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Dispersion interactions from a local polarizability model
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A local approximation for dynamic polarizability leads to a nonlocal functional for the long-range dispersion
interaction energy via an imaginary-frequency integral. We analyze several local polarizability approximations
and argue that the form underlying the construction of our recent van der Waals functional [O. A. Vydrov and
T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009)] is particularly well physically justified. Using this improved
formula, we compute dynamic dipole polarizabilities and van der Waals C6 coefficients for a set of atoms and
molecules. Good agreement with the benchmark values is obtained in most cases.
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I. INTRODUCTION

Recently we developed [1] a nonlocal correlation energy
functional that describes the entire range of van der Waals
interactions in a general and seamless fashion, using only
the electron density and its gradient as input. Improving
upon its predecessors [2,3], the new van der Waals density
functional [1], denoted VV09, has a simple analytic form,
generalized to spin-polarized systems and well-behaved in
some important limits. In the asymptotic long-range regime,
VV09 reduces to a form similar to the models of Refs. [4]
and [5], yet with some crucial differences. In this article, we
examine this long-range behavior in detail and present some
test results of dynamic dipole polarizabilities and asymptotic
van der Waals C6 coefficients.

II. FORMALISM

For two compact systems A and B separated by a large
distance R, the nonretarded dispersion interaction energy [6]
behaves asymptotically as −CAB

6 R−6 with the C6 coefficient
given by the formula [7]

CAB
6 = 3h̄

π

∫ ∞

0
du ᾱA(iu) ᾱB(iu), (1)

where ᾱ(iu) is the average (isotropic) dynamic dipole po-
larizability at imaginary frequency iu. A simple but often
sufficiently accurate approximation is to describe ᾱ by a local
model

ᾱ(iu) =
∫

dr α(r,iu). (2)

The long-range dispersion interaction energy between systems
A and B can then be written [8,9] in terms of local
polarizabilities as

Edisp = −3h̄

π

∫ ∞

0
du

∫
A

dr
∫

B

dr′ α(r,iu)α(r′,iu)

|r − r′|6 , (3)

where r is within the domain of system A and r′ is within the
domain of B.

In Refs. [4,5,9,10], a simple model for α(r,iu) was derived
from the response properties of a uniform electron gas (UEG).
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The zero wave vector UEG dielectric function at frequency ω

is given by

ε(ω) = 1 − ω2
p

ω2
, (4)

where ωp =
√

4πne2/m is the plasma frequency for the
electron density n. In nonuniform systems, the local analog
of ωp can be defined via ω2

p(r) = 4πn(r)e2/m. Then the local
polarizability for ω = iu is found as [4,10]

α(r,iu) = 1

4π

[
1 − 1

ε(r,iu)

]
= 1

4π

ω2
p(r)

ω2
p(r) + u2

. (5)

Plugging Eq. (5) into Eq. (3) we arrive at the Andersson–
Langreth–Lundqvist (ALL) formula [4]

Edisp = − 3h̄

32π2

∫
A

dr
∫

B

dr′ ωp(r)ωp(r′)
ωp(r) + ωp(r′)

∣∣r − r′∣∣−6
. (6)

An immediately apparent problem with Eq. (5) is its treatment
of static polarizability:

ᾱ(0) =
∫

dr α(r,0) =
∫

dr
1

4π
. (7)

α(r,0) is constant everywhere, therefore the above integral is
divergent unless a cutoff is introduced. Equation (6), taken
as it is, yields finite but severely overestimated Edisp. These
difficulties are circumvented [4,10,11] by the introduction of
sharp density-based integration cutoffs in Eqs. (2) and (6).
Calculated polarizabilities and C6 coefficients are admit-
tedly [4,10] sensitive to the choice of the cutoff criterion,
although the prescription of Refs. [4,10,11] appears to work
well in many cases. Note that Ref. [10] gave separate cutoff
criteria for the spin-compensated and the fully spin-polarized
cases. To our knowledge, a prescription for a general spin-
polarization case has never been put forth.

