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Electron-impact excitation of the (3d104s)2 S1/2 → (3d94s2)2 D5/2,3/2 transitions in copper atoms
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Results from a joint experimental and theoretical investigation of electron impact excitation of the
(3d104s)2S1/2 → (3d94s2)2D5/2,3/2 transitions in copper atoms are presented. The experimental results were
obtained with the laser-induced fluorescence technique, while the numerical calculations were performed in a
variety of nonrelativistic, semirelativistic, and fully relativistic R-matrix (close-coupling) calculations. Whereas
there is qualitative agreement between the measured and predicted energy dependence of the angle-integrated
cross section, significant uncertainties remain regarding the position and the height of the near-threshold maximum
of the excitation function for the (3d94s2)2D3/2 state. These uncertainties translate into difficulties regarding the
absolute normalization of the relative experimental data to the theoretical predictions.
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I. INTRODUCTION

Electron collisions with copper atoms are of interest for
both fundamental reasons and the need for accurate atomic data
in modeling applications such as the copper-vapor laser (CVL),
which has become a well-established source of high-power
visible light [1]. From a fundamental point of view, copper
is a very difficult target to describe theoretically, due to the
alkali-metal-like characteristics of its 3d10nl single-electron
valence states that are mixed with the 3d9nln′l′ two-electron
helium-like states on the open 3d9 doubly ionized core. This
mixture leads to a strong term dependence of the 3d core and
all valence orbitals, and it is likely to become a serious problem
in close-coupling calculations when both of these sets of target
states are included in the expansion of the total scattering wave
function.

As summarized in a recent paper on electron impact exci-
tation of the (3d104s)2S → (3d104p)2P resonance transition
[2], a significant amount of effort, both experimentally and
theoretically, has been devoted over the past several decades
to the understanding of this particular collision process, due to
its importance in the understanding of the CVL laser. Although
excitation from the ground state is weak, detailed knowledge
about the (3d104s)2S → (3d94s2)2D forbidden transition is
equally important, since the 2D state is part of a three-level
system for pulsed-laser operation. Consequently, the cross
sections for these excitation processes are amongst the most
important parameters needed in modeling the CVL [3].

Unlike the extensive work on the resonance transition (see
[2] for a list of references), studies of the weak (3d104s)2S →
(3d94s2)2D excitation process have been scarce. In fact, we are
not aware of additional work beyond the four-state R-matrix
(close-coupling) calculation by Scheibner et al. [4] and an
unpublished followup 10-state study by Scheibner and Hazi [5]
that effectively confirmed their earlier work.

The lack of existing studies for the above transition is most
likely related to the difficulties faced by both experimentalists

and theorists alike. Experimentally, the signal is weak and there
is no radiation emitted after excitation of the 2D state, while
theoretically the term dependence of the 3d and 4s orbitals, as
well as the need to include coupling to higher excited states
for such a weak transition, presents a major challenge.

A way to address these challenges for the closely related
problem in electron collisions with gold atoms was outlined
in our two joint recent studies for electron impact excitation
of the (5d106s)2S1/2 → (5d106p)2P1/2,3/2 resonance transi-
tions [6] and the (5d106s)2S1/2 → (5d96s2)2D5/2,3/2 optically
forbidden transitions [7]. Similar to copper, knowledge of
these cross sections, as well as accurate energy levels and
oscillator strengths, are important to understand the details of
the gold-vapor laser (GVL). Experimentally, the excitation of
the (5d96s2)2D3/2 state could be studied by further excitation
of this state to the (5d106p)2P1/2 state by a laser and then
observing the laser-induced fluorescence (LIF) signal from the
(5d106p)2P1/2 → (5d106s)2S1/2 transition back to the ground
state. The very same technique was used in the present work
for the copper target.

Theoretically, a highly promising method to account for the
term dependence of the one-electron orbitals in the various
target states of interest is the B-spline R-matrix method
developed by Zatsarinny and coworkers over the past decade
[8–10]. A nonrelativistic version of the computer code, which
can also treat relativistic effects as a perturbation at the level
of the Breit-Pauli approximation, was published by Zatsarinny
[11]. The above-mentioned calculations for e-Au collisions
[6,7], on the other hand, were actually performed with a fully
relativistic extension of the package. While the agreement
with experiment obtained with this approach, which treats the
most important physical effects (Coulomb interaction, electron
exchange, channel coupling, core-valence, and inner-core
correlations) in a fully ab initio manner, was quite satisfactory,
a few discrepancies remained. In particular, it proved to be
very difficult to reproduce the experimental position of a strong
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maximum seen in the excitation function of the (5d96s2)2D3/2

state.
In order to better understand the intricacies of these

collision processes and hopefully to obtain additional clues
about possible reasons for the remaining differences between
experiment and theory, studying copper with an atomic number
of Z = 29 instead of gold (Z = 79) as a target is very
promising from a theoretical point of view, since one can
expect even a nonrelativistic model to be at least somewhat
appropriate after simply recoupling the results to account for
the different states of total electronic angular momentum J .
At the same time, some improvement, without drastic changes
in the qualitative appearance of the results, seems likely
when relativistic effects are accounted for at the Breit-Pauli
or ultimately at the Dirac-Coulomb level. The promise of
simultaneously being able to provide data of interest for the
modeling community, therefore, provided the motivation for
the present work, which complements our recent study of the
resonance transition [2].

