

∂xγ

)
− ∂n([n−m1−m2]0)

e

∂xγ

(
P (m10)

αγ q
(m20)
β + P

(m10)
βγ q(m20)

α + P
(m10)
αβ q(m20)

γ

)}

+
n∑

m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

e

mec

(
eαγ δP

(m10)
βγ + eβγ δP

(m10)
αγ

)(
H

(m20)
δ + δ1m2H

cL
δ

)
n(m30)

e n([n−m1−m2−m3]0)
e = 0. (19c)

The linear electromagnetic equations inside the cluster are

div E(n0) = −4πen(n0)
e , rot E(n0) = inω

c
H (n0), (20a)

div H (n0) = 0, rot H (n0) = − inω

c
E(n0) − 4πeq(n0)

c
. (20b)

As for the static equations, Eqs. (19) and (20) can
be rewritten in convenient dimensionless form by in-
troducing new dimensionless variables, namely ρ = r/R,

nn = n(n0)
e /(zinion), pnαβ = P

(n0)
αβ /P0, vn = v(n0)/(ωR), and

qn = q(n0)/(zinionωR), as well as En = E(n0)/(4πezinionR)
and Hn = H (n0)/(4πezinionR). The same can be done
with the external electric and magnetic fields: EL(t) ≡
ELeze

−iωt = EcL(t)/(4πezinionR), HL(t) ≡ −HLeye
−iωt =

HcL(t)/(4πezinionR), with EL = EL/(4πezinionR) andHL =√
ε1E0/(4πezinionR). In this way, from Eqs. (19) we obtain

the following dimensionless inhomogeneous linear equations
for the nth-order contributions:

−innn + div qn = 0, (21a)

n2
0

{ (
−in + γ

ω̃

)
qnα + A

ω̃2

∂pnαβ

∂ρβ

+ n0
(
Enα + δ1nEL

α

) + nnE0α

ω̃2

}
= Vnα, (21b)

−inn2
0pnαβ + n0

∂p0

∂ργ

qnγ δαβ + n0p0

(
∂qnβ

∂ρα

+ ∂qnα

∂ρβ

+ ∂qnγ

∂ργ

δαβ

)
− p0

(
qnβ

∂n0

∂ρα

+ qnα

∂n0

∂ρβ

+ qnγ

∂n0

∂ργ

δαβ

)
= Tnαβ, (21c)

with the right-hand-side source terms

Vnα = −
n∑

m1=0

n−m1∑
m2=0

′
{(

−im1 + γ

ω̃

)
qm1αnm2nn−m1−m2 + nn−m1−m2

(
Anm2

ω̃2

∂pm1αβ

∂ρβ

+ ∂(qm1αqm2β)

∂ρβ

)
− qm1αqm2β

∂nn−m1−m2

∂ρβ

}

−
n∑

m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

′
{(

Em1α + δ1m1EL
α

)
ω̃2

nm2nm3nn−m1−m2−m3 + R̃

ω̃
eαβγ qm1β

(
Hm2γ + δ1m2HL

γ

)
nm3nn−m1−m2−m3

}
(22)
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and

Tnαβ = −
n∑

m1=0

n−m1∑
m2=0

′
{

−im1pm1αβnm2nn−m1−m2 + nn−m1−m2

(
qm1γ

∂pm2αβ

∂ργ

+ pm1αγ

∂qm2β

∂ργ

+ pm1βγ

∂qm2α

∂ργ

+ pm1αβ

∂qm2γ

∂ργ

)

− ∂nn−m1−m2

∂ργ

(
pm1αγ qm2β + pm1βγ qm2α + pm1αβqm2γ

)} −
n∑

m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

′ R̃
ω̃

(
eαγ δpm1βγ + eβγ δpm1αγ

)
× (

Hm2δ + δ1m2HL
δ

)
nm3nn−m1−m2−m3 . (23)

In Eqs. (21), (22), and (23) ω̃ = ω/ωp is the reduced
laser frequency with respect to the bulk plasma frequency,
R̃ = ωpR/c is the reduced cluster radius playing the role of
the dipole-approximation parameter, and the dimensionless
cluster parameter A is defined by Eq. (7). The vector term Vnα

and the tensor term Tnαβ on the right-hand sides of Eqs. (21a)
and (21c), respectively, contain only nonlinear contributions
of orders less than n. Therefore, they act as source terms for
the nth-order quantities. We introduced the primes after the
summation signs in Eqs. (22) and (23) in order to indicate
that in these two sums the nth-order terms of all variables
should be omitted. The dimensionless form of the Maxwell
equations (20) inside the cluster is

div En = −nn, rot En = inω̃R̃Hn, (24a)

div Hn = 0, rot Hn = −ω̃R̃(inEn + qn). (24b)

On the limiting integration sphere ρ = ρlim the electric field
of the nth-order harmonic, which is given by Eq. (17), may be
presented in dimensionless form as

En(t,ρ = ρlimn) = 3n(n · dn) − dn

εn(ρlim)3
, (25)

where the dimensionless dipole moment dn corresponding to
the nth-order harmonic is defined as

dn = d(n0)

4πezinionR4
= −

∫
ρnn

d3ρ

4π
. (26)

Equations (21)–(24) constitute the complete set of equations,
from which nth-order harmonic generation by the cluster
can be determined, in principle. Note that they contain the
dimensionless parameter R̃, whose smallness is the criterion
of applicability of the dipole approximation. The condition
R̃ � 1 will be used in the solution of these equations. In
particular, in the dipole approximation, which we consider,
the terms with the magnetic field in Eqs. (22) and (23),
which are proportional to R̃, can also be safely neglected.
Besides, Maxwell’s equations (24a) for the electric field can
be approximated by rot En = 0. Hence, the harmonic electric
field En can be derived from a potential ϕn, which satisfies the
Poisson equation:

En = −∇ϕn, �ϕn = nn. (27)

The hydrodynamic continuity equation (21a), together with
the electrostatic equation (27), is equivalent to the equation

qn + inEn = −rot hn. (28)

This is just the curl equation from Eqs. (24b), in which
the magnetic vector function hn ≡ Hn/(ω̃R̃) satisfying the
condition div hn = 0 should be self-consistently defined.

