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Off-resonant dielectronic recombination in a collision of an electron with a heavy hydrogenlike ion
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The recombination of an electron with an (initially) hydrogenlike ion is investigated. The effect of the electron-
electron interaction is treated rigorously to the first order in the parameter 1/Z and within the screening-potential
approximation to higher orders in 1/Z, with Z being the nuclear charge number. The two-electron correction
contains the dielectronic recombination part, which contributes to the process not only under the resonance
condition for the projectile energy but also in the regions far from resonances. The mechanism of the off-resonant
dielectronic recombination is studied in detail.
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I. INTRODUCTION

One of the main processes occurring in collisions of a highly
charged ion with an electron is radiative recombination (RR),
in which the electron is captured from the continuum into a
bound state with emission of a photon. In the case when the
ion initially possesses one or several electrons, the electron
capture can proceed also via dielectronic recombination (DR),
in which the energy excess goes to the excitation of the
second electron, which then returns to the ground state via
a radiative decay. DR is a resonant process and is usually
studied under the condition that the excess energy is very
close to the excitation energy of the second electron. In this
case, DR is the dominant recombination channel, whereas RR
is responsible for a nonresonant background. Outside of the
resonance region, RR is the dominant process.

In the zero-order approximation, RR and DR are
often considered to be two independent recombination
channels, which can be calculated separately and combined
additively [1]. More accurate calculations include the effects
of quantum interference between DR and RR [2–4]. Generally
speaking, at the level of precision where effects of the
electron-electron interaction come into play, RR and DR
cannot be meaningfully separated. Outside of the resonance
region, DR is essentially a correction to RR due to the
electron-electron interaction and induces a contribution of
the same order of magnitude as other two-body effects [e.g.,
the screening of the nuclear charge by core electron(s)].

The accuracy of experimental investigations of the RR
process with heavy highly charged ions has gradually in-
creased during the past years [5–7], reaching a level at
which the electron-electron interaction effect can be clearly
identified [8]. A disagreement with the one-electron theory
observed in the state-selective study of RR into hydrogenlike
uranium [8] calls for an accurate theoretical description of the
electron-electron interaction effect.

Most of the previous calculations of the RR process into
heavy few-electron ions accounted for the electron correlation
by means of the Dirac-Fock method [9,10], disregarding
the off-resonant DR mechanism. Evidence that the omitted
contribution might be significant was reported in Refs. [11,12],
where a part of the off-resonant DR (involving photon emission
from a core electron) was studied. It was claimed that,
for many-electron systems, this mechanism can significantly

influence the RR process, yielding an order-of-magnitude
enhancement in some specific cases.

In the present investigation we perform an ab initio
calculation of the electron-electron interaction effect on RR
into a heavy hydrogenlike ion in the nonresonant region of
energies of the incoming electron. A particular emphasis is
placed on the contribution of the off-resonant DR, as this effect
has not been carefully studied before. A similar study of RR
into a heliumlike uranium was reported previously in Ref. [13].
Relativistic units (h̄ = c = 1) are used in the present paper.

II. GENERAL APPROACH

We consider RR of an electron with an (initially) hydrogen-
like ion. The initial state consists of the incident electron with
the asymptotic momentum p, the energy ε =

√
p2 + m2, and

the spin projection µs = ±1/2 and the bound (core) electron
in the state a′ with relativistic angular quantum number κa′ and
momentum projection µa′ . In the final state, there is the two-
electron bound state with angular momentum J and projection
M and the outgoing photon with momentum k, and energy
ω = |k|. The wave function of the final two-electron state is

|JM〉 = N
∑
µaµv

CJM
jaµa jvµv

|κaµa〉|κvµv〉 , (1)

where a and v stand for the core and the valence electron,
respectively; N = 1/

√
2 for the equivalent electrons and

N = 1 otherwise. The core electron state is not changed
in the process; thus, κa = κa′ . The wave function (1)
is not antisymmetrized since we choose to perform
antisymmetrization explicitly for the amplitude.

General formulas are conveniently written in the center-of-
mass frame, which practically coincides with the rest system
of the ion. The direction of the z axis of the coordinate system
is chosen to be the direction of the emitted photon.

In the following, we assume that the fine-structure levels
with different J ’s are not resolved in the experiment (as is the
case for the experiments conducted so far).