In the next section we describe our apparatus and mea-
surement technique. This is followed by a description of
various nonrelativistic, semirelativistic, and fully relativistic
close-coupling calculations that were performed for this work.
After presenting and discussing our results, we finish with
some conclusions from the present study.

II. EXPERIMENTAL DETAILS

In this study we used the Type I stepwise excitation
technique of MacGillivray and Standage [12], in conjunction
with the Lamb-dip technique [13], in order to measure the
excitation cross sections for the 4 2S1/2 → 3 2D3/2 transition
in copper. The incident electron energies were in the range
from 1.6 eV (threshold) to 4.8 eV for this work. The major
complication in these experiments, over those we previously
reported for electron impact excitation of the 4 2P state [2],
was the contamination of the incident copper beam with
metastable states that were thermally excited according to the
Gibbs distribution. The solution to this problem, which was
described in detail by Suvorov [14], involved the introduction
of a counterpropagating laser to facilitate the use of the
Lamb dip.

A schematic diagram of the experimental geometry used in
the stepwise excitation measurements of the 2D state cross
sections is given in Fig. 1. As a description of the main
components of the apparatus, namely the vacuum chamber,
the electron gun with the electron beam chopper and Faraday
cups, the copper oven, and the photon detection system, were
given before [2], we do not repeat them here unless required
for this specific experiment.

The copper atoms were produced by heating copper wire in
a molybdenum oven that was heated by electron bombardment
to ∼1550 K. These copper atoms, traveling with a mean speed
of 800 m/s in a beam of 6.5-mm diameter, passed through
a laser beam that had a Gaussian profile and was 2.3 mm
in diameter (see Fig. 1). The frequency of the laser (Spectra-
Physics 380 D ring dye laser pumped with a Coherent INNOVA
320 argon ion laser) was typically locked by an electronic
servo-system to the 2D3/2 → 2P1/2 (F = 0 → 1) hyperfine

FIG. 1. Experimental configuration for the laser-induced fluores-
cence technique measurements.

(HFS) transition, hereafter referred to as “peak 6” [14]. This
latter designation arises as, when the 578.2-nm probe laser has
its frequency varied over 13 GHz, six possible 2D3/2 → 2P1/2

HFS transitions can be excited. The copper beam, which has
now had the thermally excited D states quenched to the ground
state to some degree, was then intersected by an electron beam
of 5-mm diameter and known energy (see below). It is these
electrons that excite the ground state (4 2S1/2) copper atoms
to the 3 2D3/2 state. A corner cube (see Fig. 1) was used to
reflect the incident laser beam back through the atomic beam,
but displaced by 16 mm along the atomic beam axis from the
original point of entry. The atoms then entered the field of the
reflected laser beam, and those in the metastable 3 2D3/2 state
underwent a transition to the 4 2P1/2 state and subsequently
decayed to the ground state. Radiation of 327.4 nm [2] arising
from this interaction region was collected by a fused silica lens,
passed through an interference filter, and was finally detected
on a low-noise photomultiplier tube (PMT). The solid angle
of the photon detector was determined by the silica lens and
had a value of 0.66 steradians.

The interference filter we employed had a bandpass of
10 nm centered at 330 nm, with a transmittance of ∼12% at
325 nm and ∼32% at 327 nm. Our THORN EMI 98999B
PMT was configured so that observations were made at
the “magic” angle of 54.7◦ with respect to the laser beam.
Thus, the influence of anisotropy in the measured impact
fluorescence was minimized. Pulses from the PMT were
amplified by a preamplifier and a delay line amplifier. They
were then passed through a discriminator before being fed
into a pair of gated counters, whose gates were generated by a
reference signal derived from the rotating toothed wheel that
modulated (“chopped”) the reflected laser beam. Thus, one
counter was enabled when the reflected laser beam was in the
scattering chamber (i.e., it counted the scattered signal from
the beam plus background, Na), while the other counted the
scattered signal when the reflected laser beam was off (i.e.,
the background signal Nb). After every 0.5 s, which was the
electron chopper preset time in this work, the count rate was
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given by

N0.5 = N0.5
a − N0.5

b . (1)

In addition, these pulses were counted separately during the
time intervals when the electron beam was either present
(on) at the interaction region or chopped off. This procedure
was necessary in order to discriminate between signal from
background metastable states (as our Lamb-dip approach was
not 100% efficient in quenching the thermal population in these
levels) and those excited by the electron beam. In practice, this
was achieved by modulating (chopping) the voltage on the
anode of the electron gun [2,14]. In this way, the number
of true counts scattered from the copper beam, which is
proportional to the 3 2D3/2 integral cross section of interest,
could be determined at each energy from

N300 =
∑

300

N0.5
on −

∑

300

N0.5
off . (2)

This gives the true signal counted for a nominal present time of
300 s. This photon count rate was then adjusted to unit electron
beam current for each energy, and thus the relative excitation
function was determined.

