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Dispersion coefficients for interactions between helium atoms in Debye plasmas
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Effect of Debye plasmas on the dispersion coefficients C8, C10, and C12 for interactions between atoms has been
investigated using highly accurate correlated exponential basis functions. In the free-atom case, the dispersion C12

coefficient and the hexadecapole polarizability for helium are reported. The dispersion coefficients, hexadecapole
polarizability, and 1s5g 1Ge state energy of helium for different screening parameters are also reported.
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I. INTRODUCTION

Despite the fact that van der Waals interactions are often
considered to be weak, they dominate the behavior of all
neutral physical systems at separations of order appropriate for
the system concerned. The investigation of the Van der Waals
two-body dispersion coefficients in the multipole expansion
of a second-order long-range interaction between a pair of
atoms is important for the quantitative interpretation of the
equilibrium properties of gases and crystals, of transport
phenomena in gases, and of phenomena occurring in slow
atomic beams [1]. The leading term of the interaction between
two atoms at large separation R is the dipole-dipole interaction
decreasing as R−6. This term has a coefficient commonly
called the dispersion coefficient C6. The coefficients C8, C10,
and C12 come, respectively, from the instantaneous dipole-
quadrupole; dipole-octupole and quadrupole-quadrupole; and
dipole-hexadecapole and quadrupole-octupole interactions,
respectively.

In the present work, we have investigated the effect of
plasmas on the dispersion coefficients C8, C10, and C12 for
interactions between helium atoms and the hexadecapole
polarizabilities of the helium atom using highly accurate
correlated basis functions in the framework of a pseudostate
summation method. The pseudostate summation technique,
in which mainly the intermediate states of conventional
second-order perturbation theory is replaced by a finite set
of pesudostates, has been established as being very successful
in evaluating a variety of interesting processes, including two-
photon transitions and van der Waals dispersion coefficients
[2]. The effect of plasmas is to produce an effective screening,
characterized by a fundamental length scale determined by the
temperature (T ) and number density (n) of the charge particles,
on the Coulomb potential. In this work, we have considered
the Debye-Hückel screening model to represent the interaction
between the charged particles. Besides certain limitations
(for example, high-temperature and low-density limits), the
Debye-Hückel shielding approach of plasma modeling is a
very good example for illustrating the ingredients of modeling
the ionic potential in weakly coupled hot plasmas [3,4]. The
concept of Debye screening has been derived from the effective
potential in weakly coupled plasmas. In weakly coupled
plasmas, the coupling constant is much less than 1. There
are several applications [3] of weakly coupled plasmas, for
example, n ≈ 1011 cm−3, T ≈ 104 K for gaseous-discharge
plasma; n ≈ 1016 cm−3, T ≈ 108 K for plasma in a controlled

thermonuclear experiment; and n ≈ 106 cm−3, T ≈ 108 K for
plasma in the solar corona. For those plasmas, the coupling
constants are 10−3, 10−5, and 10−7, respectively [3,4]. The
importance of Debye screening on astrophysical observations,
in astrophysical plasma diagnostics, in calculating partition
functions in thermodynamics, and in several other applications
has been discussed in the literature ([3–6], and references
therein).

In the free-atom case, several studies have been performed
to calculate the dispersion coefficients C6, C8, and C10 for the
interactions between two He atoms and the dipole, quadrupole,
and octupole polarizabilities of the He atom [7–21]. Recently
we also reported the effect of Debye screening on the
dispersion coefficient C6 [22], and have calculated the dipole,
quadrupole, and octupole polarizabilities of He in its ground
state [23,24]. The effect of Debye plasmas on hydrogenlike
atoms has also been reported in the literature [25,26]. We have
reported the dispersion coefficients for the interaction between
two hydrogen atoms in Debye plasmas [22,27]. Details of
the atomic process in the Debye plasma environments can be
obtained from the recent review [6].