In solving Eqs. (21a) and (21c), we should discriminate
between two cases. Because the cluster parameter A is
generally very small, as was estimated in the previous Sec. II,
the approximation A = 0 seems to be rather good, at least
within some range of the laser electric-field strength to be
defined below. In this case, if we assume A = 0, the term
with the electron pressure tensor pnαβ is eliminated from
Eq. (21b), and Eq. (21c) becomes redundant. Then, with the
help of Eq. (21b) the electron current qn can be explicitly
expressed as

qn = iω̃2V n

n2
0(nω̃2 + iγ ω̃)

+ n0(En + δ1nEL) + nnE0

i(nω̃2 + iγ ω̃)
, (29)

and using Eq. (28) we arrive at

i(n0 − n2ω̃2 − inγ ω̃)En + in0δ1nEL + innE0

(nω̃2 + iγ ω̃)

= iω̃2V n

n2
0(nω̃2 + iγ ω̃)

+ rot hn, (30)

which should be solved together with Eq. (27) and the corre-
sponding boundary conditions. At first glance, applicability
of perturbation theory in the case of A = 0 is governed
by the criterion EL = EL/(4πezinionR) � 1. Formally, this
ensures that the linear approximation is small compared
with the zeroth-order static case. For the nonlinear terms,
however, the cluster radius R should be replaced by the
surface diffuseness σ , so that the criterion is stronger and
should read EL � 4πezinionσ . This was shown already for
nanofilms in Ref. [60] and will hold here as well, at least for
neutral nanoclusters. This is due to the increasing role of the
density gradient in the nonlinear effects, which is maximal near
the cluster surface. The modified condition can be written in
the equivalent form eEL/(meω

2
p) � σ , which is the condition

for the classical threshold of plasma wave-breaking in the
nonrelativistic regime [66]. This means that the electron
oscillation amplitude inside the cluster should be smaller than
the cluster surface thickness σ , which defines the minimal
scale of the electron density inhomogeneity in the case of
A = 0. Note that in the limit of a steplike cluster surface,
viz. for σ = 0, the range of applicability of this perturbation
theory formally disappears. Indeed, it means that in this case
the quantum spill-out length of the electrons should replace σ

in the above applicability criterion, but the quantum spill-out
effect is outside this article.
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Since the cluster parameter A is always quite small, one
might expect that a nonzero value of A will only induce small
corrections to the solution obtained in the approximation of
A = 0. However, whether this statement is correct depends
on the intensity of the incident laser field. If the latter is
sufficiently small, the terms that are proportional to A may
play a significant role. In Eqs. (21)–(24), as well as in the static
Eqs. (6) we can perform a scaling transformation through the

definitions ρ̃ = ρ/
√

A, Ẽn = En/
√

A, q̃n = qn/
√

A, ẼL =
EL/

√
A, and Ṽ n = V n/

√
A. Then, in terms of the tilded

variables, Eqs. (6) and Eqs. (21)–(24) have the same form as
before, but with the parameter A replaced by unity. In this case,
the applicability of perturbation theory should be governed by
the condition EL = EL/(4πezinionR) � √

A, that is by the
conditions EL � 4πezinionlQ or EL � 4πezinionlD for cold
or laser-heated clusters, respectively. Again, these conditions
can be rewritten as eEL/(meω

2
p) � lQ or eEL/(meω

2
p) � lD ,

respectively, that is in the form of the classical wave-breaking
threshold condition [66] for the case of A �= 0, with lQ or
lD playing the role of the minimal scale of the electron-
density inhomogeneity, that is the minimal scale of the charge
separation both near and inside the diffuse cluster surface in

the static limit. In the formal limit of A → 0 the range of
applicability of this perturbation expansion goes to zero. On
the other hand, in the range of (4πezinionR)

√
A � EL �

4πezinionσ we retrieve the former expansion developed in the
CCA.

For rather weak electromagnetic fields that satisfy the
perturbation-theory condition in the case of A �= 0, the nth-
order contribution to the electron pressure tensor pnαβ can be
expressed from the scale-transformed Eq. (21c) as

pnαβ = i

n

{
Tnαβ

n2
0

− na−1
0

(
∂q̃nβ

∂ρ̃α

+ ∂q̃nα

∂ρ̃β

+ ∂q̃nγ

∂ρ̃γ

δαβ

)

+ na−2
0 n′

0{̃qnβnα + q̃nαnβ + (1 − a)̃qnγ nγ δαβ}
}
,

(31)

where the equation of state for the electron gas was already
taken into account in the form of the power law p0 = (n0)a ,
with a = 5/3 for cold metal clusters and a = 1 for hot laser
heated/ionized clusters. Then, after substituting this expression
into the scale-transformed Eq. (21b) we arrive at an equation
for the scaled electron-current components:

na−1
0

(
2

∂ 2q̃nβ

∂ρ̃α∂ρ̃β

+ ∂ 2q̃nα

∂ρ̃2
β

)
− na−2

0 n′
0

(
(2 − a)

∂q̃nα

∂ρ̃β

nβ + (2 − a)
∂q̃nβ

∂ρ̃β

nα − (2a − 2)
∂q̃nβ

∂ρ̃α

nβ

)

− q̃nαna−2
0

(
n′′

0 − (2 − a)(n′
0)2

n0
+ (4 − a)n′

0

ρ

)
− (2 − a)(̃qnβnβ)nαna−2

0

(
n′′

0 − (2 − a)(n′
0)2

n0
− n′

0

ρ

)

+ (n2ω̃2 + inγ ω̃)̃qnα + inn0
(
Ẽnα + δ1nẼL

α

) + innnẼ0α = inω̃2Ṽnα

n2
0

+ ∂

∂ρ̃β

(
Tnαβ

n2
0

)
. (32)

This equation complemented by the analogs of Eqs. (27)
and (28) in the scaled variables, that is by the equations

Ẽn = −∇ϕ̃n, �ϕ̃n = nn, (33)

q̃n + inẼn = −rot h̃n, div h̃n = 0, (34)

together forms the complete set of equations that should
be solved with the corresponding boundary conditions to
characterize the nth-order harmonic generation by the cluster.

IV. LINEAR RESPONSE OF THE FREE-ELECTRON
NANOCLUSTER WITH DIFFUSE SURFACE

First, we consider the approximation A = 0 (the CCA),
which is simpler and independent of the equation of state.
Here the electron current is defined by the algebraic Eq. (29),
rather than by a differential equation. But even in this case,
Eqs. (27) and (30) are rather complicated for a general solution,
in particular, due to the cumbersome right-hand term with
Vnα in Eq. (30), not to speak of the case beyond the CCA.
However, at least the problem of third-harmonic generation by
the cluster, which is important for various applications, as well
as the problem of nonlinear absorption in the first nonvanishing
order of perturbation theory can be inspected. This will be

considered in a separate article. In this article, we consider in
detail the linear case of n = 1, which is of interest in itself and
will also serve as the basis for the nonlinear problems.