The preset count rate in these experiments was determined
by the frequency stability of the laser. Despite our use of
the Fabry-Perot etalons of the Spectra-Physics 385 external
reference interferometer and our Lamb-dip technique, laser
stability for periods of 300–600 s was only possible with the
limit on the counting time being due to “mode hops” induced
by temperature fluctuations in both the laser dye and laser
optics. Nonetheless, such a stability window was sufficient
for these measurements. The typical electron-induced photon
signal was 5–10 Hz at 2 eV and up to 40 Hz at 2.5–3 eV.
Although this signal was of reasonable intensity, it was the
signal-to-noise (S/N) ratio that presented a major challenge
to the present experiments. The reason for the S-N ratio to
be lower at the higher energies of this investigation is the
excitation threshold of the 4 2P state at 3.8 eV. Photons arising
from direct electron excitation of the 42P state, therefore,
increasingly contributed to the background as the energy was
increased beyond 3.8 eV. Indeed, this problem restricted the
present investigations to a maximum electron energy of 4.8 eV.
At the lower energies the S-N ratio was also found to be
low, with the noise now being caused by the initial thermal
population of the 3 2D3/2 state due to the temperature of the
oven. Note that in all our measurements, at each energy, we
established that the fluorescent photon signal was linear with
the electron beam current.

It should now be apparent that we measured the relative
excitation cross section for the HFS 3 2D3/2 level with
quantum number F = 0. The question, however, remains as
to how accurately this excitation function reflects that for
the 3 2D3/2 state as a whole. This issue is addressed by the
Percival-Seaton hypothesis [15], which states that the nuclear
spin plays no effective role in electron-atom collisions: in
other words, the HFS can be ignored in the collision. To
test this hypothesis explicitly in the present experiment, we
repeated our measurements, this time with the laser tuned to
excite the 2D3/2 → 2P1/2(F = 3 → 2) HFS transition. This
measurement, labeled “peak 1,” is shown together with the
earlier measurement “peak 6” in Fig. 2. In order to compare
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FIG. 2. Measured excitation function of the (3d94s2)2D3/2 state
in copper using two different HFS transitions. In order to compare
the two relative measurements, they were normalized to each other
at the peak. See text for more details. No scale is given on the y axis,
since the measurements are not absolute.

these two relative measurements, they were normalized to each
other at the peak. It is clear from Fig. 2 that both sets of data are
in good accord with one another. We therefore conclude that
the Percival-Seaton hypothesis holds for our experiment, and
thus our 3 2D3/2 cross section determined from the HFS F = 0
level is indeed representative of that for the 3 2D3/2 manifold.

The final difficulty in the present measurements revolves
around our choice of an indirectly heated oxide cathode as the
electron source. While the energy resolution of this cathode
[�E ∼ 0.3 eV, full width at half maximum (FWHM)] is
superior to that which can be achieved with a W-hairpin
filament, it is well known from (e,2e) studies [16] that
under extreme conditions (such as we had here) the emission
properties of those oxide cathodes can vary significantly over
time. In particular, this manifests itself as a change in the
true value of the incident beam energy over time. In the case
of the (e,2e) work [16], where data were collected over a
period of several weeks to a month, the shift in the true value
of the beam energy could be as much as ±500 meV. Our
measuring times, however, are much shorter than this, and
thus we conservatively estimate the uncertainty in our beam
energy calibration to be about ±200 meV. Certainly our energy
calibration, against the b feature in the metastable excitation
function of neon [17], both before and after a measurement,
suggests that such a value is reasonable. It is reflected by the
x-error bars on our experimental cross-section plots.

Finally, we note that all the data collection and analysis
were performed under computer control, with full details being
found in Ref. [14].

III. COMPUTATIONAL METHOD

The numerical calculations for the present work were
based on several approaches that will be described in some
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detail in the subsections below. They consist of nonrelativistic
and semirelativistic R-matrix (close-coupling) expansions
using the standard code RMATRIX-I of the Belfast group [18]
(Sec. III A) or the B-spline R-matrix code BSR of Zatsarinny
[11], including a fully relativistic Dirac-Coulomb treatment
using the recently developed DBSR code [7,10] (Sec. III B).
We believe that the latter calculation should provide the
best theoretical description, and hence it will be described
in the most detail. We will also present results generated
by Scheibner et al. [4] and later by Scheibner and Hazi
[5] who used a nonrelativistic version of the Belfast code
as well.