In this investigation, we employ highly accurate correlated
exponential wave functions in which the exponent is gener-
ated by a quasirandom process to calculate the dispersion
coefficients and the hexadecapole polarizability. There are
no calculations reported in the literature, to the best of our
knowledge, on the hexadecapole polarizability for He (1 1S)
and the dispersion coefficient C12 for the He-He systems in
free-atom cases. In the screening environment, there are no
other results on the dispersion coefficient except our earlier
work on C6. In the present work, we have examined the
convergence of our calculations with the increasing number
of basis terms in the wave functions. The atomic unit (a.u.) has
been used throughout the present work. All the calculations
were performed on IBM and DEC-ALPHA machines using
quadruple precision arithmetic (32 significant figures) in the
UNIX, FEDORA, and CENT operating systems.

II. CALCULATIONS

The long-range part of the interaction between two atoms
a and b in their ground states can be written in the form of a
series of inverse powers of the separation R as [1,7,8]

Vab = −C6

R6
− C8

R8
− C10

R10
− C12

R12
− · · · , (1)
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where

C6 = 3

π
Gab(1,1), (2)

C8 = 15

2π
Gab(1,2) + 15

2π
Gab(2,1), (3)

C10 = 14

π
Gab(1,3) + 14

π
Gab(3,1) + 35

π
Gab(2,2), (4)

C12 = 45

2π
[Gab(1,4) + Gab(4,1)]

+ 105

π
[Gab(2,3) + Gab(3,2)], (5)

with

Gab(la,lb) = π

2

∑
nm

f
(la )
n0 f

(lb)
m0

Ea
n0E

b
m0

(
Ea

n0 + Eb
m0

) , (6)

where Ei
n0 = Ei

n − Ei
0 is the excitation energy for atom i and

is positive for the atoms in the ground state, and the 2l-pole
oscillator strength f

(l)
n0 is defined by

f
(l)
n0 = 8π

2l + 1
(En − E0)

∣
∣
∣
∣
∣
〈�0|

∑
i

r l
i Pl(cos ϑi)|�n〉

∣
∣
∣
∣
∣

2

, (7)

where i = 2 for the helium atom.
To calculate polarizability, we use the static polarizability

relation which can be expressed in terms of a sum over all
intermediate states including the continuum [8]:

Sl =
∑

n

f
(l)
n0

E2
n0

. (8)

For the 1S, 1P , 1D, 1F , and 1G states of the helium atom, we
employ highly correlated wave functions [24,28–30]

� = (1 + P̂12)
N∑

i=1

L∑
l1=ε

Ai(−1)εY l1,l2
LM (r1,r2)

× exp(−αir1 − βir2 − γir12), (9)

with

Y l1,l2
LM (r1,r2) = r

l1
1 r

l2
2

∑
m1,m2

CLM
l1m1,l2m2

Yl1m1 (r̂1)Yl1m2 (r̂2), (10)

where the functions Y l1,l2
LM (r1,r2) are the bipolar harmonics or

Schwartz harmonics, r̂j = rj /rj (j = 1, 2), Ylimi
(r̂j ) denotes

the usual spherical harmonics, CLM
l1m1,l2m2

are the Clebsch-
Gordon coefficients, αi,βi,γi are the nonlinear variation
parameters, Ai (i = 1, . . . ,N) are the linear expansion coeffi-
cients, l1 + l2 = L (where L = 0 for S states, 1 for P states, 2
for D states, 3 for F states, and 4 for G states), N is the number
of basis terms, and the operator P̂12 is the permutation of the
two identical particles 1 and 2. In Eq. (3), we consider l1 as
the remainder of the integer division i/(L+1). The nonlinear
variational parameters αi, βi , and γi are determined using a
quasirandom process [5,24,28–33]. The parameters αi, βi , and

γi are chosen from the three positive intervals [a1,a2], [b1,b2],
and [d1,d2]:

αi =
〈〈

1

2
i(i + 1)

√
2

〉〉
(a2 − a1) + a1,

βi =
〈〈

1

2
i(i + 1)

√
3

〉〉
(b2 − b1) + b1, (11)

γi =
〈〈

1

2
i(i + 1)

√
5

〉〉
(d2 − d1) + d1,

where the symbol 〈〈· · ·〉〉 designates the fractional part of a
real number.

