
PHYSICAL REVIEW A 81, 062512 (2010)

Resonance-induced spectral tuning
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A diabatic correlation diagram technique is extended to assign effective quantum numbers and classify
sequences for extremely high excitations in a coupled two-mode model of an isomerizing system, with multiple
wells separated by a potential barrier. At low values of the stretch quantum number ns , level spacings for
sequences of bend excitations nb = 0, . . . show a pattern of a smooth dip at the barrier, characteristic of the
zero-order uncoupled system. In higher sequences ns = 3 − 5, the spectral pattern is modified with the onset of a
prominent nonlinear resonance. The level spacing “tunes” to a flattened pattern similar to a harmonic oscillator,
and the smooth dip at the barrier becomes almost vertical. This behavior is explained by the influence of periodic
orbits of the resonance on the quantum spectrum and wave functions. In the ns = 6 sequence the tuning reverts
to a pattern more similar to zero order.
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I. INTRODUCTION

In an earlier paper [1] we developed a method to assign
sequences of levels in a model for an isomerizing system, based
on diabatic correlation diagram assignments of approximate
quantum numbers. The problem of making quantum number
assignments in systems where these are only approximately
or even fuzzily defined has occupied many workers. The use
of the diabatic correlation assignments here and in Ref. [1]
follows use of similar or related techniques [2–12] to assign a
variety of spectral systems other than the isomerization model.
Here, we put the method to a more stringent test than in Ref. [1],
attempting to assign levels with an extreme degree of combined
stretch and bend excitation, coupled by a strong anharmonic
resonance overlain by widespread classical chaos. Expecting
to confront the limits of the assignment method, we meet
instead with surprising success, while encountering a striking
phenomenon that we call “resonance-induced spectral tuning.”

In Ref. [1] we considered spectra of a model system
of coupled stretch and bend, with an isomerization barrier
in the bend coordinate. We used the diabatic correlation
technique to assign effective approximate stretch and bend
quantum numbers ns,nb. We found that it is possible to assign
sequences, each with fixed stretch quantum number ns = 0–3
and bend quantum number nb = 0, . . . all the way up to the
barrier at nb = 23; it was even possible to assign further
sequences of above-barrier states. We found patterns in the
sequences of the coupled system very similar to the pattern
of the zero-order system, in particular, the pattern of a dip in
the level spacings as the barrier is approached, the quantum
correspondent of a dip to zero in the frequency.

In this paper we test prospects for spectral assignment in
a regime of extreme excitation, qualitatively different from
that handled so far in experimental spectroscopic analysis. We
investigate whether meaningful sequences persist, especially
near the barrier, when we push the previous analysis to higher
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ns = 4–6, where the classical chaos greatly increases. The
system is devised so as to have the common complication of
a prominent nonlinear resonance. This was already present in
the lower sequences in Ref. [1], but it becomes a far more
significant factor at higher values of ns .

We find that we are able to assign meaningful sequences
in this regime where we frankly expected to see the method
break down. Moreover, we find unanticipated, yet regular
alterations in the energy level patterns of the sequences. These
will turn out to be related to the strong anharmonic resonance.
One feature is a “tuning” of the sequence to a harmonic-like
pattern. (There was already a slight hint of this for ns = 3, as
briefly noted in Ref. [1].) A second notable feature is that the
smooth dropoff to a dip in the energy spacings approaching
the barrier becomes a much more abrupt plunge in the tuned
spectrum. The resonance island chain appears to “protect” the
quantum states from the influence of the approaching barrier
and, remarkably, or at least unexpectedly to us, this is reflected
in the spectrum. As noted in the final section, experimental and
computational systems are starting to become available where
one might begin to look for these phenomena.

II. ISOMERIZATION MODEL AND SPECTRAL
SEQUENCES

The system, consisting of two coupled nonidentical anhar-
monic oscillators, was devised as a model for isomerization
[1]. One degree of freedom is a bend b in an asymmetric
double-well potential, similar to the bending motion in a
system with two isomeric forms, with coordinate φ. Figure 1
shows the double-well potential. The second degree of freedom
is a Morse oscillator, similar to a stretching vibration s, with
coordinate r . The Hamiltonian is

H = p2
r

2m
+ D(1 − e−βr )2 + p2

φ

2Mr2
0

+ V (cos(φ))

+ κrsin2φ = H0s + H0b + κrsin2φ, (1)
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FIG. 1. Double-well potential V (cos(φ)) in the Hamiltonian (1).
This potential is described more fully in Ref. [1]. The regions are
denoted A (acetylene), I (isomer), and AB (above barrier).

with parts for the zero-order stretch, zero-order bend, and
coupling.