A. Zero order

To zero order, we neglect the electron-electron interaction.
The core electron does not participate in the process and the
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transition amplitude is written as

τ
(0)
µsµa′JM = N

∑
µaµv

CJM
jaµa jvµv

δµaµa′ τ
(0)
µsµv

, (2)

where τ (0)
µsµv

is the amplitude for the recombination with the
bare nucleus. It reads [14]

τ (0)
µsµv

= 〈v|α · û∗e−ik·r|p〉, (3)

where |v〉 ≡ |κvµv〉 denotes the bound state, |p〉 ≡ |pµs〉
is the Dirac continuum-state wave function with a definite
asymptotic momentum, and û is the unit polarization vector of
the emitted photon. After summation over the final states and
averaging over the initial states, the differential cross section
of the process is written as

dσ (0)

d�
= 1

2ja + 1

αωm

4β2ε2

∑
µsµa′JM

∣∣τ (0)
µsµa′JM

∣∣2

= N2 αωm

4β2ε2

∑
µsµv

∣∣τ (0)
µsµv

∣∣2
, (4)

where β =
√

1 − m2/ε2. Because of the summation over the
initial and final states, the cross section does not depend on
the polarization of the emitted photon, which can be fixed
arbitrarily. The formula (4) differs from the corresponding
expression for the RR into the bare nucleus [14] only by a
factor of N2 (=1/2 for the recombination into the ground
state and 1 otherwise).

The energy of the emitted photon in Eq. (4) is fixed by the
energy conservation condition ω = ε − εv or, more generally,
ω = ε − m + εio, where εio is the ionization energy of the atom
in the final state.

B. Electron-electron interaction

For a heavy few-electron ion, the electron-electron in-
teraction can be effectively accounted for by a perturbative
expansion in the parameter 1/Z. The first-order correction is
induced by a single virtual-photon exchange between the elec-
trons, shown diagrammatically in Fig. 1. The corresponding
correction to the differential cross section can be written as

dσ (1)

d�
= δω

dσ (0)

d�
+ 1

2ja + 1

αωm

4β2ε2

×
∑

µsµa′JM

2 Re
[
τ

(0)∗
µsµa′JMτ

(1)
µsµa′JM

]
, (5)

where τ (1) denotes the first-order correction to the amplitude
and δω is induced by the change of the energy of the emitted
photon (because of the shift of the energy of the final state due
to the presence of the second electron),

δω

dσ (0)

d�
= dσ (0)

d�

∣∣∣∣
ω=ω(0)+δω

− dσ (0)

d�

∣∣∣∣
ω=ω(0)

. (6)

We note that Eq. (5) assumes that the perturbative regime
(|τ (1)| � |τ (0)|) takes place.

Since the fine-structure sublevels of the final state are not
resolved in the experiment, the dependence on J and M can
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FIG. 1. The one-photon exchange correction to the transition
amplitude of the radiative recombination of an electron with a
hydrogenlike ion. The double line indicates an electron propagating in
the field of a nucleus. The wavy line with an arrow denotes the emitted
photon. The incoming electron is denoted as p, a is the initially bound
(core) electron, and v is the captured (valence) electron.

be eliminated already in the general formulas. To achieve this,
we write the correction to the amplitude as

τ
(1)
µsµa′JM = N

∑
µaµv

CJM
jaµa jvµv

τ (1)
µsµa′µvµa

, (7)

where τ (1)
µsµa′µvµa

does not depend on J and M . Inserting this
formula and Eq. (2) into Eq. (5) and performing summations,
we obtain

dσ (1)

d�
= δω

dσ (0)

d�
+ N2

2ja + 1

αωm

4β2ε2

∑
µsµv

2 Re
[
τ (0)∗
µsµv

τ (1)
µsµv

]
.

(8)

Here,

τ (1)
µsµv

≡
∑
µa

τ (1)
µsµaµvµa

(9)

is the amplitude of the recombination with a closed-shell atom.
So we obtain that, in the situation when the fine-structure levels
are not resolved in the experiment, formulas for the RR with a
hydrogenlike ion differ from those for the RR with a heliumlike
ion only by a prefactor of N2/(2ja + 1).