A. Standard R-matrix calculations

In order to get a first impression about the results to
be expected, we performed a straightforward nonrelativistic
R-matrix calculation with the RMATRIX-I code [18]. In this
model, we closely coupled the ground state (3d104s)2S and
the excited states (3d94s2)2D, (3d104p)2P , and (3d104d)2D,
respectively, thus forming a four-state model that will be
referred to as RM4 below. For the structure description we
started with the one-electron orbitals 1s, 2s, 3s, 4s, 2p, 3p,
and 3d for the (3d104s)2S ground state as given by Clementi
and Roetti [19]. We then employed the structure program CIV3

of Hibbert [20] to reoptimize the 3d and 4s orbitals in order
to get a reasonable, though certainly not perfect, description
of both the (3d104s)2S and the (3d94s2)2D states. We then
generated a correlated 5̄d pseudoorbital in order to increase the
flexibility by being able to build suitable linear combinations
of the 4d and 5̄d orbitals for each target state of interest.
Finally, we used all configurations that could be built with
one electron above the 3d10 singly ionized core or with two
electrons above the 3d9 doubly ionized core by occupying one
or two of the 4p, 4d, and 5̄d orbitals that were also generated
with CIV3 [20]. Using this method accounts to a significant
extent for the term dependence in the one-electron orbitals
and made it possible to obtain the excitation energies of the
(3d94s2)2D and (3d104p)2P states from the ground state to an
accuracy of better than 0.1 eV.

In order to allow for a direct comparison with experiment,
the diagonal elements of the Hamiltonian matrices for each
(N + 1)-electron symmetry were then adjusted to produce
the correct experimental thresholds. While this is a stan-
dard procedure in the Belfast code, any adjustment of the
N -electron target energies carries the danger of producing an
inconsistency between the N -electron target and the (N + 1)-
electron collision treatments, since there is no unique way of
simultaneously adjusting the (N + 1)-electron bound-bound
terms in the expansion of the R-matrix basis functions.
The need for these latter terms arises from the numerical
requirement of the code to use a single set of mutually
orthogonal one-electron orbitals to describe both the bound and
the scattering states. We also checked that pseudoresonances
do not present a problem for this model in the low-energy
regime of interest for the present work.

This four-state model is expected to produce similar results
to those obtained by Scheibner et al. [4] (denoted as RM4-
SHH) below, with potential differences being due to a different
way of optimizing the target orbitals and/or the adjustment

procedure for the excitation thresholds. While Scheibner
and Hazi [5] further extended this work by performing a
10-state calculation (RM10-SH), details of this extension are,
unfortunately, not available to us.

As an extension of the above RM4 model, we then
performed a semirelativistic calculation, in which we included
the one-electron spin-orbit term as a first-order perturbation in
calculating the relevant matrix elements. This “Breit-Pauli”
model will be referred to as RM7-BP below. We used an
R-matrix radius of a = 25.8a0, with a0 = 0.529 × 10−10 m
being the Bohr radius, and employed 15 basis functions for
each orbital angular momentum l to expand the continuum
wave function of the projectile electron inside the R-matrix
box. The scattering calculations were performed for partial
waves up to total orbital angular momenta of L = 8 or
total electronic angular momenta J = 8, respectively. This
was sufficient to obtain partial-wave converged results in the
near-threshold regime for the optically forbidden transitions
of interest for the current paper.

B. B-spline R-matrix calculations

As mentioned previously, an important aspect for a
relatively complex target such as copper is the structure
description, which is by no means trivial. A particular difficulty
in copper is the filled and very diffuse 3d subshell. Recall that
part of the Cu spectrum consists of Rydberg-like (. . . 3d10nl)
states, while the two lowest excited states, which are the topic
of this paper, have the dominant configuration 3d94s2. Hence,
one can expect a significant configuration dependence of the
3d and 4s orbitals, as well as coupling between single-electron
valence and core-excited states.

The distinguishing features of the BSR method [11] are
(i) the ability to use term-dependent, and, hence, non-
orthogonal sets of one-electron orbitals in the target de-
scription, and (ii) B splines as the underlying, effectively
complete basis to expand the wave function of the projectile.
Furthermore, it is an all-electron approach, and, hence, core-
valence correlation effects (such as the core polarization) can
be described ab initio.

For the first set of states for neutral copper with domi-
nant configurations 3d10nl, the principal correlation effects
originate from the interaction of the valence electron with
the core, whereas for the core-excited 3d94s2 and 3d94s4p

states the valence correlation itself is also important. In the
present approach, we included the core-valence correlation ab
initio by adding target configurations with an excited core.
However, direct multiconfiguration calculations in this case
usually lead to very large expansions, which can hardly be used
in subsequent scattering calculations. For this reason, we used
the bound-state close-coupling method to generate the target
states. This method also provides a way to accurately describe
the strong interaction between the valence and core-excited
states.

Specifically, the calculation of the target states included
the following steps. We started by generating the core orbitals
from a Cu2+ Hartree-Fock calculation for the 3d9 core. Next,
the excited 4s and 4p orbitals were generated in a frozen-core
calculation for Cu+3d9nl, and the entire spectrum of Cu was
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represented by the expansion,

�(LSπ ) = A
∑

i

{ϕ(3d10)φ(nili)}LSπ

+A
∑

i

{ϕ(3d94s)φ(nili)}LSπ

+A
∑

i

{ϕ(3d94p)φ(nili)}LSπ + aϕ(3d94s2),

(3)

where A denotes the antisymmetrization operator. Here, the
first term represents the valence 3d10nl states, while the
second term represents the core-excited 3d94snl states.
The third term is included primarily to introduce the core-
valence correlation for the valence states due to the strong
3d → 4p excitation. This term also describes the valence cor-
relation for the core-excited states due to 4s → 4p excitation.
For example, it accounts for the strong configuration mixing
between the 3d94s4p and 3d94p4d states.