Classical and quantum calculations on this system are
described in detail in Ref. [1] with values of the parameters
in (1) adjusted to model the acetylene molecule C2H2, whose
isomerization is important in combustion processes. The
coupling induces a mixed classical phase space with regular
and chaotic regions. Several examples of the surface of section
plots are given in Ref. [1].

We will be concerned with excitations in the stretch mode
s and in the bend mode b in the large well A below the barrier.
(Levels in the isomer well I and the above-barrier region AB
in Fig. 1 were considered in Ref. [1], but are not relevant here.)
The zero-order system with coupling κ = 0 has levels assigned
with well-defined quantum numbers (ns,nb). The spectrum can
be organized into sequences with a given quantum number
ns in the high-frequency mode, and excitations in the low-
frequency mode nb = 0,1, . . . ,23, with nb = 23 the maximum
value of nb in the A well below the barrier.

Figure 2(a) shows the spectral pattern of the sequences of
the uncoupled system. At the potential barrier, Fig. 2(a) shows
a smooth dropoff to a dip in the spacings of adjacent levels.
Such a dip or minimum is well known to be characteristic of
a potential barrier [13] or of a separatrix [14] in the classical
phase space. In fact, this spectral dip at a separatrix has been
observed in analysis of experimental spectra [15,16].

The patterns of the uncoupled system in Fig. 2(a) are
based on the good zero-order quantum numbers ns,nb. When
the coupling κ is nonzero, these quantum numbers cease to
be exactly valid. Nonetheless, it is often useful to assign
effective quantum numbers. In Ref. [1], we showed how a
diabatic correlation diagram technique can be used to assign
approximate quantum numbers to spectra of the coupled
system (1), even though it is nonintegrable, with a mixture
of regular and chaotic regions. We were able to assign levels
of the coupled system in terms of effective stretch and
bend quantum numbers, formally analogous to the rigorous
quantum numbers ns,nb of the zero-order system. Using these
assignments, we classified the levels into bend sequences
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FIG. 2. Patterns of energy level spacings between eigenstates.
(a) Uncoupled stretch-bend system; (b–h) coupled system sequences
with ns = 0–6.

(ns,0),(ns,1), . . . . We classified sequences for ns = 0–3 in
Ref. [1]; in this paper, we extend the assignments up to ns = 6,
a very high degree of stretch excitation with energy well above
the isomerization barrier. The assignments naturally become
increasingly difficult as the stretch quantum number increases.
In Ref. [1], we were able to assign above-barrier states for ns =
0–3. Here, we only attempt to assign below-barrier acetylene
states for higher ns .

Figures 2(b)–2(g) shows the level spacing patterns for the
sequences ns = 0, . . . ,6 of the coupled system. The ns = 0
sequence is very similar to Fig. 2(a) for the uncoupled
system, with a smooth dropoff to a dip at the barrier. This
is readily understood since nearly all of the states in the
ns = 0 sequence are associated with Einstein-Brillouin-Keller
(EBK) tori having the character of the zero-order system. The
sequence patterns are very similar for ns = 1,2. There are some
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FIG. 3. Energy levels of the sequences.

“bumps” in a few of the spacings. These are attributable to a
4 : 1 nonlinear resonance coupling, as discussed in Ref. [1].
The system has a pronounced 4 : 1 resonance due to the
frequency ratio of the anharmonic stretch and bend.

Starting with ns = 3, there begins a noticeable flattening in
the level spacings in the middle of the sequence. The flattened
region grows in extent in the ns = 4 sequence. Furthermore,
the smooth dropoff to the barrier becomes more abrupt. For
ns = 5, the flattening is almost complete, except for resonance
“bumps,” and continues almost up to the barrier. The sequence
now ends in a very abrupt plunge to the barrier. For ns = 6, the
pattern reverts to one more like the uncoupled system, though
individual levels are strongly perturbed.