General expressions for the one-photon exchange correc-
tion to the RR of an electron with a heavy ion were derived
in Ref. [15]. (For the closed-shell ions, such a derivation was
also reported in Ref. [13]). The correction to the transition
amplitude consists of eight terms corresponding to the eight
parts of Fig. 1,

τ (1)
µsµv

=
8∑

i=1

τ (1,i). (10)

The individual contributions for each diagram are given by

τ (1,1) =
∑
µa

∑
n�=v

〈va|I (0)|na〉〈n|α · û∗e−ik·r|p〉
εv − εn

, (11)

τ (1,2) =
∑
µa

∑
n

〈v|α · û∗e−ik·r|n〉〈na|I (0)|pa〉
ε − εn(1 − i0)

, (12)

062703-2



OFF-RESONANT DIELECTRONIC RECOMBINATION IN A . . . PHYSICAL REVIEW A 81, 062703 (2010)

τ (1,3) =
∑
µa

∑
n

〈va|I (ε − εv)|pn〉〈n|α · û∗e−ik·r|a〉
εa + εv − ε − εn(1 − i0)

, (13)

τ (1,4) =
∑
µa

∑
n

〈a|α · û∗e−ik·r|n〉〈vn|I (ε − εv)|pa〉
εa − εv + ε − εn(1 − i0)

, (14)

τ (1,5) = −
∑
µa

∑
n�=v

〈av|I (εv − εa)|na〉〈n|α · û∗e−ik·r|p〉
εv − εn

− 1

2

∑
µaµv′

〈av|I ′(εv − εa)|v′a〉〈v′|α · û∗e−ik·r|p〉,

(15)

τ (1,6) = −
∑
µa

∑
n

〈v|α · û∗e−ik·r|n〉〈na|I (ε − εa)|ap〉
ε − εn(1 − i0)

,

(16)

τ (1,7) = −
∑
µa

∑
n

〈av|I (ε − εa)|pn〉〈n|α · û∗e−ik·r|a〉
εa + εv − ε − εn(1 − i0)

,

(17)

τ (1,8) = −
∑
µa

∑
n

〈a|α · û∗e−ik·r|n〉〈vn|I (εa − εv)|ap〉
εa − εv + ε − εn(1 − i0)

,

(18)

where I (
) is the operator of the electron-electron interaction,

I (
) = e2αµαν Dµν(
,x12) , (19)

and where Dµν is the photon propagator. In the Feynman
gauge, the operator I takes the form

I (
) = α

4π

1 − α1 · α2

x12
ei|
|x12 . (20)

The summations over n in Eqs. (11)–(18) extend over the
complete spectrum of the Dirac equation. The second term
on the right-hand side of Eq. (15) corresponds to the n = v

contribution excluded from the summation in the first term.
The prime on the operator I denotes the derivative with
respect to the energy argument. The state v′ is the n = v

state with the angular momentum projection µv′ . The small
imaginary addition to the intermediate-state energies in the
energy denominators fixes the position of the energy argument
of the electron propagator G(E) with respect to the branch cuts
for |E | > m.

We now turn to the physical interpretation of individual
diagrams in Fig. 1. The first two graphs represent the effect of
the screening of the nuclear charge by the core electron. The
corresponding corrections [τ (1,1) and τ (1,2)] can be regarded as
the first-order perturbations of the zero-order amplitude (3) by
the screening potential of the core electron,

Vscr(x) = α

∫ ∞

0
dy y2 1

max(x,y)

[
g2

a(y) + f 2
a (y)

]
, (21)

where ga and fa are the upper and lower radial components
of the core electron state. The screening effect can easily be
accounted for to all orders in 1/Z by evaluating the zero-order
amplitude for an electron in a combination of the nuclear and
screening potentials. Such treatment is exactly equivalent to
the frozen-core Dirac-Fock method (as the core in our case
contains only one electron).

The contribution of diagram 5 in Fig. 1 can be interpreted
to represent the electron correlation on the bound-electron
wave function (also known as the “relaxation” effect). It can
be partly included by standard many-body techniques such
as many-body perturbation theory or the multiconfiguration
Dirac-Fock method.

The contribution of diagrams 4 and 8 in Fig. 1 contain
resonant parts that become prominent when the projectile
energy approaches the region where ε ≈ εv − εa + εn > m,
where εn is a Dirac bound-state energy. When the resonance
condition is fulfilled, the core electron gets excited into a
higher-lying bound state, which corresponds to the standard
resonant DR mechanism. In that case, the electron propagator
can be replaced by a contribution of the single state responsible
for the resonance (the so-called resonance approximation),
thus greatly simplifying the problem. In the region far from
the resonance, however, the core electron gets “excited” in all
possible virtual states of the energy spectrum, so the usage of
the full Dirac propagator becomes essential in the description
of this process.