A. Linear response of the cluster in the CCA (A = 0)

In the linear case we have V 1 ≡ 0, even with allowance for
the magnetic-field term in Eq. (22). The linear corrections to
the electron potential, the electron density, and the magnetic h
function inside a spherical cluster can be represented as

ϕ1 = (EL · n)u1(ρ), n1 = (EL · n)v1(ρ), (35a)

h1 = [EL × n]w1(ρ). (35b)

Then

E1 = −∇ϕ1 = −(u1/ρ)EL
⊥ − u′

1n(EL · n), (36a)

rot h1 = (w′
1 + w1/ρ)EL

⊥ + (2w1/ρ)n(EL · n), (36b)

q1 = q1⊥(ρ)EL
⊥ + q1‖(ρ)n(EL · n), (36c)

with EL
⊥ = EL − n(EL · n) and, from Eq. (29),

q1⊥ = n0(1 − u1/ρ)

i(ω̃2 + iγ ω̃)
, q1‖ = n0(1 − u′

1) + E0v1

i(ω̃2 + iγ ω̃)
. (37)
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Finally, from Eqs. (27) and (30) we obtain three differential
equations for the scalar spherically symmetric functions u1(ρ),
v1(ρ), and w1(ρ):

i(n0 − ω̃2 − iγ ω̃)(−u1/ρ) + in0

(ω̃2 + iγ ω̃)
= w′

1 + w1

ρ
, (38a)

i(n0 − ω̃2 − iγ ω̃)(−u′
1) + in0 + iv1E0

(ω̃2 + iγ ω̃)
= 2w1

ρ
, (38b)

u′′
1 + 2u′

1/ρ − 2u1/ρ
2 = v1. (38c)

With Eqs. (35) and (38c), the first-order dipole moment d1

from Eq. (26) can be presented as

d1 = −1

3
EL

∫ ρlim

0
v1(ρ)ρ3dρ = −1

3
EL(ρlim)3

×{u′
1(ρlim) − u1(ρlim)/ρlim} ≡ α1EL, (39)

where always ρlim = 1 + σ/(2R) for the current case of the
CCA and α1 = −(ρlim)3{u′

1(ρlim) − u1(ρlim)/ρlim}/3 is the
dimensionless linear polarizability of the cluster. In terms
of this, the linear cross sections σ1sc and σ1ab for scattering
and absorption, respectively, of the incident laser wave with
intensity I0 can be represented in dimensionless form:

σ1sc/(πR2) = 8

3

(
2 + ε1

3

)2 (
ωpR

c

)4

ω̃4|α1|2, (40a)

σ1ab/(πR2) = 4ωpR

c
√

ε1

(
2 + ε1

3

)2

ω̃ Imα1. (40b)

Knowing the reduced cross sections of linear scattering and
absorption, ω̃4|α1|2 and ω̃Imα1, respectively, permits one
easily to obtain the dimensional cross sections for any cluster
parameters R and ωp.

The system of Eqs. (38) requires three boundary conditions
for its solution. Equating the tangential components of the
electric field on either side of the exterior cluster boundary,
from Eqs. (25) and (36a) the boundary condition for the
function u1(ρ) at ρ = ρlim can be obtained:

u′
1(ρlim) = (1 − 3ε1)u1(ρlim)/ρlim, (41)

which also can be regarded as a consequence of the continuity
of the electric potential. The other two boundary conditions
to Eqs. (38) are u1(0) = 0 and w1(0) = 0, with u1 ∼ ρ and
w1 ∼ ρ as ρ → 0. Recall that, for the case of a neutral cluster
in the approximation of A = 0, we have E0(ρ) = 0 throughout
the whole cluster and only the two first-order differential
equations (38a) and (38b) need be solved. In this case, they
can be reduced to the single second-order equation

u′′
1 + n′

0u
′
1

n0 − ω̃2 − iγ ω̃
+ 2u′

1

ρ
− 2u1

ρ2
= n′

0

n0 − ω̃2 − iγ ω̃
.

(42)

Generally, Eqs. (38) or Eq. (42) require a numerical
solution. However, in the cluster bulk for a neutral cluster for
ρ < 1 − σ/(2R), where n0 = 1 and E0 = 0, the exact solution
of Eqs. (38) is the linear dependence u1 = Cuρ, w1 = Cwρ,
with Cw = i[1 − Cu(1 − ω̃2 − iγ ω̃)]/[2(ω̃2 + iγ ω̃)]. In con-
sequence, in this range v1 = 0 and n1 = 0, and this bulk range
of the cluster does not contribute to the cluster dipole moment.

Only the surface range 1 − σ/(2R) < ρ < 1 + σ/(2R) con-
tributes to the dipole moment. Here the ion/electron density
is inhomogeneous and the solution of Eqs. (38) or Eq. (42)
should be obtained numerically. Note that the result for the
steplike cluster boundary of a neutral cluster can be obtained
in this model only as the limiting case of σ/R → +0, but not
for σ ≡ 0. For a neutral cluster, this confirms the importance
of the cluster surface for the description of the linear Mie
resonance as essentially a surface-plasmon excitation.

For charged clusters, we may discriminate two cases. If
the radius Rc of the neutral core defined by Eq. (10) satisfies
the condition Rc/R ≡ ρc > 1 − σ/(2R), that is, in the case
of a low outer-ionization degree, the situation is qualitatively
similar to the case of a neutral cluster, with some quantitative
difference due to the presence of the outer positively charged
zone of the diffuse cluster surface. On the other hand, in the
case of a high outer-ionization degree it may be that Rc/R ≡
ρc < 1 − σ/(2R), that is, the diffuse cluster surface together
with a part of the bulk is completely depleted of electrons. In
this case, the analytical solution of Eqs. (38) can be obtained.
As was the case for neutral clusters above, for highly charged
clusters in the range where ρ � ρc the exact solution of
Eqs. (38) is the linear dependence u1 = Cuρ, w1 = Cwρ,
with Cw = i[1 − Cu(1 − ω̃2 − iγ ω̃)]/[2(ω̃2 + iγ ω̃)]. On the
other hand, in the range ρc � ρ < 1 + σ/(2R), where n0 = 0,
the solution is u1 = Bu/ρ