Another way to present the sequences is shown in Fig. 3,
where instead of the level spacings of Fig. 2, we plot the
energy levels themselves as a function of the effective bend
quantum number nb. The grouping into regular sequences is
evident. However, some slight irregularities are visible for high
nb values of the ns = 4,5,6 sequences.

The similarities and differences among the sequences are
brought out more vividly in Fig. 4, in which a quantity nb ×
675 cm−1 is subtracted from each level. The resulting “leveled”
sequences are very similar for ns = 0–3, but for ns = 4–6, they
display marked irregularities, in particular, some “fractured”
regions at high nb.

We will explain these features of the spectrum in relation
to the 4 : 1 nonlinear resonance between the coupled stretch
and bend. In our account, the resonance tunes the spectrum,
producing both the flattening and the alteration of the dip
pattern near the barrier.

III. 4 : 1 NONLINEAR RESONANCE

The system has an approximate frequency ratio ω1 : ω2 ≈
4 : 1. As the coupling κ increases from zero, the system
acquires a strong 4 : 1 nonlinear resonance with an island
chain, a ring of alternating stable and unstable periodic orbits in
the surface of section. The eruption of the island chain is seen

nb
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FIG. 4. “Leveled” sequences with an amount nb × 675 cm−1

subtracted from each level.

in Fig. 5, just after its occurrence at a little under 14000 cm−1.
The chain persists for higher energies, migrating through the
surface of section. We will relate the migration of the chain to
the phenomenology of the changing spectral patterns, focusing
on ns = 0,3,5, and 6.

The island chain does not visibly affect the overall spectral
pattern of the ns = 0,1,2 sequences. Consider the ns = 0
sequence in Fig. 2(b). Even though the higher levels of this
sequence are at energies above the emergence of the islands,
and the island chain is very prominent, the sequence is very
much like the zero-order sequence of Fig. 2(a). The reason is
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FIG. 5. Eruption of the island 4 : 1 resonance island chain in the
surface of section at total energy (including zero-point energy) of
E = 14367 cm−1.
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that the levels with ns = 0 and high values of nb correspond
to the region of phase space near the barrier. This is far from
the island chain, which is close to the middle of the surface
of section.

The first indication that the resonance chain can shape
the overall spectral pattern is seen in Fig. 2(e) for the level
spacings of the ns = 3 sequence, where the sequence acquires
the pronounced flattened region in the middle. In terms of
classical phase space structure, the pattern is associated with
the following events. The ns = 3 sequence starts out with a
surface of section with no resonance zone, and has zero-order
type tori. Eventually the resonance erupts in the middle of
the surface of section. As energy increases, the island chain
migrates outward from the center toward the barrier. Several
surfaces of section showing the migration of the resonance
islands can be found in Ref. [1]. The effect on the sequence
pattern begins to be manifest when the migrating island
chain starts to “catch” and destroy EBK-quantizing tori of a
sequence. In the ns = 3 sequence, the first 13 levels correspond
to invariant EBK tori, but the torus for level 14 is destroyed
and supplanted by the migrating island chain. Higher levels of
the sequence are similarly trapped or “hung up” on the island
chain as it migrates with increasing energy toward the barrier.
Correspondingly, these levels are found to have the flattened
pattern in the level spacing pattern in Fig. 2(e). Finally, for the
highest values of nb in the ns = 3 sequence, the levels “break
out” of the island chain. The spectrum once again resembles
the zero-order system, with a dip in the level spacing as the
sequence approaches the barrier.

Similar behavior occurs in the higher ns sequences, with the
portion of the sequence in which the resonance dominates the
states peaking for ns = 5, with almost a complete flattening
of the level spacing pattern and a very abrupt plunge at the
barrier. The island chain begins to lose its hold on the ns = 6
sequence, with a reversion to a pattern more like zero order.

Finally, the resonance is connected to the fractures in
sequences ns = 4–6 seen especially in Fig. 4. The fractures
are associated with the very large bumps seen in the level
spacings at high nb for ns = 4–6 in Fig. 2; in turn, the bumps
are associated with the resonance, as discussed at length in
Ref. [1]. We will have no more to say in this paper about the
fractures except to note that none of the other observations
and conclusions of this paper are at all inconsistent with the
presence of the fractures.