Diagrams 3, 6, and 7 in Fig. 1 correspond to other processes
with participation of the core electron, in which the full energy
spectrum of virtual states is probed. We refer to the contribution
of diagrams 3, 4, 6, 7, and 8 as the (off-resonant) DR correction.
So, in the present work, the term DR is used to refer to the
recombination with an assistance of the second electron, rather
than only to the resonant part of this process as is customary.
It should be noted that the separation of the total two-electron
effect in several parts is to a large extent artificial (e.g., the
DR correction defined in this way is not gauge invariant). Its
main justification is that the screening and correlation parts
are easily accounted for by standard methods, whereas the
DR part is not. The sum of all two-electron contributions,
however, is gauge invariant and derived rigorously within
quantum electrodynamics.

So, we represent the total RR cross section as a sum of four
terms,

σ = σ (0) + σscr + σ (1)
corr + σ

(1)
DR, (22)

where σ (0) is the zero-order cross section, σscr is the correction
induced by the screening potential Vscr included to all orders,
σ (1)

corr is the correlation correction induced by τ (1,5), and σ
(1)
DR is

the off-resonant DR contribution induced by τ (1,3), τ (1,4), τ (1,6),
τ (1,7), and τ (1,8). The screening correction is calculated with
the “correct” energy of the emitted photon and, thus, includes
the δω correction in Eq. (5). We assume that the projectile
energy is far enough from the resonance condition to ensure
that the perturbative regime is valid.

III. NUMERICAL EVALUATION

The integration over angular variables in the general
formulas of the previous section can be performed by means
of the standard Racah algebra, as illustrated in Ref. [13].
The resulting formulas for the zero-order transition amplitude
and for the first-order corrections are given in the Appendix.
Performing our calculations, we found several sign mistakes
in Ref. [13]. Namely, the contributions of Eqs. (A8) and
(A9) were accounted for with the opposite sign in that work.
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Moreover, the incorrect sign was present in the first term of
Eq. (A6) in the case of the capture into the 2p1/2 state.

The zero-order cross section σ (0) and the screening correc-
tion σscr were evaluated according to Eqs. (4) and (A2). The
radial bound and continuum wave functions were obtained by
solving the Dirac equation with an extended-nucleus Coulomb
potential and the screening potential of the core electron by
using the RADIAL package by Salvat et al. [16].

The calculation of the first-order corrections σ (1)
corr and

σ
(1)
DR was more complicated due to a larger number of radial

integrations and the summations over the complete spectrum of
the Dirac equation. In the evaluation of the τ (1,5) correction, we
employed the dual kinetically balanced B-spline basis set [17]
to represent the Dirac spectrum. In most of other cases, we used
the analytical representation of the radial Dirac-Coulomb-
Green function in terms of Whittaker functions [18]. For
simplicity, we used the point-nucleus Green function, since the
effect of the finite nuclear size turned out to be negligibly small.
In the evaluation of the τ (1,4) and τ (1,8) corrections, we used the
finite basis set when the energy argument of the Green function
was smaller than the electron rest mass (E < m), and the
exact Green function otherwise. The Dirac-Coulomb-Green
function with E > m is a complex-valued function and care
must be taken in order to choose the appropriate branch of it.
The sign of the imaginary part of the Green function is fixed
by the sign of the small imaginary addition in the energy
denominators of Eqs. (12)–(17) and discussed in detail in
Ref. [13].

A problem emerges in the numerical evaluation of the radial
integrals when they contain, apart from the Bessel function,
two continuum-state wave functions. In this case, the integrand
is a rapidly oscillating function that falls off very slowly at
large radial distances. In our case, such a situation arises
only in the evaluation of the τ (1,8) correction for projectile
energies ε > m − εa + εv . [The problem appears also for the
τ (1,2) correction if it is evaluated perturbatively but not if it is
evaluated to all orders.]