The nonrelativistic Hamiltonian describing the proposed
system characterized by a parameter λ is given by

H = −1

2
∇2

1 − 1

2
∇2

2 − 2

[
exp(−r1/λ)

r1
+ exp(−r2/λ)

r2

]

+ exp(−r12/λ)

r12
, (12)

where r1 and r2 are the radial coordinates of the two electrons
and r12 is their relative distance. The parameter λ (= 1/µ,
µ is called the Debye screening parameter) is known as the
Debye length and is a function of electron density and electron
temperature. When the helium atom is placed in vacuum,
we have µ = 0. The Debye length can be represented as
λ = [kBT /4πn(Ze)2]1/2 [3,4], n denotes plasma density and
T its temperature. A set of plasma conditions can be simulated
for different choices of λ(n,T ). For two-component plasmas
near thermodynamic equilibrium, the Debye length λ can be
represented by [3,4,32]

λ = 1

µ
=

[
4π (1 + Z)e2ne

kBTe

]−1/2

, (13)

where kB is the Boltzmann constant, ne is the electron density
in plasmas, Te is the electron temperature of the plasma, and
Z is the nuclear charge and here its value is unity. For the
present problem, the Debye plasma with electron density ne

and with energy of Eλ (in eV) can be written from Eq. (13) in
the form [33]

ne = 1.48011 × 1022 Eλ

λ2
cm−3. (14)

The Debye shielding in the present investigation of plasma
modeling is a simple and good approximation in weakly
coupled hot plasmas and low-density warm plasmas [33,34].

TABLE I. The bound 1s5g 1G state energies of screened helium
for different screening parameters, along with the 1S threshold energy
of He+ (EHe+(1S)).

λ 1s5g 1G −EHe+(1S) [28,30]

∞ −2.020 000 710 81 −2.000 000 000 00
−2.020 000 710 898 58a

200 −2.005 347 866 26 −1.990 001 871 89
100 −1.991 341 160 08 −1.980 074 751 70
50 −1.965 082 400 10 −1.960 298 026 99
40 −1.952 790 569 76 −1.950 464 909 33

aBest result [35].

062506-2



DISPERSION COEFFICIENTS FOR INTERACTIONS . . . PHYSICAL REVIEW A 81, 062506 (2010)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700
H

ex
ad

ec
ap

ol
e

po
la

riz
ab

ili
ty

µ

FIG. 1. (Color online) Hexadecapole polarizability of He(1 1S)
as a function of the screening parameters.

III. RESULTS AND DISCUSSIONS

First we optimized the 1 1S, 2 1P, 3 1D, 4 1F, and 5 1G
state energies for different screening parameters using the
wave function (9) in the framework of the Ritz variational
principle. We have presented 1 1S, 2 1P , 3 1D, and 4 1F

state energy values in our earlier works [24,29,31,33]. The
1s5g 1G state energy eigenvalues for different screening
parameters obtained from this work are presented in Table I.
The 1s5g 1G state energy in the unscreened case obtained
using 900 term basis functions is well converged with the
increasing number of basis terms, and its uncertainty is
estimated to be some parts in the order of 10−11, as compared to
the best result [35]. It is evident from Table I that the 5 1G state
energy is gradually displaced upward approaching the He+(1S)
threshold with increasing plasma strength. Next we construct
the ground-state eigenfunctions for the best optimized 1s2

1S state eigenenergy. Finally, to calculate polarizabilities and
the dispersion coefficients, one needs to obtain the energy
levels and wave functions separately for the P, D, F, G states
with the optimum choice of nonlinear parameters. To obtain
energy levels, we diagonalize the Hamiltonian (12) with the
wave functions (9). After calculating the energy levels and
eigenfunctions for the final states, we proceed to calculate
the hexadecapole polarizability and the dispersion coefficients
following the procedure described in Sec. II. We have used
a maximum of up to 500, 500, 500, 900, and 900 term
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FIG. 2. (Color online) Dispersion coefficients C6, C8, C10, and
C12 as functions of the screening parameters.

wave functions for the S, P, D, F, and G states, respectively.
To denote the number of basis terms for S, P, D, F, G state
wave functions, we introduce the notation Ns , Np, Nd , Nf , Ng ,
respectively, and grouped them as (Ns ,Np,Nd ,Nf ,Ng).