2 + Duρ and w1 = Bw/ρ2 + Dwρ,
with Bw = −iBu and Dw = iDu/2. Here, the function v1, as
well as the first-order electron density n1 are zero everywhere,
except at the point ρ = ρc, where they have a Dirac δ function
singularity due to discontinuity of u′

1. The three unknown
coefficients Cu, Bu, and Du can be found from the two
continuity conditions on the functions u1 and w1 at ρ = ρc, and
from the boundary condition (41) at ρ = ρlim = 1 + σ/(2R).
In this, the linear cluster polarizability is α1 = Bu, and the final
result reads

α1 = ε1ρ
3
c

ε1 + (1 − ε1)(ρc/ρlim)3 − 3ε1(ω̃2 + iγ ω̃)
. (43)

For the sake of generality, an arbitrary permittivity ε1 is kept in
Eq. (43), which originates from the boundary condition (41).
This allows us also to consider from Eq. (43) the case of
a neutral cluster with steplike boundary surrounded by a
dielectric, as a limiting case of a highly charged cluster at η →
0 and σ/R → 0. But first, if we let ε1 = 1 in Eq. (43), we arrive
at the cluster polarizability α1 = ρ3

c /[1 − 3(ω̃2 + iγ ω̃)] for a
charged cluster in vacuum with diffuse boundary at high outer-
ionization degree. This result means that the outer-ionization
degree of a highly charged cluster does not affect the Mie-
resonance frequency, which for a cluster in vacuum continues
to have the classical value ω

(cl)
M = ωp/

√
3 (in the limit of

γ → 0). It is only the strength of the Mie-plasmon resonance
that decreases with increasing outer-ionization degree, that is,
with decreasing dimensionless neutral-core radius ρc = Rc/R

of the charged cluster. On the other hand, if we assume
σ/R = 0 and then let ρc = ρlim = 1 in Eq. (43) with an
arbitrary ε1, we arrive at the cluster polarizability α1 = ε1/[1 −
3ε1(ω̃2 + iγ ω̃)] for a neutral cluster with steplike surface in a
dielectric medium. In this case, the Mie-resonance frequency
following from this expression for cluster polarizability is
ωM = ωp/

√
3ε1 (for γ → 0), which does not exactly coincide

063201-10



LINEAR AND NONLINEAR LIGHT SCATTERING AND . . . PHYSICAL REVIEW A 81, 063201 (2010)

FIG. 3. (Color online) The reduced cross sections of linear scattering and absorption, respectively, ω̃4|α1|2 [(a) and (c)] and ω̃Imα1 [(b) and
(d)], as a result of numerical solution of Eqs. (38) for a neutral cluster (η = 0) within the CCA (A = 0), for ε1 = 1, for γ = 10−3 [(a) and (b)]
and γ = 10−2 [(c) and (d)], and for different cluster surface thicknesses. In each panel, the four curves correspond to σ/R = 10−3 (the solid
curves), σ/R = 10−2 (the dashed curves), σ/R = 3 × 10−2 (the dotted curves), and σ/R = 10−1 (the dash-dotted curves). For the ion density
of the cluster surface region, the completely smooth profile g5(x) is used (see Fig. 1).

with the classical textbook expression ω
(cl)
M = ωp/

√
1 + 2ε1

for the Mie-resonance frequency of a neutral metal cluster in
a dielectric [10,67].

To understand the difference between our result for
the plasmon Mie-resonance frequency of a free-electron
nanocluster in a dielectric and the textbook result, let us
recall that the latter has been obtained by simply extrapo-
lating the electrostatic cluster polarizability α1st = (εcl−st −
ε1st)/(εcl−st + 2ε1st) to the dynamic case, by means of the
substitutions εcl−st → εcl(ω) = 1 − 1/[ω̃2 + iγ ω̃] and ε1st →
ε1(ω). Then, in this electrostatic approximation the cluster
polarizability becomes α1 = [1 − (1 − ε1)(ω̃2 + iγ ω̃)]/[1 −
(1 + 2ε1)(ω̃2 + iγ ω̃)], from which the above-mentioned clas-
sical result for the Mie-resonance frequency is directly ob-
tained. On the other hand, here we exploit the fully dynamical
approach, in which the role of the magnetic field is significant.
Even though it is small in the dipole approximation, the
magnetic field enters the dynamic Eqs. (38) through the
magnetic h function, on the same footing with the electric
potential. Apparently, this is the main difference between our
approach and the pure electrostatic approximation, thus this
is what led to different expressions for the plasmon Mie-
resonance frequency of a free-electron nanocluster embedded

in a surrounding dielectric medium. While this difference is
important in principle, the quantitative difference between the
two Mie-resonance frequencies is not too large for realistic
moderate values of the permittivity ε1 of the surrounding
dielectric.

To illustrate the above statements, the numerical solution
of Eqs. (38) for various cases was used to calculate ω̃Imα1

and ω̃4|α1|2 and thereby the reduced cross sections for linear
absorption and scattering, respectively [cf. Eqs. (40)]. The
results are presented in Figs. 3–6. In Fig. 3, the results for
a neutral cluster (η = 0) in vacuum (ε1 = 1) for different
cluster-surface thicknesses are exhibited. In Figs. 3(a) and
3(b) the results of calculations with a value of the relaxation
constant γ = 10−3 [cf. Eq. (1b) and the discussion below
Eq. (2)] are presented. Clearly, the absorption as well as
the scattering cross section reveal resonance behavior with
a maximum at ω̃ ≈ 0.577 for sufficiently small values of the
relative cluster-surface thickness σ/R <∼ 0.001, demonstrating
precise agreement with the classical Mie-resonance frequency
in vacuum ω

(cl)
M = ωp/

√
3. With σ/R increasing up to 0.1, a

small but visible red shift of the resonance frequency can be
noticed. Also, with increasing σ/R, some broadening of the
resonance curve both for absorption and for scattering takes
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FIG. 4. (Color online) The reduced cross sections of linear scattering and absorption, respectively, (a) ω̃4|α1|2 and (b) ω̃Imα1, as a
result of numerical solution of Eqs. (38) for a neutral cluster (η = 0) within the CCA (A = 0) for σ/R = 0.01 and with γ = 10−2, and for
different dielectric permittivities ε1 of the surrounding. In each panel, the three curves correspond to ε1 = 1 (the solid curves), ε1 = 2 (the
dashed curves), and ε1 = 3 (the dotted curves). For the ion density of the cluster surface region, the completely smooth profile g5(x) is used
(see Fig. 1).

place. For absorption, this implies a very significant increase
in both wings of the resonance profile, to the left and to the
right of the Mie-resonance frequency but not exceeding the
bulk plasma resonance frequency at ω̃ = 1. This enhancement
of the absorption with increasing σ/R has the same physical
origin as in the case of thin nanofilms with diffuse boundaries,
which was considered in detail in Ref. [60]. Basically, it is
connected with resonant volume absorption inside the diffuse
cluster surface: in our model, the local plasma frequency rises
continuously from a value of zero up to the bulk plasma
frequency. Therefore, within this frequency range, there is
always resonant absorption in some part of the diffuse surface
region. Qualitatively the same results are obtained for the
higher value of the relaxation constant, γ = 0.01. They are
presented in Figs. 3(c) and 3(d) for comparison.