Our scheme of evaluating the radial integrals is as follows.
First, we introduce the parameter R1 that represents the
distance at which all bound-state wave functions become
negligibly small. (Typically, R1 = 80/Z a.u.) At distances
r > R1, all radial integrals with bound-state wave functions

reach their asymptotic values, so the problem reduces to the
evaluation of one-dimensional integrals of the form

∫ ∞

R1

dr r2 jl(ωr) f i(r) φj
∞(r), (23)

where jl is a spherical Bessel function, f i is a radial component
of the continuum-state Dirac wave function, and φ

j
∞ is the

irregular solution of the Dirac equation (originating from the
Green function). To evaluate these integrals, we introduce a
small regulator parameter α > 0 and multiply the integrand
by exp(−αr). The regularized integrals are cut off at large
distances by a parameter R2 ∝ 1/α and evaluated numerically
with Gauss-Legendre quadratures. The typical value of the
regulator was α = 10−3. We checked that decreasing the
regulator by a factor of 10 does not influence our numerical
results significantly.

IV. RESULTS AND DISCUSSION

The calculational results for the total cross section of the RR
of an electron with an (initially) hydrogenlike uranium are pre-
sented in Table I for the capture into the (1s)2, 1s2s, 1s2p1/2,
and 1s2p3/2 states. The zero-order cross section, σ (0), is cal-
culated with the energy of the emitted photon that includes all
known one-electron corrections to the energy of the final state;
that is, ω = ε − m − εio,H , where εio,H is the ionization energy
of the hydrogenlike ion. The correction due to the screening of
the nuclear charge by the core electron, σscr, was obtained by
reevaluating the zero-order cross section with the wave func-
tions calculated in the presence of the screening potential. The
energy of the emitted photon includes all known corrections
to the energy of the final state [19]; that is, ω = ε − m − εio,
where εio is the ionization energy of the heliumlike ion. The
correlation correction induced by τ (1,5) is denoted as σ (1)

corr,
and σ

(1)
DR is the off-resonant DR correction induced by τ (1,3),

τ (1,4), τ (1,6), τ (1,7), and τ (1,8). For the recombination into the
excited states, σ (1)

DR contains a series of the DR resonance peaks
in the region of projectile energies E = 110 − 190 MeV/

nucleon. The behavior of σ
(1)
DR in the vicinity of the peaks is

shown in Fig. 2. In the case of recombination into the ground
state, σ

(1)
DR does not have any resonances.
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FIG. 2. The contribution of dielectronic recombination σ
(1)
DR for the capture into the 1s2s, 1s2p1/2, and 1s2p3/2 states of the initially

hydrogenlike uranium as a function of the projectile energy E, in percent of the zero-order cross section σ (0). The threshold energies of the
resonant dielectronic recombination for the capture into the 1s2s, 1s2p1/2, and 1s2p3/2 states are E0 = 178.6, 178.4, and 186.7 MeV/nucleon,
respectively.
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TABLE I. Total cross section of the radiative recombination of an electron into the (1s)2, 1s2s, 1s2p1/2, and 1s2p3/2 states of the initially
hydrogenlike uranium for different values of the projectile energy E.a

E σ (0) σscr σ (1)
corr σ

(1)
DR σ (0) σscr σ (1)

corr σ
(1)
DR

(MeV/nucleon) (barn) (%) (%) (%) (barn) (%) (%) (%)

(1s)2 state 1s2s state

1 1.588×104 −0.850 0.138 −0.703 5.080×103 −1.997 −0.232 0.387
2 7.917×103 −0.851 0.140 −0.702 2.539×103 −1.981 −0.228 0.390
5 3.142×103 −0.852 0.146 −0.702 1.013×103 −1.936 −0.217 0.396
10 1.550×103 −0.854 0.156 −0.701 5.040×102 −1.874 −0.201 0.408
25 5.967×102 −0.864 0.182 −0.696 1.968×102 −1.755 −0.164 0.444
50 2.806×102 −0.888 0.217 −0.683 9.315×10 −1.673 −0.124 0.524
75 1.765×102 −0.917 0.245 −0.668 5.841×10 −1.652 −0.101 0.669
100 1.254×102 −0.949 0.268 −0.650 4.118×10 −1.655 −0.086 1.141
125 9.524×10 −0.981 0.286 −0.634 3.101×10 −1.670 −0.076 −6.124
150 7.559×10 −1.013 0.302 −0.617 2.438×10 −1.690 −0.069 1.635
175 6.188×10 −1.043 0.314 −0.601 1.977×10 −1.712 −0.065 0.443
200 5.184×10 −1.072 0.325 −0.587 1.642×10 −1.735 −0.062 −0.044
250 3.827×10 −1.125 0.341 −0.562 1.192×10 −1.778 −0.060 −0.034
300 2.968×10 −1.170 0.353 −0.542 9.102 −1.817 −0.060 −0.017
400 1.966×10 −1.242 0.369 −0.515 5.879 −1.880 −0.063 0.015
500 1.419×10 −1.292 0.378 −0.499 4.159 −1.926 −0.068 0.034
600 1.084×10 −1.327 0.383 −0.492 3.127 −1.958 −0.074 0.043
700 8.621 −1.350 0.387 −0.495 2.456 −1.980 −0.079 0.045