IV. SPECTRAL TUNING BY RESONANT
PERIODIC ORBITS

We have seen that the spectral flattening and the steepening
of the dip in higher ns sequences is associated with states
getting trapped or hung up on the resonance island chain.
What physical effects of the resonance on the quantum states
cause these changes in the spectral pattern? It is not possible
to answer this with exactitude. The states in question are often
very disordered due to chaos, so they do not correspond to
classical structures for which a well-established quantization
procedure is known (e.g., EBK quantization of invariant tori).
Nonetheless, it is possible to give qualitative explanations
for the observed patterns. (There is some evidence [17–19]
that in chaotic systems there can be an analog of EBK

quantization of a pseudoaction for the chaotic remnants of
tori known as cantori. This has even been extended recently to
computation of a semiclassical wave function for a chaotic
system [19]. However, despite these and other advances
[20–26] in semiclassical treatment of chaotic systems, there
is as yet no generally used semiclassical theory specifically
for eigenstates in the chaotic regime.)

Many of the states in question have quantum wave functions
that resemble either the stable or unstable 4 : 1 periodic orbit,
as seen in Ref. [1] for several states from the ns = 3–5
sequences. Although we would not claim that “scarring” [21]
is responsible for the detailed patterns we see, a look at the
4 : 1 periodic orbits in coordinate space is revealing. We will
view these in two ways that shed light on the flattening of the
sequences, and the abrupt steepening of the dip at the barrier.

First, we seek a quantum condition on the 4 : 1 periodic
orbits (POs) that will give insight into the energy level spacing
pattern of the quantum states of the actual system. For this
purpose, we use the Bohr-Sommerfeld condition, as explicated
in a study of the relation between Bohr-Sommerfeld and
Einstein-Brillouin-Keller quantization [27]:

I = 1

2π

∫ T

0
(p1ẋ1 + p2ẋ2)dτ = h̄γ (N + 1/2). (2)

The POs that we seek are orbits of the 4 : 1 resonance
that satisfy (2) with quantizing Bohr-Sommerfeld action I =
(N + 1/2). Figure 6 shows a series of these POs. As is to be
expected, the POs are far different in character from stretch
or bend POs. They are also much different than orbits on
zero-order type tori of the stretch-bend system.

When the energy level spacings of these orbits are plotted
the result is Fig. 7. It is seen that there is a curved “step”
leading into a long flattened region. This is similar, at the
corresponding energies, to the onset and continuation of the
flattened regions in Figs. 2(e)–2(g) of the quantum state
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FIG. 6. Trajectories of unstable 4 : 1 orbits satisfying Bohr-
Sommerfeld quantization conditions.
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FIG. 7. (Color online) Energy level spacing pattern for the Bohr-
Sommerfeld 4 : 1 POs. Circles are stable orbits; triangles are unstable
orbits.

sequences for ns = 3–6. This suggests that states that are
hung up on the island chain have a flattened spectral pattern
characteristic of the excitations of the quantizing 4 : 1 POs.

A look at some wave functions is revealing. In Figs. 8(a)–
8(d) four examples show how the PO structure of the resonance
overtakes the wave functions with increasing stretch excitation.
Figure 8(a) shows the wave function of the coupled system
assigned as (ns,nb) = (0,19). This looks like a pure bend
excitation, though even here there is some effect of the
coupling, as seen in the curvilinear character of the probability
distribution. Much different is the state (4,10), which looks
like the stable resonant PO. This state was shown in Fig. 11 of
Ref. [1], along with a state resembling the unstable PO. The
interesting point now is that this kind of behavior continues
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FIG. 8. (a)–(d) Wave functions of the coupled system assigned,
respectively, by the diabatic correlation diagram technique as
(ns,nb) = (0,19),(4,10) (with an overlay of the stable periodic orbit),
(5,19), and (6,19).
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FIG. 9. (a) Stable POs and (b) unstable POs with energies
corresponding to energies of the ns = 5 levels with nb = 5,7 . . . ,23.
Vertical line in each figure is pure bend trajectory with maximal range
(i.e., to barrier) of zero-order uncoupled system.

for higher quantum numbers, as seen in Figs. 8(c) and 8(d) for
the states assigned (5, 19) and (6, 19).

