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Nonadditivity and anisotropy of the polarizability of clusters:
Relativistic finite-field calculations for the Xe dimer
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We present all-electron relativistic studies of the polarizability properties of the Xe dimer. The studies rely
on finite-field calculations of the dimer energies obtained by ab initio methods including electron correlations.
An extended set of basis functions is designed in order to ensure a high accuracy of the calculations. Particular
attention is paid to the analysis of the nonadditivity and anisotropy of the polarizability of the dimer. It is found
that the polarizability of the dimer relative to that of the atoms can be accurately described analytically, at least
for internuclear distances around and larger than the equilibrium distance of the dimer.
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I. INTRODUCTION

The electric-dipole polarizability is an important property
of atoms, molecules, and clusters. This is reflected by numer-
ous theoretical and experimental studies; see, for example, the
comprehensive book by Bonin and Kresin [1] and references
therein. Manifestations of polarization properties include, for
example, the Stark effect, dielectric constants, and refraction
of radiation, as well as the stability of van der Waals systems.
A great variety of these last systems remain in the focus
of extensive research because of the challenge with respect
to their accurate theoretical descriptions as well as in their
experimental probes. Particularly important are clusters of the
rare-gas atoms where, owing to the closed-shell electronic
structure, the polarizability is a fundamental property related
to the bonding. In addition, polarizability of these clusters
plays an important role in electron attachment to the clusters.
It has been theoretically shown (see, e.g., [2] and the references
therein) that the extra electron can be attached to form stable
anions if the number of cluster atoms exceeds some critical
value found to be 7, 14, and 46 for Xe, Kr, and Ar clusters;
these values reflect a reciprocal relationship to the atomic
polarizabilities of 27.29 for Xe, 16.77 for Kr, and 11.08 for
Ar. The above values of the polarizabilities, in atomic units,
are the experimental values based on the measured dielectric
constants of Xe by Miller and Benderson [3] and of Ar and Kr
by Orcutt and Cole [4].

Our special interest in the polarizability of rare-gas clusters
was spurred by the studies of magnetically induced anions,
which evolved into an appealing area of research over the
last few years visible in a series of theoretical works (see for
example [5–8]). Such anions are formed in the presence of
a magnetic field and have no analogs in the field-free space.
In particular, species known to not form stable anions can
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even exhibit a few or many excited anionic states on top of
the ground state when exposed to a magnetic field. Striking
examples for this behavior are the rare-gas atoms themselves
and their clusters with a number of atoms fewer than the critical
values mentioned above. Their excited magnetically induced
states are formed by attachment of the extra electron in a
magnetically stabilized extended orbital, where interaction of
the electron with the underlying neutral core happens by pure
polarization attraction,

Vpol(r) = −αµνnµnν/(2r4). (1)

In this expression, αµν is the polarizability tensor of the
neutral counterpart, r denotes the location of the electron,
r = |r|, nµ and nν are the components of the unit vector
r/r , and the Einstein summation convention is applied. The
corresponding binding energies were explicitly evaluated in
[5] for the isotropic polarizabilities αµν = αδµν , and the
procedure can be equally well applied to systems with
anisotropic polarizabilities. An accurate knowledge of the
polarizability is therefore of great relevance for getting access
to magnetically bound anions and requires detailed electronic
structure calculations.

Early studies already revealed that the polarizabilities of
bound complexes deviate from the sum of individual polariz-
abilities of the constituent parts, and are generally anisotropic
even for the case of individual isotropic polarizabilities. The
effects of the nonadditivity and anisotropy are a consequence
of interactions between the parts and symmetry lowering in
the complexes. A simple meaningful approximation to de-
scribe these effects is a model of the dipole-induced dipole
(DID) interactions between the point-polarizable entities. This
model was introduced by Silberstein [9] and further utilized
by Applequist et al. [10]. It yields analytical estimates for the
polarizabilities of complexes that are small in size or possess a
high symmetry. In particular, for polyhedral clusters of cubic
and icosahedral symmetry, closed-form analytical expressions
for the polarizability tensor were derived [11].