1s2p1/2 state 1s2p3/2 state

1 7.227×103 −2.479 −0.084 −0.045 9.951×103 −1.998 0.058 −0.014
2 3.574×103 −2.507 −0.087 −0.046 4.888×103 −2.034 0.061 −0.015
5 1.384×103 −2.589 −0.096 −0.051 1.856×103 −2.140 0.067 −0.019
10 6.568×102 −2.715 −0.111 −0.060 8.546×102 −2.299 0.076 −0.025
25 2.272×102 −3.034 −0.147 −0.090 2.737×102 −2.682 0.098 −0.049
50 9.209×10 −3.422 −0.195 −0.160 1.006×102 −3.119 0.123 −0.106
75 5.138×10 −3.695 −0.232 −0.272 5.205×10 −3.415 0.140 −0.205
100 3.304×10 −3.897 −0.261 −0.520 3.148×10 −3.630 0.152 −0.449
125 2.308×10 −4.053 −0.286 14.715 2.090×10 −3.793 0.160 11.296
150 1.705×10 −4.176 −0.307 −0.666 1.477×10 −3.922 0.166 0.127
175 1.312×10 −4.276 −0.326 −0.222 1.093×10 −4.026 0.171 0.352
200 1.040×10 −4.358 −0.342 −0.047 8.375 −4.113 0.174 0.248
250 7.006 −4.487 −0.369 0.021 5.319 −4.246 0.179 0.297
300 5.041 −4.581 −0.392 0.055 3.646 −4.343 0.181 0.306
400 2.977 −4.712 −0.427 0.071 1.995 −4.473 0.182 0.275
500 1.972 −4.796 −0.455 0.055 1.248 −4.551 0.181 0.222
600 1.410 −4.854 −0.478 0.027 0.853 −4.597 0.179 0.166
700 1.063 −4.895 −0.499 −0.004 0.620 −4.623 0.176 0.111

aσ (0) is the zero-order cross section, σscr is the screening correction, σ (1)
corr is the correction due to the electron correlation on the bound electron

state, and σ
(1)
DR is the correction due to the dielectronic recombination. All corrections are given in percent of σ (0).

Our calculation shows that the effect of the screening of
the nuclear charge generally grows for larger projectile
energies and the capture into higher excited states, approaching
the limit of the complete screening (i.e., the case of the
capture by a bare nucleus with the Z − 1 charge). The effect
of the off-resonant DR mechanism is the strongest for the
capture into the ground state and for low projectile energies.
In this case, the DR contribution is of a size similar to the
contribution of the screening effect. We conclude that, for the
capture into the ground state, the electron-electron interaction
needs to be accounted for rigorously and with inclusion of the
off-resonant DR mechanism. Results obtained by an effective
one-electron theory or by standard many-body approaches

such as the Dirac-Fock method provide only an order-of-
magnitude estimate of the two-electron effect in this case.
However, for the recombination into the excited states and the
projectile energy beyond the DR resonance threshold, the DR
correction is much smaller than the screening contribution and
can be neglected for most practical purposes. For projectile
energies below the threshold, the off-resonant DR mechanism
can be important in the vicinity of the peaks, even at relatively
large distances from the region of resonance.