We found, however, that the accuracy of the relative position
of the levels crucially depends on the choice of the 3d10

core wave function in this expansion. For example, choosing
the 3d10 wave function from fully relaxed Hartree-Fock
calculations for Cu+(3d10) results in large errors in the relative
position of the valence and core-excited states, as well as in
a very poor description of the core-valence correlation for the
3d10nl states. This is due to the large radial correlation in the
3d10 core. Therefore, employing the same one-electron radial
function for all 3d electrons is entirely inappropriate for this
case. A solution to the problem was found by Froese Fischer
[24]. She suggested using a partially extended Hartree-Fock
model for the description of the 3d10 core wave function, in
which the last 3d orbital is not constrained to be the same as the
other nine. Specifically, the core wave function is represented
as a combination of the 3d10 and 3d94̄d configurations, where
the 3d orbital is the one from the Cu2+(3d9) state while the
correlated 4̄d orbital is optimized on the Cu+(3d10) ground
state. The mixing coefficients between the 3d10 and 3d94̄d

configurations were found to be 0.93 and 0.36, respectively,
thus indicating a strong interaction. Note that the mean radius
of the 4̄d orbital is 2.2a0, whereas the mean radius of the
3d orbital is only 0.9a0. This reflects the extensive radial
correlation in the very diffuse 3d subshell.

The core-excited (3d94s2)2D state cannot be described
accurately with the expansion (3). It was therefore consid-
ered in separate multiconfiguration Hartree-Fock (MCHF)
calculations. The expansion contained all configurations with
promotion of two valence electrons to the set of {5̄s,5̄p,5̄d,5̄f }
correlated orbitals. Note that we employed fully relaxed 3d,4s

and 5̄l correlated orbitals in this case. These orbitals, therefore,
are not orthogonal to the orbitals in the 3d10nl states. The
relaxation effects were found to be very important in the
present case, leading to corrections in the excitation energies of
up to 0.5 eV. All the above calculations were carried out in the
Hartree-Fock approximation using the MCHF atomic structure
package [21]. In order to obtain a consistent description with
all the other states of the 2De term, the multiconfiguration
expansion of the (3d94s2)2D state was then incorporated into
the expansion (3).

The final Cu target wave functions were generated with
the B-spline box-based close-coupling approach [22]. The un-
known radial components for the outer valence electron φ(nili)
in expansion (3) were expanded in a B-spline basis. The coeffi-
cients of the B-spline expansions were found by diagonalizing
either the nonrelativistic or the Breit-Pauli Hamiltonian (the
latter only including all one-electron relativistic terms), with
the additional requirement that the wave functions vanish at
the boundary. Note that we do not impose orthogonality of the
valence orbitals nl to the correlated orbitals n̄l in the above
procedure. This speeds up the convergence of expansion (3)
and yields accurate binding energies with a relatively small
number (∼50) of correlated configurations for each symmetry.
More details of this procedure can be found in [8].

The number of physical states that we can generate in
this method depends upon the size a of the R-matrix box.
Choosing a = 60 a0 allowed us to obtain a good description
for all low-lying Rydberg-type bound states of Cu up to n = 7.
The resulting spectra also contain the core-excited states with
configurations (3d94s2) and (3d94s4p), respectively. Similar
to what we will show for the fully relativistic model in Table I
below, the resulting target excitation energies agreed with the
experimental values to much better than 0.1 eV.

We first performed a 20-state nonrelativistic collision
calculation (to be referred to as BSR20 below) and then the cor-
responding 34-state semirelativistic (BSR34-BP) calculation,
closely coupling all the states with principal configurations
(3d104s), (3d104p), (3d104d), (3d105s), (3d105p), (3d106s),
(3d94s2), and (3d94s4p). Partial-wave contributions up to a
total electronic angular momentum of 25 for the collision
system were calculated numerically to ensure partial-wave
converged results for the transitions and energies under
consideration. The cross sections were calculated in the same
way as in the standard R-matrix approach by employing the
package FARM of Burke and Noble [25] to solve the collision
problem outside of the R-matrix box for each collision energy
of interest and match to the inner-region solution at the
boundary.

The final set of numerical calculations performed for this
work was based upon the fully relativistic Dirac B-spline
R-matrix (DBSR) method [10], which was also used in similar
calculations for e-Au [6,7] collisions. The general philosophy
in generating the target description was the same as described
above for the nonrelativistic and semirelativistic BSR models,
except that we now used Dirac spinors and performed the
calculation in the multiconfiguration Dirac-Fock approxima-
tion by employing the GRASP2K relativistic atomic structure
package [23].