A second view of POs is also revealing. Instead of the
plot of Fig. 6 of POs of orbits satisfying Bohr-Sommerfeld
quantization conditions, in Fig. 9 we plot 4 : 1 resonant POs at
the energies of a series of actual states of the ns = 5 sequence.
A notable characteristic of the POs in Fig. 9 is that the orbits
at the energy levels approaching (ns,nb) = (5,23) avoid the
barrier region.

These are the levels whose assignments would seem to
indicate that there would be a smooth dip as the barrier energy
is approached. The barrier avoidance accounts in a qualitative
way for the abrupt steepening of the dip that is seen instead.
Since states associated with the resonance and its POs do
not “feel” the presence of the approaching barrier, their level
spacing does not drop off smoothly to a dip. Instead, the level
spacing remains flat until it plunges abruptly when the levels
reach the energy of the barrier. This is seen most clearly
for ns = 5 in Fig. 2. On the other hand, for the adjacent
sequences ns = 4 and 6, the levels at high nb are not hung
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up on the resonance, so they have an energy spacing pattern
more characteristic of the barrier.

Close scrutiny of Fig. 9 then raises the following question.
The zero-order system has states up to nb = 23 quanta in the
bend, as seen in Fig. 2(a). This is repeated in the low-lying
sequences of the coupled system [e.g., ns = 0, Fig. 2(b)]. In
higher sequences, we have claimed that the nominal bend
excitations are actually more like the 4 : 1 resonant POs.
Figure 9 shows that the PO at the energy of the (ns = 5,ns =
23) quantum state is far removed in space from the barrier.
There is clearly room for higher energy POs before the barrier
is reached. However, the ns = 5 sequence indeed ends at
nb = 23. The explanation is that higher energy states have
strong admixtures of above-barrier character, which is to be
expected on energetic grounds. Hence, what might be expected
to be higher states in the sequence are instead classified more
properly as above-barrier; some cases are already seen in
Ref. [1].

V. CONCLUSIONS

This paper has extended the sequence assignments of
the isomerization model of Ref. [1], based on diabatic
correlation diagrams, to a degree of stretch-bend excitation
(ns,nb) ∼ (6,23) that would represent an extreme if realized
in experimental spectroscopy of a relevant physical system.
The assignment scheme remains useful at the highest levels
of excitation, all the way up to the isomerization barrier.
Interesting patterns of flattening of the level spacings and
a marked steepening of the dip at the barrier are revealed
by the assignment scheme. These patterns are accounted for
in terms of a strong 4 : 1 nonlinear resonance which “tunes”
the spectral sequences. A qualitative explanation comes from
the observation that resonant periodic orbits that obey Bohr-
Sommerfeld quantization conditions exhibit behavior similar
to the quantum states of the sequences.

Without a suitable classification scheme, it is very unlikely
that these patterns would be detected. It is noteworthy
that the patterns were found through use of the diabatic
correlation assignment of sequences. No use was made of
the more standard method of analysis of resonant systems,
with an effective resonance Hamiltonian, assigning “polyads”
of fixed total quantum number [28]. It seems unlikely that
the standard assignments would be useful all the way up
to the barrier; in fact, this was a principal motivation for
developing the sequence approach. The relationship of the
sequence assignments to the standard analysis is nonetheless
an interesting question. A generalization that merges these
approaches could be very illuminating.

In this connection it is worth noting that something like the
“protection” of the wave function from the barrier has been
seen in systems described by a simple resonance Hamiltonian
(e.g., in studies [16,34] of molecules such as HCP). See the
remarks in the review article Ref. [34] concerning their Fig. 7

on how the HCP bend mode “B” is displaced away from a
2 : 1 resonance, and mode “SN” associated with a saddle
node bifurcation becomes more bendlike along the reaction
coordinate. This was seen in further detail in Ref. [16]. This
“protection” may be a common feature of systems with a
nonlinear resonance where a putative “reaction mode” like the
bend is approaching a barrier. However, we did not anticipate
from experience with Ref. [16] that we would see the flattened
spectra for stretch-bend combination states with high ns and
nb that we see here in the present rather chaotic system, which
is only somewhat “scarred” by the 4 : 1 resonance. We can
speculate that such states correspond to something like the
highly marbled interior states such as 4 . . . 6 on the polyad
phase sphere in Fig. 7 of Ref. [16]. Again, the relationship of
the correlation diagram assignments to phase space analyses
of integrable single resonance Hamiltonians is an interesting
topic which merits exploration.