In order to illustrate the dependence of the effects studied
on the nuclear charge number Z, Table II presents the
calculational results for the recombination into the (1s)2

and 1s2s states of the initially hydrogenlike tin (Z = 50).
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TABLE II. Total cross section of the radiative recombination of an electron into the (1s)2 and 1s2s states of the initially hydrogenlike tin
(Z = 50) for different values of the projectile energy E.a

E (MeV/nucleon) σ (0) (barn) σscr (%) σ (1)
corr (%) σ

(1)
DR (%) σ (0) (barn) σscr (%) σ (1)

corr (%) σ
(1)
DR (%)

(1s)2 state 1s2s state

1 5.036×103 −1.373 0.399 −0.981 1.528×103 −3.407 −0.271 0.405
2 2.492×103 −1.370 0.419 −0.982 7.598×102 −3.345 −0.244 0.399
5 9.669×102 −1.362 0.473 −0.983 2.976×102 −3.218 −0.174 0.388
10 4.603×102 −1.356 0.552 −0.984 1.425×102 −3.116 −0.090 0.386
25 1.605×102 −1.364 0.721 −0.970 4.931×10 −3.071 0.046 0.532
50 6.568×10 −1.408 0.873 −0.929 1.965×10 −3.133 0.129 0.222
75 3.684×10 −1.455 0.947 −0.887 1.078×10 −3.187 0.152 0.174
100 2.375×10 −1.494 0.985 −0.852 6.835 −3.223 0.153 0.133
125 1.661×10 −1.526 1.003 −0.813 4.718 −3.247 0.144 0.098
150 1.226×10 −1.552 1.010 −0.804 3.447 −3.265 0.131 0.069
175 9.419 −1.575 1.011 −0.796 2.626 −3.277 0.117 0.043
200 7.456 −1.593 1.009 −0.761 2.064 −3.286 0.102 0.022
250 4.996 −1.624 0.999 −0.740 1.367 −3.300 0.073 −0.011
300 3.575 −1.647 0.986 −0.677 0.970 −3.308 0.047 −0.035
400 2.088 −1.680 0.959 −0.618 0.559 −3.317 0.003 −0.063
500 1.372 −1.699 0.935 −0.601 0.364 −3.319 −0.031 −0.080
600 0.974 −1.711 0.914 −0.581 0.257 −3.316 −0.059 −0.089
700 0.732 −1.716 0.896 −0.554 0.192 −3.310 −0.083 −0.094

aNotations are the same as in Table I.
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FIG. 3. (Color online) Individual two-electron contributions to the differential cross section of RR into the ground state of the initially
hydrogenlike uranium, for two values of the projectile energy, E = 50 MeV/nucleon (left column) and 300 MeV/nucleon (right column), as a
function of the observation angle θ . The upper graphs represent the absolute contributions to the cross section in barns/sr and the lower graphs
represent the relative magnitude of the corrections, in percent of the zero-order cross section dσ (0). The dash-dotted (blue) line corresponds
to the screening part; the dotted (green) line to the correlation correction; the dashed (red) line to the DR correction; and the solid line to the
total two-electron effect.
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We observe that the relative contribution of the screening
effect is roughly proportional to 1/Z, as could be expected. It
is remarkable that the electron correlation correction, which
plays only a minor role for uranium, becomes important for
tin in the case of capture into the ground state. The relative
contribution of the off-resonant DR mechanism is slightly
larger for tin than for uranium, but, in comparison to the
screening effect, the DR correction becomes somewhat less
significant for lighter ions.

In Fig. 3 we present the results for the differential cross
section for the case of the capture into the ground state of
uranium, for two values of the projectile energy E = 50 and
300 MeV/nucleon, which are typical for the experimental
storage ring at GSI. The differential cross section is calculated
in the laboratory frame, in which the initially free electron is at
rest. We observe that the screening and the DR contributions
have different dependences on the observation angle. For the
zero angle, they are of opposite sign and significantly cancel
each other, whereas for larger angles these two effects amplify
each other.

One of the motivations of the present study was a deviation
from predictions of one-electron theory reported in the
experimental investigation of RR into a hydrogenlike uranium
at very small projectile velocities [8]. An effect of about
10% was observed in the experiment, whereas a much
smaller contribution on the level of 1–2% was expected from
theory [20].

Our ab initio calculation demonstrates that the electron-
electron interaction affects the RR cross section on the level of
about 2% for the projectile energies of several MeV/nucleon,
which agrees with previous estimates. For smaller projec-
tile energies, the cross section is well described by the
asymptotic behavior E σ (E) = const, and the relative values
of all corrections stay constant. So, our calculation cannot
explain the large two-electron effect observed in Ref. [8]. We
note, however, that the quantities actually measured in this
experiment were not the cross sections but the recombination
rates. A consistent interpretation of the experimental results
requires a careful consideration of the recombination rates
under the experimental conditions. Such a calculation in under
way and will be reported elsewhere.