An extension of the DID model was introduced in [12] by
representation of the interacting atoms by Drude dispersion
oscillators. This approach was applied to simulate the clusters
comprising 7–26 atoms; in particular, the minimum-energy
configurations were determined for the pentagonal grow
sequence, and the principal values of the polarizability tensor
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were computed for these configurations with 7, 13, 19, and
26 atoms. Both nonadditivity and anisotropy of the cluster
polarizabilities were found to become more pronounced with
increase in the value of the isotropic atomic polarizability.
It was also observed that the α principal values exhibit larger
differences for more anisotropic clusters. For highly symmetric
cases such as the icosahedral structure made of 12 atoms in
the shell and one at the origin, all three principal values are
equal.

Ab initio determinations of polarizabilities are based on
electronic structure calculations. The most direct and widely
used approach is to compute the energy E of the system
in a weak homogeneous external electric field F and make
use of the well-known energy expansion [13] in powers of
the field components. For systems with no net charge and
permanent dipole moment, the leading field-dependent term of
the expansion is determined by the static dipole polarizability,

E = E0 − (1/2)αµνFµFν, (2)

where E0 is the energy at zero electric field. The polarizability
tensor thus can be computed by numerical differentiation
of the energy with respect to the field components or by
construction of a polynomial fit to the energy dependence
on the field components. Inclusion of higher-order polynomial
powers in the latter fit generally improves the accuracy of the
polarizability values as well as allowing one to evaluate the
related hyperpolarizabilities of the system. The corresponding
calculations are of the finite-field type, where different theo-
retical approaches to compute the energy have been applied.
In the standard way, the self-consistent-field (SCF) procedure
is used first in order to obtain an initial approximation for
the wave function and is followed by different methods to
account for electron correlation. Among the latter methods
the second-order many-body perturbation (MBPT2) method
is quite inexpensive with respect to computational resources.
Highly accurate but considerably more expensive are the
coupled-cluster methods with single and double excitations
(CCSD) and with extension to perturbational triples correc-
tions [CCSD(T)].

Our studies are focused on Xe clusters, which are promising
candidates to form the magnetically induced anions mentioned
above. Since the Xe atom possesses the largest polarizability
among the rare-gas atoms, some small Xe clusters can already
be expected to support magnetically induced anionic states
with experimentally detectable binding energies. In this work
we study the Xe dimer.

According to symmetry, the dimer polarizability has two
principal values α⊥ and α‖, and in the coordinate system with
the interatomic axis being the z axis, the nonzero components
of the polarizability tensor are αxx = αyy = α⊥ and αzz = α‖.
In the DID model, these principal values are given by the
simple formulas

α⊥
2α

=
(

1 + α

R3

)−1

,
α‖
2α

=
(

1 − 2α

R3

)−1

, (3)

where α is the (isotropic) atomic polarizability, and R is
the interatomic distance. Quantum mechanical calculations
of the dimer polarizability have already been undertaken by
different research groups. To be mentioned are the finite-

field calculations by Dacre [14] using SCF energies and by
Maroulis et al. [15] using MBPT2 energies. These studies
employ atomic basis sets optimized for a maximum agreement
with experimental values for the atomic xenon polarizability.
Dacre [14] used the reference value 27.106 of the atomic
Xe polarizability according to [16] and obtained an SCF
polarizability that represents 94% of this value. Maroulis
et al. [15] referred to more recent experimental values 27.12
and 27.16 reported in [17] and [18], respectively, whereas
their MBPT2 calculations yielded a Xe polarizability of 27.71
significantly exceeding these values. In [14], computed pair Xe
polarizabilities are compared to the results of the DID model.
In [15], theoretical results are compared to recent experimental
measurements of the anisotropy �α = α‖ − α⊥ [19]. Both
studies [14,15] paid special attention to computation of the
interaction polarizability with high accuracy. This interaction
property is defined as the dimer polarizability minus the
sum of the individual atomic polarizabilities. The well-known
counterpoise correction method [20] was employed in order
to eliminate basis set superposition errors (BSSE) when
computing the anisotropy.