Figure 4 displays results obtained for a neutral cluster
embedded into a dielectric surrounding. They show that the
resonance frequency both for scattering and for absorption
shifts toward lower frequencies with increasing dielectric
permittivity ε1 of the surrounding, in rather good qualitative
agreement with the classical Mie-resonance frequency in a
dielectric ω

(cl)
M = ωp/

√
1 + 2ε1 [10,67], which is obtained in

the electrostatic approximation. Quantitatively, however, the
resonance frequency obtained in our calculations reveals a
noticeable red shift with respect to the classical Mie frequency
if ε1 �= 1 and, indeed, it is in excellent quantitative agreement
with the plasmon Mie-resonance frequency ωM = ωp/

√
3ε1

derived above. The relative red shift with respect to the
classical Mie frequency as a function of ε1 extracted from
the calculations of the resonance curves is presented in Fig. 5
for the case of relative surface diffuseness σ/R = 0.01 and
γ = 10−2, as in Fig. 4. In this case, there is no red shift for
a cluster in vacuum, at ε1 = 1. It gradually increases with
increasing ε1, and is of the order of 10% for 2 < ε1 < 3 as
compared with the classical Mie frequency.

Figure 6 exhibits the results obtained for a charged cluster in
vacuum (ε1 = 1), for γ = 10−2 and σ/R = 0.03. The critical
value ηc of the outer-ionization degree η ≡ η(Rc/R), which

separates the ranges of low and high ionization degrees in
the CCA, is defined so that the radius of the neutral core Rc

coincides with the radius of the inner boundary of the diffuse
cluster surface, which corresponds to the condition

Rc/R = 1 − σ/(2R), (44)

and thus ηc ≡ η|r=1−σ/(2R), where r = Rc/R. In this case, we
find ηc ≈ 0.0445. Figure 6 shows a noticeable difference of
the resonance curves, especially for absorption, for a neutral
cluster as compared with a charged cluster for high outer-
ionization degrees η > ηc. The difference appears chiefly in a
drastic narrowing of the resonance curves at η > ηc, because in
this case the diffuse cluster surface no longer plays the decisive
role in forming the electromagnetic cluster response. A further
increase of the outer-ionization degree results in a gradual
decrease of both scattering and absorption because the number

FIG. 5. The relative shift of the calculated resonance Mie
frequency ωM of the metal cluster embedded into a dielectric
surrounding with permittivity ε1 with respect to the classical Mie
frequency ω

(cl)
M = ωp/

√
1 + 2ε1 as a function of ε1. As in Fig. 4,

σ/R = 0.01 and γ = 10−2.
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FIG. 6. (Color online) The reduced cross sections of linear scattering and absorption, respectively, (a) ω̃4|α1|2 and (b) ω̃Imα1, as a result
of the numerical solution of Eqs. (38) for a charged cluster in vacuum (ε1 = 1) within the CCA (A = 0) for σ/R = 0.03 and with γ = 10−2

and for various outer ionization degrees η. In each panel, the four curves correspond to the following values of η: η = 0 (solid curves), η = 0.1
(dash curves), η = 0.3 (dot curves), and η = 0.5 (dash-dot curves). For the ion density of the cluster surface region, the completely smooth
profile g5(x) is used (see Fig. 1).

of trapped electrons in the charged cluster is decreasing. On
the other hand, the position of the Mie resonance for charged
clusters is hardly changed from its value for neutral clusters.
For highly charged clusters within the CCA (at A = 0), we
actually deal with the steplike case with respect to the neutral
core of the cluster. But this should no longer hold when A �=
0, due to the diffuseness of the transition range between the
neutral core and the charged shell in a highly ionized cluster.

B. Linear response of the cluster beyond the CCA (A �= 0)

In this case we have again ˜V 1 ≡ 0, and also T1αβ = 0,
even with allowance for the magnetic field terms in Eqs. (22)
and (23). The linear corrections to the scale-transformed
electron potential, the electron density, and the magnetic ˜h
function inside the spherical cluster can be represented through
three scalar functions as before in the case of A = 0:

ϕ̃1 = ( ˜E
L · n)̃u1(ρ̃), n1 = ( ˜E

L · n)̃v1(ρ̃), (45a)

˜h1 = [ ˜E
L × n]w̃1(ρ̃ ). (45b)

Again, as in Eqs. (36), we have

˜E1 = −∇ϕ̃1 = −(̃u1/ρ̃) ˜E
L

⊥ − ũ′
1n( ˜E

L · n), (46a)

rot ˜h1 = (
w̃′

1 + w̃1/ρ̃
)

˜E
L

⊥ + (2w̃1/ρ̃)n( ˜E
L · n), (46b)

q̃1 = q̃1⊥(ρ̃) ˜E
L

⊥ + q̃1‖(ρ̃)n( ˜E
L · n), (46c)

with ˜E
L

⊥ = ˜E
L − n( ˜E

L · n). From Eqs. (33) and (34) we obtain

iũ′
1 = 2w̃1/ρ̃ + q̃1‖, (47a)

w̃′
1 = iũ1/ρ̃ − w̃1/ρ̃ − q̃1⊥, (47b)

ũ′′
1 + 2ũ′

1/ρ̃ − 2ũ1/ρ̃
2 = ṽ1, (47c)

where, however, the electron current components q̃1⊥ and
q̃1‖ obey the second-order differential equations following

from Eq. (32):

na−1
0

{
q̃ ′′

1⊥ + 2(̃q ′
1‖ + q̃ ′

1⊥)

ρ̃
+ 6(̃q1‖ − q̃1⊥)