V. SUMMARY

We have performed an investigation of the radiative
recombination of an electron with an (initially) hydrogen-
like ion. The electron-electron interaction was treated rig-
orously to the first order in the parameter 1/Z and within
the screening-potential approximation to the higher orders
in 1/Z. The contribution of the off-resonant dielectronic
recombination was studied in detail. It was demonstrated
that this mechanism contributes significantly to the total
effect of the electron-electron interaction in the case of
recombination into the ground state. For the recombination
into the excited states, it is significant in the vicinity of
the resonance peaks but becomes small for the projec-
tile energies beyond the resonant dielectronic-recombination
threshold.
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APPENDIX: CALCULATIONAL FORMULAS

The spherical-wave expansion of the Dirac wave function
of an incident electron with a fixed asymptotic momentum
is [14]

|pµs〉 = 4π
∑
κµ

il ei
κ C
jµ

lml
1
2 µs

Y ∗
lml

(p̂) |εκµ〉 , (A1)

where j = |κ| − 1/2, l = |κ + 1/2| − 1/2, 
κ is the phase
shift, and |εκµ〉 is the continuum Dirac wave function with
the relativistic angular quantum number κ and the angular
momentum projection µ, normalized on the energy scale. After
the integration over the angular variables (see Ref. [13] for
details), the result for the zero-order amplitude is given by

τ (0)
µs,µv

(p̂) = 4π
∑

κ

il ei
k C
jµ

lml
1
2 µs

Y ∗
lml

(p̂)
∑
JL

i−1−L
√

2L + 1

×CJM
L0 1λ (−1)j−µ CJM

jvµv j−µ PJL(ω,vε), (A2)

where the radial integrals PJL are defined as

PJL(ω,ab) =
∫ ∞

0
dx x2 jL(ωx) [gb(x) fa(x) SJL(κb, − κa)

− fb(x) ga(x) SJL(−κb,κa)]. (A3)

The angular coefficients SJL(κ1,κ2) are given, for example,
by Eqs. (C7)–(C9) of Ref. [21]. The momentum projections
µ, M , and ml in Eq. (A2) are fixed by the selection rules
of Clebsch-Gordan coefficients; λ = ±1 corresponds to the
circular polarization of the emitted photon. (The cross section
does not depend on the sign of λ.)

The one-photon exchange corrections to the transition
amplitude τ (1,i) can be expressed in a form similar to that
for the zero-order amplitude, with the radial integrals PJL

substituted by their generalizations F (1,i)
JL . The results for the

functions F (1,i)
JL are

F (1,3)
JL = α

∑
n

PJL(ω,na)

εa + εv − ε − εn

× (−1)J+ja−jn

2J + 1
RJ (ε − εv,vaεn), (A4)

F (1,4)
JL = α

∑
n

PJL(ω,an)

εa − εv + ε − εn

× (−1)J+ja−jn

2J + 1
RJ (ε − εv,vnεa), (A5)

F (1,5)
JL = α

∑
n �=v

κn=κv

PJL(ω,nε)

εv − εn

∑
L0

(−1)ja+jv+L0

2jv + 1

×RL0 (εv − εa,avna) + α

2
PJL(ω,vε)

×
∑
L0

(−1)ja+jv+L0

2jv + 1
R ′

L0
(εv − εa,avva), (A6)
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F (1,6)
JL = α

∑
n

κn=κ

PJL(ω,vn)

ε − εn

×
∑
L0

(−1)ja+j+L0

2j + 1
RL0 (ε − εa,naaε), (A7)

F (1,7)
JL = α

∑
n

PJL(ω,na)

εa + εv − ε − εn

∑
L0

(−1)ja−jn+J

×
{

jv j J

ja jn L0

}
RL0 (ε − εa,avεn), (A8)

F (1,8)
JL = α

∑
n

PJL(ω,an)

εa − εv + ε − εn

∑
L0

(−1)ja−jn+J

×
{

j jv J

ja jn L0

}
RL0 (εv − εa,vnaε), (A9)

where RL is the relativistic generalization of the Slater integral
(see Appendix C of Ref. [21]). The prime of RL in Eq. (A6)
denotes the derivative with respect to the energy argument,
R ′

L(ε,abcd) = d/(dω) RL(ω,abcd)|ω=ε.
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