The studies cited here treated the Xe dimer in an essen-
tially nonrelativistic manner. Relativistic effects, however, are
already pronounced for the Xe atom and need to be taken into
account properly. Their impact on the Xe polarizability was
demonstrated by Nicklass et al. [21] employing scalar relativis-
tic pseudopotentials together with the CCSD(T) method for
obtaining the perturbed energies. These calculations yielded
an atomic polarizability value of 27.685, which was compared
with the experimental values of 27.16 and 27.815 reported
in [22] and [23], respectively. For the Xe dimer and larger Xe
clusters, to the best of our knowledge, no accurate relativistic
polarizability calculations have yet been performed. Evidence
for the importance of a relativistic treatment for the dimer
is supported by calculations based on the model potential by
Andzelm et al. [24] showing, in particular, that relativistic
effects lower the SCF energies quite substantially at distances
close to the van der Waals minimum.

In the present paper we describe all-electron ab initio
studies of the polarizability of the Xe dimer. Relativistic effects
are taken into account by the Douglas-Kroll method [25,26],
and the finite-field technique is employed for the determination
of the polarizability. Becaue of the closed-shell character of the
constituent cluster units, spin-orbit effects do not have a large
effect on the total energy of the system and are hereby ignored.
Otherwise, a four-component calculation would have been the
method of choice but is much more expensive computationally.
The Hartree-Fock and correlated calculations are done with the
MOLCAS package [27]. In order to achieve a balance between
accuracy and acceptable computational costs of the most
reliable coupled-cluster studies, we optimized an atomic basis
set comprising 104 Gaussian-type primitives. The relativistic
benchmark polarizability calculations employing this basis set
are compared to previously obtained theoretical results. In the
practical realization of the finite-field approach, we compute
the ground-state dimer energies for zero electric field and,
with the field being applied along and perpendicular to the
dimer axis, for a few values of the field strength. The latter
values, in most cases, were selected to be equal, in atomic
units, to the square roots of 3 × 10−5, 5 × 10−5, 7 × 10−5, and
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9 × 10−5. The dependence of the energies on the field strength
squared was then approximated by second-order polynomials.
A standard polynomial fit procedure was applied, and the fit
control parameter was verified to indicate a high accuracy of
the fits over all the series of calculations performed. From
these fits, the polarizability values were obtained from the
coefficients at the first polynomial power. Inclusion of the
second polynomial power, with respect to the field strength
squared, into the fits was found to additionally improve the
accuracy of the polarizability values.

The paper is organized as follows. In Sec. II we describe
the construction of the atomic basis set and provide the corre-
sponding results for the atomic Xe polarizability. Section III
presents detailed studies of the Xe dimer polarizability over
a wide range of internuclear distances. Also computed is the
BSSE-free interaction energy of two Xe atoms. Finally, the
SCF, MBPT2, CCSD, and CCSD(T) dimer polarizabilities are
scaled by the sums of the atomic polarizabilities computed
at the same levels of theory, and the scaled quantities are
benchmarked versus the results according to Eqs. (3) of the
DID model. Section IV contains the concluding remarks.
There, we also discuss the influence of the nonadditivity and
anisotropy of the dimer polarizability on the binding energies
of the excited magnetically induced anionic states.

II. ATOMIC BASIS SET

Polarizability calculations require basis sets of high flexi-
bility in order to properly account for the changes in electron
density caused by the presence of the external electric field.
A maximum of flexibility is provided by fully uncontracted
sets, and we first constructed such a set of Gaussian-type
orbitals (GTOs) yielding a Xe polarizability close to the
experimental values. These are mentioned in the preceding
section and vary from 27.106 to 27.815, not allowing for
a definite conclusion regarding the most reliable value. We
therefore took care to obtain polarizability values that fit the
above range and saturate with extension of the size of the
basis set. The GTOs comprising a (23s19p13d) primitive set
were first optimized with respect to energy minimization at
the SCF level. Then softer functions were added in order to
reach a limiting value for α at the SCF level as well as at the
correlation levels of theory. In this way a (26s22p17d4f )
primitive set was obtained whose exponents can be found
in Table I. For many-atom clusters a calculation with an
uncontracted basis set is, of course, prohibitive. We therefore
contracted the set of Table I in order to reduce the number
of the basis functions while maintaining the same level of
accuracy. In order to achieve this, the ratio of the molecular
orbital coefficients with and without application of the external
field were calculated and yielded a set of outer valence basis
functions that were most responsive to the field. Consequently,
these functions were then all left uncontracted, and a very
good compromise between accuracy and numerical efficiency
could be achieved by this procedure. In this way the set
[9s9p8d4f ] was obtained, where 22 of 26 s, 17 of 22 p

and 11 of 17 d functions were included in the contraction.
In order to check the saturation of the polarizability values
with respect to increase in the basis set, the latter set was
extended to the [10s10p9d5f ] set by addition of one more