ρ̃2

}
− na−2

0 n′
0

×
{

(2 − a)̃q ′
1⊥ + q̃1⊥

[
n′′

0

n′
0

− (2 − a)
n′

0

n0

]
+ (2 + a)

q̃1⊥
ρ̃

+ (2 − 2a)
q̃1‖
ρ̃

}
+ (ω̃2 + iγ ω̃)̃q1⊥ + in0(1 − ũ1/ρ̃) = 0, (48a)

na−1
0

{
3q̃ ′′

1‖ + 6q̃ ′
1‖ − 4q̃ ′

1⊥
ρ̃

− 8(̃q1‖ − q̃1⊥)

ρ̃2

}
− na−2

0 n′
0

×
{

(6 − 4a)̃q ′
1‖ + (3 − a)̃q1‖

[
n′′

0

n′
0

− (2 − a)
n′

0

n0

]
+ (6 − 2a)

q̃1‖
ρ̃

− (4 − 2a)
q̃1⊥
ρ̃

}
+ (ω̃2 + iγ ω̃)̃q1‖

+ in0(1 − ũ′
1) + iṽ1Ẽ0 = 0. (48b)

From the scale-transformed static Eqs. (6), we have
na−2

0 n′
0 = −Ẽ0/a and n′′

0/n′
0 − (2 − a)n′

0/n0 = Ẽ ′
0/Ẽ0, with

Ẽ ′
0 = �i − n0 − 2Ẽ0/ρ̃.

Now, the first-order dipole moment d1 can be presented as

d1 = −A2

3
˜E

L
∫ ρ̃lim

0
ṽ1(ρ̃)ρ̃3dρ̃ = −A3/2

3
EL(ρ̃lim)3

× {̃u′
1(ρ̃lim) − ũ1(ρ̃lim)/ρ̃lim} ≡ α1EL, (49)

where ρ̃lim = ρlim/
√

A. The dimensionless linear polariz-
ability α1 = −A3/2(ρ̃lim)3{̃u′

1(ρ̃lim) − ũ1(ρ̃lim)/ρ̃lim}/3 of the
cluster is defined as in Eq. (39). This is consistent with the
previous notation in the case of the CCA, so that Eqs. (40) for
the linear cross sections for scattering and absorption again
hold.

063201-13



S. V. FOMICHEV AND W. BECKER PHYSICAL REVIEW A 81, 063201 (2010)

FIG. 7. (Color online) The reduced cross sections of linear scattering and absorption, respectively, ω̃4|α1|2 [(a) and (c)] and ω̃Imα1 [(b)
and (d)], as a result of the numerical solution of Eqs. (47) and (48) for cold neutral metal clusters with an electron halo in vacuum (ε1 = 1)
beyond the CCA [A = 10−7 for (a) and (b) and A = 10−5 for (c) and (d)], with γ = 10−3 and for various cluster-surface diffusenesses σ/R.
In each panel the four calculated curves correspond to the following values of σ/R: σ/R = 0.001 (solid curves), σ/R = 0.003 (dash curves),
σ/R = 0.01 (dot curves), and σ/R = 0.03 (dash-dot curves). For the ion density of the cluster surface region, the completely smooth profile
g5(x) is used (see Fig. 1).

Equations (47a) and (47b) can be reduced to a single
second-order equation

ũ′′
1 + 2ũ′

1/ρ̃ − 2ũ1/ρ̃
2 = −iq̃ ′

1‖ − 2i (̃q1‖ − q̃1⊥)

ρ̃
, (50)

so the comparison with Eq. (47c) results in ṽ1 = −iq̃ ′
1‖ −

2i (̃q1‖ − q̃1⊥)/ρ̃. Equation (50) requires two boundary con-
ditions. They are the same as before in the CCA, namely
ũ1(0) = 0 and

ũ′
1(ρ̃lim) = (1 − 3ε1)̃u1(ρ̃lim)/ρ̃lim (51)

[here, the condition w̃1(0) = 0 automatically holds in view
of Eq. (47a)]. The four boundary conditions for the solution
of Eqs. (48) are q̃1‖(ρ̃lim) = 0, q̃1‖(0) = q̃1⊥(0), and q̃ ′

1‖(0) =
q̃ ′

1⊥(0) = 0 (the latter also follows from the finiteness of both
electron current components at the cluster center).

Equations (47) and (48) require a numerical solution.
Equations (48) involve the static electron-density distribution
n0 and the static electric field E0, which result from the
solution of the static Eqs. (6), as well as their derivatives.
Unlike in the previous case of the CCA, in the current case
beyond the CCA cold metal clusters and hot laser-heated

clusters should be considered separately, as was the case for
the static Eqs. (6). In this case both the equations and their
solutions are equation-of-state dependent. This means they
are primarily dependent on the parameter a defined by the
power law p0 = (n0)a in the equilibrium equation of state for
the electron gas. Besides, the results may differ, depending
on whether an electron halo around the cluster in vacuum is
assumed. For various situations, the results for the reduced
cross sections for linear scattering and absorption obtained
from the numerical solution of Eqs. (47) and (48) are presented
below in Figs. 7–11.

In Figs. 7 and 8, the results for a neutral metal cluster
(η = 0) in vacuum (ε1 = 1) for several values of the cluster-
surface thickness and the cluster parameter A are presented and
compared for two values of the relaxation constant, γ = 10−3

(Fig. 7) and 10−2 (Fig. 8). For the calculations underlying these
figures, spreading of the electron density beyond the cluster
surface (the electron halo with an extent of the order of σ )
was assumed to be possible both for the static and the dynamic
solutions. Hence, in all these calculations we set ρlim to a
large value, ρlim

∼= 8, which assured that the electron density
as well as the electron current are free to vanish on the limit-
ing integration sphere without being forced by a constraint.
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FIG. 8. (Color online) The same as Fig. 7 but for γ = 10−2.

FIG. 9. (Color online) The reduced cross sections of linear scattering and absorption, respectively, ω̃4|α1|2 and ω̃Imα1, as a result of
numerical solution of Eqs. (47) and (48) for cold neutral metal clusters without electron halo beyond the CCA (A = 10−6) in vacuum [ε1 = 1,
(a), (b), and (c)] and in a surrounding dielectric [ε1 = 2, (d), (e), and (f)], with γ = 10−2 and for various cluster surface diffusenesses
σ/R = 0.003 [(a) and (d)], σ/R = 0.01 [(b) and (e)], and σ/R = 0.03 [(c) and (f)]. For the ion density of the cluster surface region, the
completely smooth profile g5(x) is used (see Fig. 1).
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FIG. 10. (Color online) The reduced cross sections of linear scattering and absorption, respectively, ω̃4|α1|2 [(a) and (c)] and ω̃Imα1 [(b)
and (d)], as a result of the numerical solution of Eqs. (47) and (48) for a hot laser-heated/ionized cluster with an electron halo in vacuum
(ε1 = 1) beyond the CCA (A = 10−4) for σ/R = 0.1 and with γ = 0.02, and for various outer ionization degrees η. In (a) and (b), the six
curves with increasing maxima correspond to the following increasing values of η: 0, 0.01, 0.015, 0.02, 0.025, 0.03, while in (c) and (d) the
six curves with decreasing maxima correspond to the following increasing values of η: 0.04, 0.05, 0.1, 0.2, 0.3, 0.4. For the ion density of the
cluster surface region, the completely smooth profile g5(x) is used (see Fig. 1). Increasing values of eta are bottom to top [(a) and (b)] and top
to bottom [(c) and (d)].