The spectrum of Cu was again recalculated using a B-spline
box-based expansion similar to (3), except that the unknown
large and small radial components for the outer valence
electron, φ(n�), were expanded in separate B-spline bases as

P (r) =
np∑

i=1

piB
kp

i (r), (4)

Q(r) =
nq∑

i=1

qiB
kq

i (r). (5)
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TABLE I. Calculated and observed [26] excitation energies for the
Cu states included in the 34-state (DBSR34) close-coupling expansion.
Also given are the absolute energies (in atomic units) obtained in the
structure calculation. 4s4p and 4s4p′ stands for the (4s4p)3P and
(4s4p′)1P coupling, respectively.

Theory Theory Experiment Difference
State (a.u.) (eV) (eV) (eV)

(3d104s)2S1/2 −1653.566005 0.000 0.000 0.000
(3d94s2)2D5/2 −1653.514944 1.389 1.389 0.000
(3d94s2)2D3/2 −1653.505775 1.639 1.642 −0.003
(3d104p)2P1/2 −1653.426999 3.782 3.786 −0.003
(3d104p)2P3/2 −1653.425550 3.822 3.817 0.005
(3d94s4p)4P5/2 −1653.389392 4.806 4.838 −0.032
(3d94s4p)4P3/2 −1653.384817 4.930 4.974 −0.043
(3d94s4p)4F9/2 −1653.380967 5.035 5.072 −0.037
(3d94s4p)4P1/2 −1653.380320 5.053 5.076 −0.024
(3d94s4p)4F7/2 −1653.378977 5.089 5.102 −0.013
(3d94s4p)4F5/2 −1653.376827 5.148 5.153 −0.006
(3d94s4p)4F3/2 −1653.373811 5.230 5.245 −0.015
(3d105s)2S1/2 −1653.368220 5.382 5.348 0.033
(3d94s4p)4D7/2 −1653.367368 5.405 5.395 0.010
(3d94s4p)2F5/2 −1653.366395 5.431 5.421 0.010
(3d94s4p)4D5/2 −1653.363459 5.511 5.506 0.006
(3d94s4p)4D3/2 −1653.362855 5.528 5.523 0.005
(3d94s4p)4D1/2 −1653.362743 5.531 5.569 −0.038
(3d94s4p)2F7/2 −1653.361385 5.568 5.575 −0.007
(3d94s4p)2P1/2 −1653.359587 5.617 5.681 −0.064
(3d94s4p)2P3/2 −1653.358482 5.647 5.688 −0.042
(3d94s4p)2D3/2 −1653.355733 5.722 5.725 −0.003
(3d94s4p)2D5/2 −1653.353591 5.780 5.777 0.002
(3d105p)2P3/2 −1653.340943 6.124 6.123 0.001
(3d105p)2P1/2 −1653.340752 6.129 6.123 0.007
(3d104d)2D3/2 −1653.338209 6.198 6.191 0.007
(3d104d)2D5/2 −1653.338189 6.199 6.192 0.007
(3d106s)2S1/2 −1653.324905 6.560 6.552 0.008
(3d94s4p′)2F7/2 −1653.311688 6.920 6.947 −0.027
(3d94s4p′)2P3/2 −1653.309644 6.976 6.986 −0.010
(3d94s4p′)2D5/2 −1653.308245 7.014 7.024 −0.010
(3d94s4p′)2F5/2 −1653.302722 7.164 7.206 −0.042
(3d94s4p′)2P1/2 −1653.300226 7.232 7.236 −0.004
(3d94s4p′)2D3/2 −1653.299521 7.251 7.277 −0.026

As before, the coefficients of the B-spline expansions, plus
the sets of pi and qi , were found by diagonalizing the Dirac-
Coulomb Hamiltonian.

Tables I and II illustrate the accuracy of the target descrip-
tion that was obtained in the present DBSR calculation for
both the energy levels of the states included and the oscillator
strengths for transitions between the lowest five states of Cu.
Our values are in excellent agreement with the experimental
data [26] and with the few oscillator strengths given in the
last NIST compilation by Sansonetti and Martin [27]. This
good agreement with experiment for the structure part of the
problem gives us confidence in the accuracy of our approach.

The total wave function for each partial-wave symmetry
of the collision problem was also constructed from four-
component Dirac spinors. Note that the radial functions for
the large and small components were expanded in separate
B-spline bases of different order (8 and 9, respectively). This

TABLE II. Comparison of calculated and observed oscillator
strengths for selected transitions in Cu.