TABLE I. Exponents of the [9s9p8d4f ] and [10s10p9d5f ]
primitive sets optimized for the relativistic polarizability calculations.

s p d and f

60 101 513.1 27 087 78.86 3214.543 35
12 985 501.3 404 117.936 1411.0798
3 505 397.19 83 972.4822 638.269 163
1 055 748.62 21 769.3904 296.394 814
347 921.943 6812.080 47 140.646 374
123 160.172 2474.936 19 68.170 0583
46 325.7162 1003.182 48 33.667 2652
18 322.7937 439.646 552 16.885 2926
7548.288 12 203.709 419 8.607 947 91
3214.543 35 98.322 0219 4.265 325 81
1411.0798 48.597 7963 2.052 560 45
638.269 163 23.592 5739 0.947 760 887
296.394 814 11.761 7187 0.382 343 355
140.646 374 5.799 142 23 0.15
68.170 0583 2.870 109 71 0.07
33.667 2652 1.372 047 12 0.035
16.885 2926 0.544 650 485 0.018
8.607 947 91 0.228 802 914 0.009
4.265 325 81 0.088 370 9199
2.052 560 45 0.038 370 9199
0.947 760 887 0.018 1.78
0.382 343 355 0.007 0.712
0.144 991 653 0.0027 0.2848
0.05 0.113 92
0.02 0.045 568
0.008
0.004 5

uncontracted primitive per each angular momentum value. The
corresponding exponents are the softest exponents included in
Table I.

With the [9s9p8d4f ] basis set constructed above,
all-electron relativistic SCF calculations yield the Xe
polarizability of 26.7505, which deviates by a negligible
0.005% from the SCF value obtained with the [10s10p9d5f ]
basis set. The same saturation behavior with respect to
increase in the basis set is exhibited by the MBP2, CCSD, and
CCSD(T) polarizability values. We have also examined how
sensitive the values of α are to inclusion of the core orbitals
into the correlation calculations. For this reason, the MBPT2,
CCSD, and CCSD(T) calculations were performed correlating
all the orbitals as well as with the lowest 18 orbitals kept
frozen and not taken into the correlations. The results obtained
show that the core correlation contributions increase α only by
0.19% for the MBPT2 treatment and by 0.23% for the CCSD
and CCSD(T) treatments. These numbers represent estimates
of uncertainty in our correlation polarizability values. Given
the small values of these estimates, the core correlation
contributions can be safely neglected, providing considerable
numerical savings in the CCSD and CCSD(T) treatments. We
will therefore employ the frozen-core approximation when
computing the dimer polarizabilities within the correlation
MBPT2, CCSD and CCSD(T) approaches. Naturally, the
same [9s9p8d4f ] basis set, when attributed to both dimer
atoms, yield more orbitals involved in the correlations than the
orbitals correlated for the single atom. Therefore we can expect
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TABLE II. Atomic xenon polarizabilities and zero-field ground-state SCF energies (in atomic units) at various levels of theory. The
last column indicates the number of core orbitals frozen for the correlation treatment. Values displayed in italics were not provided in the
corresponding references and have been computed in the present work using the basis sets given in these references.