The findings here for a model system are presented in the
hope they will motivate the measurement of extreme excita-
tion states and the search for resonance tuning phenomena.
Especially interesting is the behavior of sequences as they
approach the potential barrier, with the steepening of the dip
at the barrier, apparently due to avoidance of the barrier by
resonant periodic trajectories. In the model investigated here,
the bend degree of freedom corresponds closely to the reaction
coordinate in the isomerization, with the potential barrier as
transition state naively conceived. If observed in real systems,
resonant tuning of the dynamics near the barrier could be
an interesting phenomenon in relation to new phase space
concepts of the transition state [29–32].

Of perhaps greater immediate interest, it may be profitable
to look for the tuning phenomenon in experimental and
computational systems where an isomerization barrier is being
approached, in particular, the phenomenon of the resonance
“protecting” the quantum states from the barrier, as seen in
the present model system. Experimental and computational
systems with sufficient data are becoming available (e.g.,
spectra [33] of the complex HO2 formed in the important
combustion reaction of H + O2).

It is well established that a smooth dropoff to a dip in the
level spacings is characteristic of the approach to a phase space
separatrix [14–16]. The search for the resonance-induced
change in the spectral pattern at a barrier is therefore not
limited to a potential energy barrier, but rather is likely to be
a general feature of a “dynamical barrier” constituted by a
separatrix.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy
Basic Energy Sciences program under Contract No. DE-
FG02-05ER15634. S.Y. was also supported by the educa-
tional committee of JiangSu province of China under Project
No. 2004102JSJB147.

[1] S. Yang, V. Tyng, and M. E. Kellman, J. Phys. Chem. A 107,
8345 (2003).

[2] J. P. Rose and M. E. Kellman, J. Chem. Phys. 105, 7348
(1996).

[3] J. P. Rose and M. E. Kellman, J. Phys. Chem. A 104, 10471
(2000).

[4] M. E. Kellman, J. P. Rose, and V. Tyng, Eur. Phys. J. D 14, 225
(2001).

062512-6

http://dx.doi.org/10.1021/jp027763o
http://dx.doi.org/10.1021/jp027763o
http://dx.doi.org/10.1063/1.472593
http://dx.doi.org/10.1063/1.472593
http://dx.doi.org/10.1021/jp001424i
http://dx.doi.org/10.1021/jp001424i
http://dx.doi.org/10.1007/s100530170220
http://dx.doi.org/10.1007/s100530170220


RESONANCE-INDUCED SPECTRAL TUNING PHYSICAL REVIEW A 81, 062512 (2010)

[5] M. E. Kellman, M. W. Dow, and Vivian Tyng, J. Chem. Phys.
118, 9519 (2003).

[6] G. Wu, Chem. Phys. Lett. 292, 369 (1998).
[7] S. Keshavamurthy and G. S. Ezra, J. Chem. Phys. 107, 156

(1997).
[8] S. Keshavamurthy, J. Phys. Chem. A 105, 2668 (2001).
[9] A. Semparithi, V. Charulatha, and S. Keshavamurthy, J. Chem.

Phys. 118, 1146 (2003).
[10] F. J. Arranz, F. Borondo, and R. M. Benito, Phys. Rev. Lett. 80,

944 (1998).
[11] F. J. Arranz, R. M. Benito, and F. Borondo, J. Chem. Phys. 123,

044301 (2005).
[12] A. Diaz and C. Jung, Mol. Phys. 108, 43 (2010).
[13] R. N. Dixon, Trans. Faraday Soc. 60, 1363 (1964).
[14] J. Svitak, Z. Li, J. Rose, and M. E. Kellman, J. Chem. Phys. 102,

4340 (1995).
[15] H. Ishikawa, C. Nagao, N. Mikami, and R. W. Field, J. Chem.