Transition This work Experiment [27]

(3d104s)2S1/2 → (3d104p)2P1/2 0.207 0.219
(3d104s)2S1/2 → (3d104p)2P3/2 0.419 0.433
(3d94s2)2D5/2 → (3d104p)2P3/2 0.0057 0.0052
(3d94s2)2D3/2 → (3d104p)2P1/2 0.0038
(3d94s2)2D3/2 → (3d104p)2P3/2 0.0009

allowed us to avoid the occurrence of spurious pseudostates
[28]. We used a semiexponential grid for the B-spline knot
sequence and a relatively large number (159) of splines to
cover the inner region up to the R-matrix radius of 60a0. This
large number of splines was required to correctly describe the
finite-size nuclear model, with a Fermi potential adopted in the
present work. Partial-wave contributions up to a total angular
momentum J = 25 were included in the calculations. With
up to 158 different scattering channels in the present DBSR34

model, Hamiltonian matrices of rank as large as 50 000 were
set up in the B-spline basis and had to be diagonalized in the
internal region. In order to perform the present calculations,
we parallelized our BSR codes with MPI and employed the
SCALAPACK libraries [29].

IV. RESULTS AND DISCUSSION

Figures 3 and 4 exhibit a comparison of our predictions
from the various calculations described above with the present
experimental data in the near-threshold regime. Recall that
the measurements are confined to impact energies less than
about 5 eV. Furthermore, the experimental numbers are relative
(i.e., they can be scaled by any positive number). Hence,
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FIG. 3. (Color online) Excitation function of the (3d94s2)2D3/2

state in copper. The results from various nonrelativistic R-matrix
calculations are compared with the present experimental data. The
relative experimental data were visually normalized to the theories
shown in Fig. 4 below. See text for details.
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FIG. 4. (Color online) Excitation function of the (3d94s2)2D3/2

state in copper. The results from various semirelativistic and fully rel-
ativistic R-matrix calculations (see text for details) are compared with
the present experimental data. The latter were visually normalized to
the theories above 4 eV. See text for details.

the normalization chosen in these figures reflects one of
several possibilities. In this case, there is relatively good
agreement between experiment and essentially all theories at
the three highest energy points for which the measurement
was performed. Had one normalized to the height of individual
theoretical peaks, the experimental data would be multiplied
by factors as small as about 0.6. Hence, we estimate the
confidence of the absolute values to be within a factor of
0.5–1.1 relative to the numbers displayed in the graph.

Similarly to our recent work on the electron impact
excitation function of the (5d96s2)2D3/2 level in gold [7],
it is apparently very difficult to reproduce the measured
shape of the excitation function, in particular the cross-section
maximum. In the present case of the copper target, all
theoretical models predict the peak of the cross section at
a lower energy than the measurements that show the largest
value at an incident energy of ∼3 eV.

Interestingly, Fig. 3 indicates that the best agreement with
experiment is obtained in the nonrelativistic RM4 model.
As expected, the four-state model of Scheibner et al. [4]
produces very similar results, as does the unpublished 10-state
calculation of Scheibner and Hazi [5]. Although we do not
know all the details about these calculations, it is very
likely that the small differences between the results from
these three standard R-matrix calculations are mostly due to
small differences in the structure description, including the
adjustment procedure for the target thresholds, and a relatively
small influence of additional channel coupling in the 10-state
model. Most disturbing from a theoretical point of view,
however, is the fact that the presumably best nonrelativistic
model, namely the 20-state BSR calculation, predicts the
cross-section maximum at an even lower energy than the other
models, thereby increasing the discrepancy between theory

and experiment. This discrepancy could be reduced slightly
by shifting the threshold of the nonrelativistic 2D state to
the proper position of the 2D3/2 state, in addition to just
multiplying the nonrelativistic results by the statistical factor
of 0.4. However, the shift is only about 0.15 eV.

Moving on to Fig. 4, we see that the discrepancies are
not resolved by presumably improving the theoretical models
through accounting for relativistic effects, either at the Breit-
Pauli or even at the fully relativistic model. Starting with
the RM7-BP model, which is based on our nonrelativistic
RM4 ansatz, we see a significant move of the cross-section
maximum, again to lower energies. The strong sensitivity of
these results to the inclusion of just the spin-orbit interaction
is somewhat surprising and shows the potential danger of
calculating matrix elements of operators using wave functions
that were constructed without accounting for these effects in
the first place.

Compared to the corresponding nonrelativistic BSR20

model, the 34-state semirelativistic BSR ansatz yields essen-
tially no change in the predicted position of the cross-section
maximum just above 2.2 eV. The magnitude, however, drops
by about 20% compared to the nonrelativistic value. This
indicates that relativistic effects for this problem may indeed be
important and should be treated as accurately as possible. The
latter is done in the corresponding fully relativistic DBSR34
model, whose results are indeed noticeably different from
those obtained with the BSR34-BP approach. These differ-
ences are a combination of the differences in the description of
both the target structure and the collision problems. However,
as one would expect from a relatively light target such as
copper, the changes are at the level of a few percent, with
the largest modifications occurring near the cross-section
maximum. With this maximum being slightly further away
from threshold in the DBSR34 calculation compared to that
obtained in the BSR34-BP model, the lower height and a
slightly broader width would be expected.

Finally, we note that all theoretical models, except for
the RM4 model of Scheibner and Hazi [4] that most likely
still suffers from problems with the theoretical thresholds,
predict nearly the same value of ≈ 0.6πa2

0 at incident
energies between 4.2 and 4.8 eV, in good agreement with
the experimentally determined energy dependence. Such good
agreement away from the resonance region would be expected
for the present case and provides some assurance regarding
the overall correctness of the numerical models.