Polarizability

Reference Basis SCF energy SCF MBPT2 CCSD CCSD(T) Frozen

[14]a 11s9p5d −7224.8161 25.61 26.34 26.61 26.71 18
26.42 26.68 26.79 0

[15]a 9s8p7d5f −7226.8597 27.05 27.71 27.70 27.87 18
27.80 27.80 27.96 0

This workb 9s8p7d5f −7361.0230 26.17 26.91 26.92 27.08 18
26.99 27.00 27.17 0

This workc 9s9p8d4f −7441.4835 26.75 27.13 27.16 27.36 18
27.18 27.22 27.42 0

aNonrelativistic calculations.
bAll-electron relativistic (Douglas-Kroll) calculations with the basis set of Ref. [15].
cAll-electron relativistic (Douglas-Kroll) calculations with the original basis set given in Table I.

the frozen-core approximation to yield an accuracy of the
dimer polarizabilities not worse than the above 0.19%–0.23%
accuracy of the atomic polarizabilities. Including the
uncertainty estimates in parentheses, our reference CCSD(T)
polarizability value for the Xe atom is 27.36(6) a.u.

Table II lists the results for α obtained with the basis
sets from the literature and with our own basis. Particularly
relevant for comparison with our results are the results of
nonrelativistic calculations [14,15]. As already discussed,
Ref. [14] reports only SCF values for α and Ref. [15] provides
nonrelativistic SCF and MBPT2 polarizability values. For the
sake of completeness of the analysis, we have performed
nonrelativistic MBPT2, CCSD, and CCSD(T) calculations
with the [11s9p5d] basis set of Ref. [14] and CCSD, CCSD(T),
calculations with the [9s8p7d5f ] basis set of Ref. [15].
The more complete basis set of Ref. [15] was also tested in
relativistic calculations.

Analysis of the polarizability values presented in Table II
shows that inclusion of f functions leads to a substantial
increase of the polarizability values for all levels of the
theory. It is also observed that, except for the rather poor
[11s9p5d] basis set, the MBPT2 and CCSD polarizabilities
are very close to each other. One can therefore skip the
expensive CCSD procedure and achieve good accuracy
already with perturbation methods if one is not interested in
triples corrections, which always lead to the largest values of
α. Overall, electron correlations lead to a remarkable increase
of the polarizabilities over the SCF values.

Let us now focus on the CCSD(T) values calculated
within the frozen-core approximation and on the experimental
values collected in the Introduction: 27.106, 27.12, 27.16,
27.29, and 27.815 according to Refs. [16–18], [3] and [23],
respectively. The value 27.36 obtained from the relativistic
calculations with our [9s9p8d4f ] basis set turns out to be
closest to the experimental value 27.29 extracted from the
measurements of the dielectric constant [3]. This relativistic
CCSD(T) polarizability of 27.36 exceeds by 0.67 the value
26.71 from the nonrelativistic calculations with the [11s9p5d]
basis set, and is by 0.51 smaller than the value 27.87 obtained
from the nonrelativistic calculations with the [9s8p7d5f ]
basis set. Although the theoretical value of 27.87 is quite in

favor of the more recently measured [23] Xe polarizability
27.815, the corresponding basis set of Ref. [15] yields a
remarkably smaller CCSD(T) polarizability of 27.08 when
applied for the relativistic calculations. The latter relativistic
theoretical value is also smaller than our benchmark result
27.36. While it is indeed difficult to judge which experimental
value is the most accurate, it is legitimate to estimate the mean
polarizability value for the set of five experimental results
cited above. This mean value is 27.298 and is in fact nearly the
same as the measured Xe polarizability according to Ref. [3]
and close to our theoretical result 27.36. It is also worthy
of note that, among the all sets of calculations presented in
Table II, the zero-field ground-state SCF energy is minimal,
−7441.4835 a.u., for the relativistic calculations with our
[9s9p8d4f ] basis set, approaching very well the basis-set-free
limit −7445.6817 a.u. For a reference, we have computed the
latter limit energy value using the GRASP package [28,29]
for grid numerical integration of the Dirac Hartree-Fock
equations. Given all the above discussion, we can conclude
our theoretical polarizability value of Xe to be a reliable
benchmark.