Phys. 109, 492 (1998).
[16] M. Joyeux, D. Sugny, V. Tyng, M. E. Kellman, H. Ishikawa,

R. W. Field, C. Beck, and R. Schinke, J. Chem. Phys. 112, 4162
(2000).

[17] M. J. Davis, J. Phys. Chem. 92, 3124 (1988).
[18] M. J. Davis, J. Chem. Phys. 107, 106 (1997).
[19] S. Yang and M. E. Kellman, Chem. Phys. 322, 30 (2006).

[20] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics,
1st ed. (Springer-Verlag, New York, 1990).

[21] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
[22] S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 70, 1405

(1993).
[23] M. A. Sepulveda and E. J. Heller, J. Chem. Phys. 101, 8004

(1994).
[24] K. G. Kay, Phys. Rev. A 63, 042110 (2001).
[25] D. Zor and K. G. Kay, Phys. Rev. Lett. 76, 1990 (1996).
[26] M. Madhusoodanan and K. G. Kay, J. Chem. Phys. 109, 2644

(1998).
[27] S. Yang and M. E. Kellman, Phys. Rev. A 66, 052113 (2002).
[28] M. E. Kellman, Annu. Rev. Phys. Chem. 46, 395 (1995).
[29] C. Jaffe, S. Kawai, J. Palacian, and T. Uzer, Adv. Chem. Phys.

A 130, 171 (2005).
[30] T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys. A 130, 143

(2005).
[31] H. Waalkens, A. Burbanks, and S. Wiggins, J. Chem. Phys. 121,

6207 (2004).
[32] L. Wiesenfeld, Adv. Chem. Phys. A 130, 217 (2005).
[33] C. Xu, B. Jiang, D. Xie, S. C. Farantos, S. Y. Lin, and Hua Guo,

J. Phys. Chem. A 111, 10353 (2007).
[34] M. Joyeux, S. C. Farantos, and R. Schinke, J. Phys. Chem. A

106, 5407 (2002).

062512-7

http://dx.doi.org/10.1063/1.1569908
http://dx.doi.org/10.1063/1.1569908
http://dx.doi.org/10.1016/S0009-2614(98)00739-8
http://dx.doi.org/10.1063/1.474361
http://dx.doi.org/10.1063/1.474361
http://dx.doi.org/10.1021/jp003394p
http://dx.doi.org/10.1063/1.1527922
http://dx.doi.org/10.1063/1.1527922
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1063/1.1937368
http://dx.doi.org/10.1063/1.1937368
http://dx.doi.org/10.1080/00268970903496645
http://dx.doi.org/10.1039/tf9646001363
http://dx.doi.org/10.1063/1.469483
http://dx.doi.org/10.1063/1.469483
http://dx.doi.org/10.1063/1.476586
http://dx.doi.org/10.1063/1.476586
http://dx.doi.org/10.1063/1.481001
http://dx.doi.org/10.1063/1.481001
http://dx.doi.org/10.1021/j100322a024
http://dx.doi.org/10.1063/1.475136
http://dx.doi.org/10.1016/j.chemphys.2005.08.011
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.70.1405
http://dx.doi.org/10.1103/PhysRevLett.70.1405
http://dx.doi.org/10.1063/1.468227
http://dx.doi.org/10.1063/1.468227
http://dx.doi.org/10.1103/PhysRevA.63.042110
http://dx.doi.org/10.1103/PhysRevLett.76.1990
http://dx.doi.org/10.1063/1.476875
http://dx.doi.org/10.1063/1.476875
http://dx.doi.org/10.1103/PhysRevA.66.052113
http://dx.doi.org/10.1146/annurev.pc.46.100195.002143
http://dx.doi.org/10.1002/0471712531.ch3
http://dx.doi.org/10.1002/0471712531.ch3
http://dx.doi.org/10.1002/0471712531.ch2
http://dx.doi.org/10.1002/0471712531.ch2
http://dx.doi.org/10.1063/1.1789891
http://dx.doi.org/10.1063/1.1789891
http://dx.doi.org/10.1002/0471712531.ch4
http://dx.doi.org/10.1021/jp072319c
http://dx.doi.org/10.1021/jp0131065
http://dx.doi.org/10.1021/jp0131065