While it may be significantly more difficult to calculate
the resonance features than the background cross section,
only a severe omission of an important target-structure
or channel-coupling effect would be able to explain the
remaining differences between experiment and the DBSR34

theory regarding the position of the cross-section maximum.
Unfortunately, none of the calculations performed in the
current work provides a clear indication of how to significantly
improve the theory in order to obtain better agreement with
experiment.

Clearly, the remaining discrepancies between theory and
experiment mentioned above make it very difficult to assign
reliable absolute values to the experimental data points. On
the other hand, it is these absolute numbers that are needed
in modeling applications. Given that the experimental peak
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TABLE III. Absolute experimental values for the electron im-
pact excitation cross section of the (3d104s)2S1/2 → (3d94s2)2D3/2

transition in copper. The uncertainties given are due to statistics and
reproducibility. We estimate the absolute scale to be reliable within a
factor of 0.5–1.1. See text for details.

Energy (eV) Cross section (πa2
0 )

1.7 0.72 ± 0.17
1.8 1.05 ± 0.24
2.0 0.91 ± 0.18
2.2 1.38 ± 0.18
2.4 2.0 ± 0.5
2.6 2.6 ± 0.23
2.8 3.41 ± 0.24
3.0 4.14 ± 0.21
3.3 2.64 ± 0.16
3.5 1.97 ± 0.07
3.7 1.75 ± 0.087
3.9 1.24 ± 0.074
4.2 0.7 ± 0.06
4.5 0.61 ± 0.06
4.8 0.58 ± 0.058

height shown in Figs. 3 and 4 is above all the theoreti-
cal predictions presented there, it seems unlikely that the
actual value of the cross-section maximum is even larger
than displayed. Multiplication by a scale factor of less
than 1.0 would improve the agreement regarding the height
of the peak, but at the same time deteriorate it on the
edges of the energy regime for which the experiment was
performed. We are not confident hypothesizing whether the
resonance or the background is calculated more accurately,
or whether the experimental data are significantly more
accurate in one regime than in another. Nevertheless, we
present absolute experimental data in Table III, but with
the conservative estimate of a possible scale factor in the
range 0.5–1.1.

We finish the presentation of our results with Fig. 5, which
presents a comparison of the excitation functions for the 2D5/2

and 2D3/2 states, and the dominant partial-wave contributions,
as obtained in the fully relativistic DBSR34 model. Similar to
the case of e-Au collisions [7], there is a strong violation
of the statistical branching ratio of 3:2 in favor of exciting the
2D5/2 state, which would be obtained in a purely nonrelativistic
model after recoupling the results and ignoring the energy
splitting between the two fine-structure levels. We see that the
principal reason for the deviation from the statistical branching
ratio is the fact that the broad maxima are due to different
angular-momentum symmetries of the e-Cu collision system,
namely J = 1− for the 2D3/2 state and J = 2− for the 2D5/2

state, respectively. In a nonrelativistic picture, both symmetries
contain contributions from an incident p wave, with the f

wave also contributing to J = 2−. Most interestingly, we see
that only odd-parity symmetries, corresponding to incident and
outgoing p and f waves, contribute significantly to the cross
section. This suggests that the direct quadrupole-type 3d → 4s

one-electron transition process is much less important than the
dipole-driven exchange process, in which an incident p or f

continuum electron interacts with the active target electron
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FIG. 5. (Color online) Dominant partial-wave contributions to
the excitation functions of the 2D5/2 and 2D3/2 states, as obtained
in the DBSR34 model. The solid lines represent the sums of the
contributions, while the individual partial-wave contributions are
labeled in the legend.

in a complicated manner, ultimately leading again to a free
electron with l = 1 or l = 3.

V. SUMMARY AND CONCLUSIONS

We have presented results from a joint experimen-
tal and theoretical study of electron impact excitation of
the (3d104s)2S1/2 → (3d94s2)2D5/2,3/2 transitions in copper
atoms. The experimental results were obtained with the
laser-induced fluorescence technique, and the validity of the
Percival-Seaton hypothesis regarding the vanishing role of the
nuclear spin was explicitly verified. The calculations were
performed using nonrelativistic, semirelativistic, and fully
relativistic R-matrix (close-coupling) approaches, including
a recently developed fully relativistic and general B-spline
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R-matrix code that allows for the treatment of complex atomic
and ionic targets. In particular, relaxation effects in the one-
electron orbitals and core-valence correlation can be treated ab
initio and consistently in both the structure and the collision
calculations. While the predictions from the various theoretical
models appear to be internally consistent, in agreement with
general expectations regarding the importance of relativistic
effects for a target such as copper, a significant difference in
the observed and the calculated position of the near-threshold
maximum in the excitation function of the (3d94s2)2D3/2 state
remained. Having currently no explanation for this remaining
discrepancy, we hope that the work reported here will stimulate

future efforts, both experimentally and theoretically, on this
very challenging collision problem.
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