III. DIMER INTERACTION PROPERTIES

With the basis set designed in the preceding section, we
have performed finite-field polarizability calculations for the
Xe dimer. Two main values of the polarizability were computed
for a broad range of internuclear separations R by the
ab initio SCF, MBPT2, CCSD, and CCSD(T) methods. In
order to diminish the influence of the BSSE on our results,
we have followed the widely used approach by computing the
interaction quantities

αint
‖,⊥(R) = α‖,⊥(1,2) − α‖,⊥(1,X) − α‖,⊥(X,2). (4)

In this equation, α‖,⊥(1,2) are the polarizabilities for the
dimer obtained from the ab initio calculations with the basis
orbitals attributed to the atoms 1 and 2, α‖,⊥(1,X) are the
polarizabilities of atom 1 in the presence of the ghost basis
orbitals for atom 2, and α‖,⊥(X,2) are the polarizabilities of
atom 2 in the presence of the ghost basis orbitals for atom 1.
Since the atoms are identical, α⊥(1,X) and α⊥(X,2) are
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FIG. 1. Sum of the polarizabilities of the independent atoms
separated by the distance R. The polarizability of each atom is
obtained in the presence of the ghost basis set attributed to the
location of the other atom. Dots are the results of the finite-field
polarizability calculations for the discrete values of R. Solid lines
connect the polarizability values for the electric field directed along
the interatomic axis, and dashed lines connect the polarizability values
for the perpendicular field direction.

the same on the grounds of symmetry. The polarizabilities
α‖(1,X) and α‖(X,2), when computed for the same direction
of the electric field along the dimer axis, generally differ from
each other: for one atom the presence of the ghost orbitals
increases the polarizability with respect to that computed
without the ghost basis set, while for the other atom the
ghost basis contributes to a decrease of the polarizability.
Numerically, the BSSEs lead to some small variations of
the atomic polarizabilities which are more pronounced for
smaller separations between the atoms. This is seen from
Fig. 1, where we show the sums α‖(1,X) + α‖(X,2) and
α⊥(1,X) + α⊥(X,2) obtained with different levels of ab initio
treatments.

With the BSSE-corrected interaction polarizabilities (4),
the dimer polarizabilities for given internuclear separation R

are determined by the relation

α‖,⊥(R) = αint
‖,⊥(R) + 2α, (5)

where α is the atomic polarizability computed in the preceding
section. The results of the calculations of α‖,⊥(R) are presented
in Fig. 2. For each value of R, the dimer polarizabilities
obtained by the post-SCF methods exceed the SCF values,
with the CCSD(T) values being the largest in the sets of
those for the MBPT2, CCSD, and CCSD(T) methods. This

FIG. 2. Dimer polarizabilities as functions of the internuclear
distance. The top and bottom panels show the longitudinal and
transverse polarizabilities, respectively. Dots represent the results
computed for the discrete values of the distance and are connected
by the smooth solid lines for visualization of the curves. Different
curves correspond to the different theoretical finite-field approaches
labeled by SCF, MBPT2, CCSD, and CCSD(T) (MBPT2 and CCSD
results are indistinguishable in the figure).

observation holds for both transverse and longitudinal dimer
polarizabilities and is the same as that for studies of the
isotropic atomic polarizability. Another observation, similar
to the case of the atom, is that the MBPT2 and CCSD values
for the dimer polarizabilities appear to be very close to each
other. In the scale of the figure, small deviations between
the MBPT2 and CCSD curves would make it difficult to
distinguish between these curves. We therefore opted to omit
the CCSD curves from the figure and to introduce the common
label “MBPT2, CCSD” for the MBPT2 results.

As seen in Fig. 2, the transverse and longitudinal dimer
polarizabilities obtained at the same levels of ab initio
treatments differ from each other and from the doubled atomic
polarizability 2α determined at the same theoretical level.
These differences quantify the effects of the anisotropy and
nonadditivity of the dimer polarizability and diminish in
the limit of large internuclear separations where interaction
between the atoms vanishes. We have the general inequality
α‖(R) > 2α > α⊥(R), reflecting the fact that interaction be-
tween the induced atomic-dipole moments is attractive for the
electric field applied along the dimer and repulsive for the field
direction perpendicular to the dimer.