An integration cutoff discards density tail regions, which is
not entirely satisfactory from the formal point of view. In the
u → ∞ limit, the f -sum rule requires [12] that

ᾱ(iu) → Ne2

mu2
=

∫
dr

ω2
p(r)

4πu2
, (8)

where N is the number of electrons in the system. Omission
of the density tails leads to the reduction of N , in violation of
the f -sum rule.
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Another formal shortcoming of the ALL theory was pointed
out by Nesbet [13,14], who argued that a more appropriate
relation between α and ε is given by the Clausius–Mossotti
formula

α = 3

4π

ε − 1

ε + 2
, (9)

so that Eq. (5) should be replaced by

α(r,iu) = 1

4π

ω2
p(r)

ω2
p(r)/3 + u2

. (10)

It appears that Nesbet’s articles went unnoticed because in the
numerous practical applications [15–31] of the ALL formula,
Nesbet’s suggestion was never utilized.

The validity of Eq. (10) is corroborated by the example
of interacting jellium spheres. For two identical spheres of
uniform density and radius r0 separated by distance R (such
that R � r0) the interaction energy is given by [32]

Espheres = −
√

3

4
h̄ωp

r6
0

R6
. (11)

The above result is exactly reproduced if Nesbet’s model of
Eq. (10) is plugged into Eq. (3), whereas the ALL formula (6)
underestimates this result by the factor of 3

√
3 ≈ 5. We

note in passing that all three versions of the van der Waals
density functional (vdW-DF) of Refs. [2,3,33] fail to reproduce
Eq. (11) even on the qualitative level, yielding incorrect
dependence on the electron density.

Local polarizability models of Eqs. (5) and (10) were
derived using the UEG dielectric function of Eq. (4). UEG
is rather dissimilar to our target systems—molecules. UEG
has a continuous excitation spectrum and a zero band gap (i.e.,
it is a metal), whereas molecules have a discrete spectrum
with a gap between the ground state and the fist excited state.
The polarizability model could be made more realistic by
introducing a gap. For a semiconductor with a band gap h̄ωg ,
the zero wave vector dielectric function [34] is typically written
as

ε(ω) = 1 + ω2
p

ω2
g − ω2

. (12)

Using this ε(ω) in the Clausius–Mossotti formula (9), we
obtain

α(r,iu) = 1

4π

ω2
p(r)

ω2
p(r)/3 + ω2

g(r) + u2
, (13)

where we introduced a “local gap” h̄ωg(r). The above α(r,iu)
leads via Eq. (3) to the energy expression

Edisp = − 3h̄

32π2

∫
A

dr
∫

B

dr′ ω2
p(r)ω2

p(r′)|r − r′|−6

ω0(r)ω0(r′)[ω0(r) + ω0(r′)]
,

(14)

where ω0 =
√

ω2
g + ω2

p/3. A suitably chosen ωg(r) obviates
any need for an integration cutoff in Edisp and ᾱ(iu). As a
result, the f -sum rule on ᾱ(iu) is obeyed.

An apt model for ωg(r) can be deduced by examining the
behavior of the electron density n(r). In atoms, n(r) can be
approximated as piecewise exponential. In the density tails,
the exact behavior [35] is known

n(r) ∼ exp (−α|r|) , with α = 2(2mI/h̄2)1/2, (15)

where I is the ionization potential. Generalizing the result
of Eq. (15), we can define a “local ionization potential”
as [36,37]

I (r) = h̄2

8m

∣∣∣∣∇n(r)

n(r)

∣∣∣∣
2

. (16)

Taking h̄ωg(r) ∝ I (r), in Ref. [1] we defined

ω2
g(r) = C

h̄2

m2

∣∣∣∣∇n(r)

n(r)

∣∣∣∣
4

, (17)

where C is an adjustable parameter. We fitted C to a benchmark
set of 17 van der Waals C6 coefficients and obtained [1] the
optimal value of C = 0.0089. It is instructive to consider
the ratio ωg(r)/I (r) = 8

√
0.0089 = 0.755. This ratio seems

reasonable since ωg should be somewhat smaller than I . In
the uniform density limit, Eq. (17) gives ωg = 0, so that our
α(r,iu) of Eq. (13) reduces to Nesbet’s α(r,iu) of Eq. (10).