In Figs. 7(a), 8(a), 7(b), and 8(b), the cluster parameter has the
value A = 10−7, while in Figs. 7(c), 8(c), 7(d), and 8(d) it is
A = 10−5. As was the case for A = 0 in the similar Fig. 3,
in Figs. 7 and 8 the absorption as well as the scattering
cross section reveal resonance behavior with a maximum
at ω̃ ≈ 0.577 for sufficiently small values of the relative
cluster-surface thickness σ/R <∼ 0.001, in precise agreement
with the classical Mie-resonance frequency ω

(cl)
M = ωp/

√
3

in vacuum. With σ/R increasing up to 0.03, a tiny red shift
of the resonance frequency is observed. Also, with increasing
σ/R, some broadening of the resonance curve takes place both
for absorption and for scattering. For absorption, the cross
section exhibits a significant increase on either side of the
Mie-resonance frequency, restricted, however, to frequencies
below the bulk plasma resonance frequency at ω̃ = 1. The
physical reason for this enhancement is the same as explained
above for the CCA. It is important to note that the magnitudes
of both the scattering and the absorption cross sections for
A = 10−7 in Figs. 7 and 8 are only very slightly below those
for A = 0 in Fig. 3. In contrast, with A increasing to 10−5, these
cross sections [Figs. 7(c), 8(c), 7(d), and 8(d)] are significantly

reduced by approximately one order of magnitude. It means
that an increase of the parameter A, that is a decrease of the
cluster radius, results in additional broadening of the resonance
curves (in addition to already mentioned broadening due to
increasing σ/R), both for the scattering and the absorption.
The corresponding contribution to the resonance width is
inversely proportional to the cluster radius. Moreover, due
to this broadening at A = 10−5 the effect of increasing σ/R

is much less important. In conventional units, the width due
to increasing A is proportional to ωp

√
A = ωplQ/R ∼ vF /R.

This width is closely related to the one that appears in the
kinetic approach as a consequence of the Landau damping
mechanism in finite systems. In our approach it reveals itself
already in the hydrodynamic approximation.

Figure 9 displays results obtained for a neutral cold metal
cluster embedded into a surrounding dielectric beyond the
CCA (for A = 10−6), and for γ = 10−2. For the calculations
we set ρlim = 1 + σ/(2R) in order to exclude the electron halo.
Figures 9(a), 9(b), and 9(c) show the results for ε1 = 1 for
comparison both with the previous results with the electron
halo in vacuum and with the results for the surrounding
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FIG. 11. (Color online) The reduced cross sections of linear scattering and absorption, respectively, ω̃4|α1|2 [(a) and (c)] and ω̃Imα1 [(b)
and (d)], as a result of the numerical solution of Eqs. (47) and (48) for a hot laser-heated/ionized cluster with an electron halo in vacuum
(ε1 = 1) beyond the CCA (A = 3 × 10−3) for σ/R = 0.03 and with γ = 0.02 and for various outer ionization degrees η. In (a) and (b), the
five curves with decreasing low-frequency maxima in absorption [(b)] correspond, respectively, to the following increasing values of η: 0, 0.01,
0.02, 0.03, 0.05, while in (c) and (d) the five curves correspond to the following values of η: 0.1 (solid curves), 0.2 (dashed curves), 0.3 (dotted
curves), 0.4 (dashed-dotted curves), and 0.5 (dash-dot-dot curves). For the ion density of the cluster surface region, the completely smooth
profile g5(x) is used (see Fig. 1). In (a) and (b), increasing values of eta are top to bottom.

permittivity ε1 = 2, which are exhibited in Figs. 9(d), 9(e),
and 9(f). The main specific feature of these results both for
ε1 = 1 (without the electron halo) and ε1 = 2 is the emergence
of secondary resonances with increasing σ/R below the
nominal plasma resonance frequency ω̃ = 1, especially in
absorption, along with the basic Mie resonance, which remains
present both in scattering and in absorption. These secondary
resonances are absent for low σ/R <∼ 0.003. They gradually
appear in increasing numbers with increasing relative surface
diffuseness. Figure 9 also shows that the basic Mie resonance
shifts toward lower frequencies with increasing permittivity ε1

of the surrounding dielectric, while the secondary resonance
frequencies are less affected by increasing ε1. The position
of the basic Mie resonance is in rather good qualitative
agreement with the classical Mie-resonance frequency in a
dielectric, ω

(cl)
M = ωp/

√
1 + 2ε1 [10,67], which is obtained in

the electrostatic approximation. Quantitatively, however, the
basic Mie-resonance frequency obtained in our calculations
at ε1 = 2 is in excellent quantitative agreement (ω̃M ≈ 0.41)
with the plasmon Mie-resonance frequency ωM = ωp/

√
3ε1

derived above on the basis of the CCA. The secondary
resonances that appear with increasing surface diffuseness of

the cluster qualitatively can be interpreted as the well-known
Tonks-Dattner resonances below the plasma frequency in a
uniform bounded plasma, which are due to the nonuniformity
of the edge [68,69].