In order to compare the ab initio results with the results
of the DID model, we have scaled the curves from Fig. 2
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FIG. 3. Relative polarizabilities versus internuclear distance.
Triangles, squares, and dots (connected by the smooth solid lines)
show the SCF, MBPT2, and CCSD(T) results. Dashed lines are the
polarizability curves according to the DID model. The inset shows the
curves for the domain of small distances where the finite-field results
deviate from those of the DID model and where minor discrepancies
appear in the results obtained at the SCF, MBPT2, and CCSD(T)
levels.

by the corresponding limiting values α‖,⊥(R → ∞) = 2α. A
striking feature of such scaled results, shown in Fig. 3, is
that the curves obtained from the finite-field SCF, MBPT2,
CCSD, and CCSD(T) calculations practically coincide with
each other. In other words, the way the electron correlations
are taken into account, although affecting the absolute values
of the dimer and atomic polarizabilities, has no noticeable
influence on the ratios α⊥(R)/(2α) and α‖(R)/(2α). The curves
according to the DID model expressions (3) are shown in
Fig. 3 for the experimental value 27.29 of the atomic Xe
polarizability [3]. As the figure reveals, the scaled ab initio
dimer polarizabilities coincide with those of the DID model
for internuclear distances exceeding the value ≈4.5 Å. The
latter value turns out to be a good estimate of the equilibrium
internuclear separation for the Xe dimer. This fact, known
from the literature, is also confirmed by our computations of
the interaction energy for the dimer. The energy curves are
obtained with the BSSE corrections included and shown in
Fig. 4. As is common for van der Waals clusters, the SCF
interaction energy does not exhibit a minimum as a function
of R, while the energy curves obtained taking account of the

FIG. 4. Dimer interaction energy.

electron correlations have the local minima corresponding to
attractive interaction between the atoms. For distances smaller
than ≈4.5 Å, the DID model overestimates the longitudinal
and underestimates the transverse dimer polarizabilities. In
addition, α‖(R) in the DID model becomes negative for
distances smaller than (2α)1/3 ≈ 2.01 Å, thereby exhibiting an
unphysical behavior (not included in the curve in the figure).
Also seen for small distances are minor deviations between
the ab initio scaled curves (the inset in the figure). The overall
impact of Fig. 3 is worth reiterating: the relativistic ab initio
calculations with our original basis set yield scaled polariz-
abilities that are rather insensitive to the level of included elec-
tron correlations, and, in addition, for internuclear distances
around and exceeding the equilibrium distance for the dimer,
these scaled values are in perfect agreement with the DID
model.

With the CCSD(T) values of the dimer polarizabilities, the
anisotropy �α for the internuclear distance 4.5 Å is 7.28. This
theoretical result agrees well with the experimentally measured
anisotropy 8.77 ± 2.02 reported in Ref. [19].

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have studied the electric-dipole polariz-
abilities of the Xe dimer. Although addressing these properties
is by far not a new subject, in contrast to previous studies our
calculations rely on a fully relativistic all-electron approach,
allowing us to refer to our results as benchmark ones. The
finite-field ab initio polarizability calculations have been
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performed with a specially designed extended set of basis
GTOs by application of the SCF procedure followed by an
accounting for the electron correlations within the MBPT2,
CCSD, and CCSD(T) methods. The atomic polarizability has
been thoroughly compared with the available theoretical and
experimental data, and the dimer polarizabilities have been
determined with account for the BSSE corrections in a broad
range of internuclear separations. Special care was taken to
analyze the effects of the nonadditivity and anisotropy of
the dimer polarizability. In particular, for the internuclear
distance of 4.5 Å corresponding to the minimum of the
CCSD(T) interaction energy, the value of the anisotropy
�α was found to agree with the experimentally measured
value from Ref. [19]. Another finding, which we consider
to be quite remarkable, concerns the relative polarizabilities
obtained as the ratios of dimer polarizabilities to the sum of
the independent atomic polarizabilities determined at the same
level of the ab initio description. Such scaled polarizabilities,
determined with the SCF, MBPT2, CCSD, and CCSD(T)
methods turn out to be close to each other with very high
accuracy. Only minor deviations in the relative values obtained
with different methods can be observed at small (smaller
than 4.5 Å) displacements between the atoms. It is also
remarkable that the scaled polarizabilities of the dimer for
displacements exceeding 4.5 Å perfectly agree with the results
of the simple DID model. On the grounds of these observations,
in order to determine accurate theoretical values of the dimer
polarizabilities it is sufficient to invest the computational
efforts in obtaining reliable polarizability of the single Xe
atom, and then to use the scaling relations (3) of the DID
model. We expect this approach to be applicable to larger Xe
clusters and will address this issue in our studies currently in
progress.