Equations (13), (14), and (17) require only the total
electron density as input and include no dependence on spin
polarization. The question of the proper treatment of spin,
not fully resolved in the ALL theory [10], does not arise in
this model. We mention in passing that vdW-DF functionals
of Refs. [2,3,33] were defined only for the spin-compensated
case and their extension to spin-polarized systems is nontrivial.
In VV09 [1], the dependence on spin polarization enters
only at shorter range. In the long-range limit, the VV09
nonlocal correlation energy reduces to Eq. (14). In this
regard, a clarification should be made: The coefficient before
the double integral in Eq. (14) is twice the coefficient in
Eq. (13) of Ref. [1] because these formulas compute different
things. Equation (14) computes the interaction energy between
systems A and B, hence the integral over r is limited to the
part of space confining system A, while the integral over r′
is limited to the domain of B. On the other hand, Eq. (13) of
Ref. [1] gives the nonlocal correlation energy, which includes
intermolecular and intramolecular contributions, hence both r
and r′ integrals are over the entire space.

III. BENCHMARK TESTS

All calculations reported in this section were performed at
the LC-ωPBE08 [38] electron densities (using ω = 0.45 a−1

0 ,
as suggested in Ref. [38]), except for the H atom polarizability,
computed at the Hartree-Fock (i.e., exact in this case) density.
For the numerical integration, we use the Euler-Maclaurin-
Lebedev unpruned (75,302) quadrature grid. The augmented
correlation-consistent polarized-valence quadruple-zeta (aug-
cc-pVQZ) basis set is used in all calculations. All the numbers
in this section are given in atomic units (a.u.).

Using the VV09 model, given by Eqs. (13) and (17), we
have calculated the isotropic dynamic dipole polarizabilities
as functions of imaginary frequencies for several atoms and
small molecules for which accurate reference data [39–42] are
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FIG. 1. Average dynamic dipole polarizabilities at imaginary frequencies calculated using the VV09 model [i.e., via Eqs. (2) and (13)].
Atomic units are used. The reference values are from Ref. [39] for LiH and from Ref. [40] for the atoms.

available. For LiH, BeH2, and BH, we used the same bond
lengths as in Refs. [39,41,42]. The results are given in
Fig. 1 and Table I. The agreement between the calculated
and reference values of ᾱ(iu) is generally quite good, al-
though this method has a tendency of underestimating static
polarizabilities ᾱ(0). The largest errors in ᾱ(0) are observed
for LiH (Fig. 1) and for alkali-metal atoms (not shown).
Underestimation of ᾱ(0) causes rather large errors in C6

coefficients for alkali-metal atoms, as shown below.

TABLE I. Isotropic polarizabilities ᾱ(iu) calculated via Eqs. (2)
and (13) compared to the reference values for BeH2 [41] and BH [42].
Atomic units are used.

BeH2 BH

u Ref. Calc. Ref. Calc.