Figure 10 exhibits the results obtained for a charged cluster
in vacuum (ε1 = 1) beyond the CCA (A = 10−4) with electron
halo, for γ = 0.02 and σ/R = 0.1 and for different values of
the outer-ionization degree η. In this case, in the CCA the
critical value of the outer-ionization degree, which separates
the ranges of low and high ionization degrees with respect to
electron depletion of the diffuse cluster surface, is ηc ≈ 0.14
[cf. Eq. (44)]. Beyond the CCA, the electron halo should play
a significant role for low ionization degree as well as for
a neutral cluster, while for high ionization degree the halo
effect is depressed by the Coulomb trapping of the residual
electrons inside the cluster. Figure 10 illustrates the behavior
of the resonance curves for the current case beyond the CCA
with an electron halo upon variation of η, for a cluster at
low ionization degree η � 0.03 in Figs. 10(a) and 10(b)
as compared with a charged cluster at high outer-ionization
degree η � 0.04 in Figs. 10(c) and 10(d). Both for scattering
[Fig. 10(a)] and for absorption [Fig. 10(b)], the resonance
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curves narrow and the magnitude of the Mie resonance
increases when η is increasing up to approximately 0.04. When
η continues to increase up to 0.4 in Figs. 10(c) and 10(d),
the magnitude of the resonance starts to decrease again. For
charged clusters and nonzero η, the position of the Mie
resonance is always red-shifted with respect to the classical
Mie-resonance frequency in vacuum, ω̃(cl)

M = 1/
√

3. However,
the magnitude of the shift depends nonmonotonically on η:
with η increasing from zero, the shift first increases. It reaches
a maximum at about η = 0.02 and thereafter decreases again,
ultimately to reach the limit of the classical position for high
ionization degrees.

Finally, Fig. 11 shows results obtained for several different
values of the outer-ionization degree η for a charged cluster
in vacuum (ε1 = 1) with an electron halo beyond the CCA
at a higher value of the cluster parameter A = 3 × 10−3, for
γ = 0.02 and σ/R = 0.03. Though at high ionization degrees
[see Figs. 11(c) and 11(d)] the evolution of the Mie-resonance
curves is qualitatively the same as in the previous case of
Fig. 10, a new specific feature of this case is the appearance
of a rather significant additional low-frequency maximum
in the absorption [see Fig. 11(b)] at low ionization degrees,
whose magnitude gradually disappears with increasing outer-
ionization degree. For η � 0.1, this low-frequency maximum
in the absorption is negligible, and it does not manifest itself
at all in the scattering cross section. It was also present in the
previous case of Fig. 10 with A = 10−4 but only as a very
small effect. Though apparently it is not a numerical artifact,
the physical reason for the appearance of this low-frequency
peak in the absorption is not completely clear. But very clearly
its existence is tightly connected with the presence of an
electron halo, whose role is also reduced with increasing
outer-ionization degree.

V. CONCLUSIONS

In this article, the collisionless hydrodynamic model for
both the linear and the nonlinear electron response of a small
free-electron nanocluster with diffuse boundary to the action
of linearly polarized laser light has been developed. The
nonlinearity is introduced through the basic nonlinearity of the
charge-field interaction and through the convective derivative
in the equation of motion. Corresponding nonlinearities
naturally exist in the hydrodynamic equations. The effect
of the nonlinearities is especially pronounced in the cluster
boundaries owing to the corresponding short-scale variation
in the electron density, the electric field, and the electron
velocity. Both cold metal nanoclusters and hot laser-heated
and/or ionized nanoclusters can be analyzed in detail in the
framework of the same approach. In order to use analytical
methods as far as possible in this from the numerical point of
view very stiff problem, the stationary approximation as well
as perturbation theory are used. In addition, the ions are con-
sidered frozen. This gives the possibility to restrict the study
to the response of the electron subsystem of the nanocluster
and to investigate the laser-frequency dependence of scattering
and absorption. Two different perturbation expansions were
distinguished in this context. One of them corresponds to
sufficiently high laser fields, when the amplitude of the
forced electron oscillations inside the cluster is smaller

than the thickness of the diffuse boundary but still larger
than the electric charge separation. The other is applicable
for lower laser fields, when the amplitude of the forced
electron oscillations inside the cluster is even smaller than
the electric charge separation. This cluster model is developed
on the basis of the similar one-dimensional collisionless
hydrodynamic model that was presented in Ref. [60] and
applied to thin nanofilms interacting with p-polarized laser
light.

The main interest of the ongoing study will be concerned
with nonlinear effects and, in particular, a detailed study of
third-harmonic generation by a free-electron nanocluster with
diffuse boundary. However, the linear cluster response is at
the base of the consideration of the nonlinear problems, and
in itself already constitutes a formidable problem. Therefore,
in this first article, having developed the complete nonlinear
model, we have restricted ourselves to the linear electromag-
netic nanocluster response, when it came to the presentation
of detailed results. We have considered both scattering and
absorption of the incident laser light, for different scenarios
of the irradiated cluster, such as cold clusters, hot clusters,
neutral or charged clusters, clusters in the presence of a
dielectric environment or in vacuum, with or without an
electron halo surrounding the cluster, and so on. In particular,
we have shown that for frequencies below the nominal
plasma frequency, linear absorption in a small nanocluster
with diffuse surface can be much higher than for a similar
cluster with a sharp steplike boundary. For a cold cluster
in a dielectric environment, a small but noticeable red shift
of the Mie-resonance frequency with respect to its classical
value ω̃

(cl)
M = √

1 + 2ε1 was obtained, and this shift depends
on the dielectric permittivity of the environment. It was
shown analytically that the correct value of the Mie-resonance
frequency of the cluster in the dielectric environment with
permittivity ε1 corresponds to the expression

√
3ε1 rather than

to
√

1 + 2ε1, which follows from the electrostatic approxi-
mation. It was shown that in our hydrodynamic model the
width of the Mie resonance depends both on the thickness
of the diffuse boundary as well as on the cluster radius (this
occurred through the presence of the cluster parameter A,
provided we did not invoke the CCA). For cold neutral metal
nanoclusters and moderate laser fields, we also found that
the frequency dependence of the linear absorption exhibits
secondary resonances along with the main Mie-resonance
peak. In our model, the number of such secondary absorption
peaks increases with increasing cluster boundary thickness.
In contrast, for hot laser-heated clusters in vacuum the extra
resonances in the linear absorption do not appear, except for
the additional low-frequency maximum at a high value of A.
On the other hand, the outer-ionization degree significantly
affects the resonance profile of both linear absorption and
linear scattering for hot charged clusters in vacuum. This is
also tightly connected both with the cluster boundary effect
and with the electron halo due to the strong dependence of the
nonuniform electron density in the near-surface range on the
outer-ionization degree.

For the nonlinear effects, the corresponding equations
and calculations are much more cumbersome than in
the linear case. High-order harmonic generation by the
cluster can hardly be considered in this context on the
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basis of perturbation theory, but for third-harmonic gener-
ation it is still feasible. The detailed numerical study of
third-harmonic generation and the first nonlinear correction
to laser absorption by free-electron nanoclusters with dif-
fuse surface will be the subject of a following separate
article.
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