To this end, we will discuss the anionic states formed by
attaching an extra electron to the dimer in the presence of
an external magnetic field. A theoretical description of the
ground bound state of the attached electron requires a full
multielectron treatment of the anion thereby formed. We will
not address the ground state for now but discuss the excited
magnetically induced states, where the influence of the under-
lying neutral core on the excess electron can be reduced to a
central potential acting on this electron. This is the polarization
potential (1). The simplest meaningful approximation to the
qualitative analysis of the binding assumes the extra electron
to occupy the zero-point Landau orbitals. These orbitals can
be specified by the discrete values of the projection of the
angular momentum of the electron onto the direction of the
magnetic field, labeled by the integer quantum number s. For
an isotropic central potential, s is a good quantum number,
enumerating therefore the states of the bound electron. In
order to estimate the corresponding binding energies εs , one
needs to average the central potential with the two-dimensional
(for motion transverse to the magnetic field) electron density
for the Landau orbitals and integrate it over the remaining
(longitudinal) coordinate (see Ref. [8] for the details). For the
central potential from an isotropic polarizability of 2α (α is
the atomic polarizability), the procedure gives the closed-form
results

εs(2α) = 0.12(2α)2B3δ2
s , (6)

where B is the magnetic field strength in atomic units (i.e.,
in units of 2.3554 × 105 T), s = 1,2, . . . , δ1 = 1, and δs =
[1 − (1.5/s)]δs−1. For anisotropic polarizability, the number
s is no longer a good quantum number, and care should be
taken when the above-described procedure is applied. We will
assume the effects of the anisotropy of the dimer polarizability
on the magnetically induced anionic states to be small enough
that we can neglect the coupling between the Landau orbitals
with different s. The estimates of the binding energies then
appear to deviate from these given by Eq. (6) as follows:

εs (α⊥,α‖) = ξ 2
1 ξ 2

2 εs(2α),
(7)

ξ1 = ᾱ

2α
, ξ2 = 1 + 1 − 3 cos2 ϑ

24

�α

ᾱ
,

where ᾱ = (2α⊥ + α‖)/3 is the average value of the dimer
polarizability and ϑ is the angle between the dimer axis and
the magnetic field direction. For the equilibrium internuclear
separation of 4.5 Å, the CCSD(T) values of the polarizabilities
yield ξ1 = 1.003 and the parameter ξ2 varying between 0.99
and 1.0055, depending on the orientation of the dimer with
respect to the magnetic field. This means that the effects of
the nonadditivity and anisotropy of the dimer polarizability
influence the magnetically induced binding to a minor extent;
in particular, the corresponding binding energies change by
less than 2.6% of the values (6) devised assuming additive
contributions of the individual atomic polarizabilities. For
smaller internuclear separations, even though the anisotropy
�α becomes larger, the binding energies of the magnetically
induced states still remain not much influenced: for a dis-
placement of 4.0 Å the anisotropy-induced changes in binding
energies are less than 3.3%, and for a displacement of 3.5 Å
the changes are less than 4.2%.

The all-electron relativistic studies presented in this paper
allow us to conclude that the finite-field polarizability cal-
culations with the basis set we developed provide reliable
benchmark results for both the single Xe atom and the Xe
dimer. As in the previous investigations, we find the electron
correlations to have an essential impact on the values of the
polarizability. On the other hand, for realistic, not-too-small
internuclear distances, the scaled polarizabilities as functions
of the internuclear distance exhibit a high similarity of the
results obtained from the classical DID model to the ab initio
results of the SCF, MBPT2, CCSD, and CCSD(T) theoretical
treatments. Therefore, reliable polarizability values for the
dimer can be deduced from an accurate ab initio atomic
polarizability by application of the DID scaling relations. The
efficiency of this approach will be examined in the course of
further studies of larger Xe clusters.
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