0.0 19.760 19.413 21.430 17.442
0.142 857 17.234 17.049 16.582 15.506
0.333 333 11.280 11.509 10.343 10.738
0.6 6.084 6.440 5.625 6.139
1.0 2.917 3.161 2.755 3.044
1.666 667 1.233 1.360 1.198 1.307
3.0 0.418 0.480 0.424 0.453
7.0 0.081 0.105 0.091 0.096

When the distance between species A and B is large
compared to the size of these systems, |r − r′|−6 in Eq. (14) can
be taken out of the integral as R−6, leading to the −CAB

6 R−6

form with CAB
6 given by Eq. (1). To further assess the quality

of the VV09 local polarizability model, we have calculated
isotropic dispersion C6 coefficients for a number of atoms
and molecules. As expected from Eq. (1), any errors in the
polarizability ᾱA(iu) are reflected in CAA

6 and similarly in
CAB

6 . It is sufficient to include only CAA
6 in our benchmark set

since the accuracy for CAA
6 and CBB

6 determines the accuracy
for CAB

6 . For example, VV09 strongly underestimates the
C6 coefficient for the Li–Li interaction, and as a result, all
C6 coefficients for Li interacting with other species are also
underestimated. On the contrary, VV09 gives very accurate
C6 coefficients for He–He and Kr–Kr, and consequently, C6

for He–Kr is also very accurate.
In Ref. [1] we reported the CAA

6 coefficients for a set of 17
closed-shell species, computed within the VV09 methodology.
In fact, the value of C = 0.0089 in Eq. (17) was fitted to that
set. In this study, we test whether this fit is transferable to
atoms and molecules outside of the training set. In Table II we
assembled a set of 34 closed-shell species for which accurate
CAA

6 are known. Using this benchmark set, we compare the
accuracy of VV09 [1] to the similar methods of Refs. [2,3,33].
In the asymptotic limit, all these methods reduce to the form
of Eq. (14), but with different models for ω0, as discussed in
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TABLE II. CAA
6 coefficients (a.u.) for closed-shell species calculated by several methods. Experimental geometries [43] are used for all

molecules. MPE stands for the mean percentage error and MAPE stands for the mean absolute percentage error.

Molecule vdW-DF-04a vdW-DF-09b vdW-DF-10c VV09d Accurate Ref.e

He 2.93 1.63 0.76 1.45 1.46 [40]
Ne 9.45 6.52 3.07 8.44 6.35 [44]
Ar 62.67 61.41 25.29 70.08 64.42 [44]
Kr 114.3 120.0 47.7 131.2 130.1 [44]
Be 269 330 102 186 214 [40]
Mg 649 835 246 425 627 [40]
Zn 269 240 87 163 284 [45]
H2 16.82 12.53 5.09 10.28 12.09 [46]
N2 78.76 77.59 31.96 88.70 73.43 [46]
Cl2 289.3 336.8 131.4 366.7 389.2 [47]
HF 23.12 18.01 7.97 21.13 19.00 [48]
HCl 114.3 119.9 47.2 124.6 130.4 [48]
HBr 180.1 198.2 76.1 200.2 216.6 [48]
CO 87.56 86.34 35.01 93.51 81.40 [49]
CO2 127.6 130.6 54.5 159.4 158.7 [49]
CS2 586.3 731.7 274.3 739.4 871.1 [50]
OCS 316.8 370.1 143.4 395.6 402.2 [50]
N2O 136.1 140.3 58.4 172.4 184.9 [51]
CH4 122.0 130.1 50.8 129.6 129.6 [52]
CCl4 1436 1882 715 2044 2024 [53]
NH3 82.47 79.32 32.00 82.78 89.03 [51]
H2O 46.96 40.83 17.17 44.95 45.29 [51]
SiH4 338.0 406.1 147.2 344.6 343.9 [54]
SiF4 360.9 382.7 158.6 455.8 330.2 [55]
H2S 186.6 208.9 79.1 200.3 216.8 [56]
SO2 239.5 265.1 106.5 305.2 294.0 [50]
SF6 568.0 659.7 274.6 869.9 585.8 [57]
C2H2 191.3 210.3 81.0 210.3 204.1 [58]
C2H4 259.7 293.8 113.2 297.3 300.2 [59]
C2H6 330.4 386.1 148.8 396.6 381.8 [52]
CH3OH 194.0 208.5 83.2 226.1 222.0 [60]
CH3OCH3 458.7 532.5 207.7 567.9 534.0 [61]
Cyclopropane 480.7 596.1 228.3 632.6 630.8 [52]
C6H6 1297 1715 647 1838 1723 [58]
MPE (%) −2.8 −0.5 −60.9 1.2
MAPE (%) 18.5 10.4 60.9 10.7

aThe method of Ref. [2].
bThe method of Ref. [3].
cThis method is denoted as vdW-DF2 in Ref. [33].
dThe formalism proposed in Ref. [1] and described in this work.
eLiterature references for the accurate benchmark CAA

6 values.

Ref. [3]. Deviations from the reference values are summarized
in Table II as mean (signed) percentage errors (MPE) and
mean absolute percentage errors (MAPE). VV09 and vdW-
DF-09 exhibit very similar accuracy with MAPE of just over
10%. vdW-DF-04 is somewhat less accurate with MAPE of
18.5%. The latest reparameterization (denoted as vdW-DF2
in Ref. [33], but called vdW-DF-10 here for consistency)
yields very poor C6 coefficients: As compared to the reference
values, vdW-DF-10 underestimates CAA

6 by a factor of 2.6 on
average.

The good performance of vdW-DF-09 for C6 coefficients
motivated Sato and Nakai [62] to devise a pairwise atom-atom
dispersion correction using the local polarizability model [3]

underlying the construction of vdW-DF-09. We believe that the
VV09 model of Eq. (13) can also be successfully employed in
this scheme.

As mentioned previously, none of the three versions of
vdW-DF [2,3,33] has been generalized for open-shell systems,
whereas VV09 is defined for a general spin-polarized case.
In Table III, we compare the CAA

6 coefficients predicted by
VV09 to the accurate reference values for 20 open-shell
species. The agreement is satisfactory in most cases. The
largest errors are observed for the alkali-metal atoms Li
and Na. The strong underestimation of the C6 coefficients
for alkali-metal atoms was also noted for the ALL for-
mula [4]. It is likely that the local approximation of Eq. (2)
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TABLE III. CAA
6 coefficients (a.u.) for open-shell species calcu-

lated using Eq. (14).

Molecule VV09 Accurate Ref.

H 6.75 6.50 [40]
Li 565 1389 [40]
B 87.6 99.5 [45]
C 47.0 46.6 [45]
N 27.65 24.10 [51]
O 18.19 14.89 [51]
F 12.21 9.52 [45]
Na 669 1556 [40]
Al 353 528 [45]
Si 253 305 [45]
P 179 185 [45]
S 130 134 [45]
Cl 94.7 94.6 [45]
Ga 255 498 [45]
Ge 251 354 [45]
As 222 246 [45]
Se 190 210 [45]
Br 158 162 [45]
O2 66.18 61.57 [51]
NO 77.83 69.73 [51]
MPE (%) −9.8
MAPE (%) 18.7

is inadequate for such highly polarizable systems as alkali
metals.

IV. CONCLUSION

The ALL formula (6) for the long-range dispersion energy
enjoys growing popularity [15–31], even though it has been
superseded by more general [1–3,33] and more accurate
[63,64] methods. A simple change from Eq. (6) to Eq. (14)
improves the theory in several important ways: The sharp
integration cutoff is obviated and consequently the f -sum
rule is recovered; the model system of two distant jellium
spheres is properly described; accurate C6 coefficients are
predicted for many atoms and molecules including open-shell
species. Equation (14) describes the asymptotic limit and has
to be damped at short range. To this end, empirical damping
functions are often used (see, e.g., Ref. [62]).

The general and seamless van der Waals functional
VV09 [1] reduces to Eq. (14) in the large separation limit. As
our recent study [65] shows, VV09 performs well not only in
the asymptotic limit, but also near equilibrium intermonomer
separations, provided that an adequate exchange functional is
used.
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