We calculate the hexadecapole polarizability of the helium
atom for different screening parameters using the relation (8),
and the results are shown in Fig. 1. Finally, we calculate the
dispersion coefficients C6, C8, C10, C12 for different screening
parameters using the relations (2)–(5). From the present
computer code, we have reproduced our earlier results of
the C6 coefficients, but we do not repeat the results again
in the tables here. Instead, we include them in Fig. 2 for
completeness. In Table II, we compare the C8, C10, and
C12 results with the available results in the literature for the
free-atom case. We present the hexadecapole polarizability
and the dispersion coefficient results for different screening
parameters in Table III and in Figs. 1 and 2. In Fig. 2,
we multiply the C6, C8, C10, and C12 coefficients by the
factors 3.5, 4/π2, 3.5/π4, and 2/π6, respectively, to set them
in one figure. To the best of our knowledge, there are no
other results in the literature to compare the hexadecapole
polarizability and the dispersion coefficient C12. For the
unscreened case, our results compare well with other values
available in the literature [7–21], especially with the best
variational results [8]. For the screened cases, our results

TABLE II. Comparison of C6, C8, C10, C12 for the He(1 1S)–He(1 1S) in the unscreened case (µ = 0).

C8 C10 C12

Author (year) Ref. (500,500,500) (500,500,500,900) (500,500,500,900,900)

Luyckx et al. (1977) [20] 14.06 183.16
Bartolotti (1980) [18] 14.131 183.47
Thakkar (1981) [17] 14.111 8 183.600
Rérat et al. (1993) [16] 13.883
Bishop and Pipin (1993) [14] 14.117 855 183.691 25
Chen (1995) [11] 14.120 183.74
Chen and Chung (1996) [9] 14.1208 183.765
Yan et al. (1996) [8] 14.117 857 340 183.691 070 5
Present work 14.117 857 4 183.6910 3364.34
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TABLE III. Dispersion coefficients and hexadecapole polarizability for different screening parameters. The numbers within parentheses
denote (Ns ,Np ,Nd ,Nf ,Ng).

Hexadecapole C8 C10 C12

λ polarizability (500,500,500) (500,500,500,900) (500,500,500,900,900)

∞ 86.905 14.117 857 4 183.6910 3364.34
86.894a 14.117 857 3b 183.6898c 3364.11d

100 86.975 14.123 328 0 183.7929 3366.88
50 87.179 14.139 522 1 184.0942 3374.37
20 88.554 14.249 783 3 186.1426 3425.18
15 89.790 14.349 579 3 187.9966 3471.15
10 93.250 14.629 206 1 193.2036 3600.59

93.237a 14.529 206 0b 193.2025c 3600.35d

8 96.715 14.908 331 3 198.4258 3731.05
6 104.26 15.507 699 2 209.7361 4016.51
5 112.03 16.113 005 5 221.3012 4312.50

112.01a 16.113 005 4b 221.3001c 4312.24d

4 127.08 17.248 613 7 243.3931 4889.59
3 163.96 19.850 640 9 295.9104 6319.20
2.5 208.67 22.735 934 5 357.0511 8075.70
2 317.43 28.946 610 1 497.9173 124 36.4
1.7 485.77 37.204 675 5 702.1183 193 76.9
1.65 532.63 39.311 516 5 756.9426 213 43.7
1.5 739.81 47.944 887 991.882 301 87.9

739.77a 47.944 886b 991.881c 301 87.3d

1.0 6960.34 200.567 35 6775.004 343 018.6
6960.25a 200.567 31b 6775.001c 343 016.8d

aUsing (500, 800) for (Ns , Ng).
bUsing (400,400,400).
cUsing (500,500,500,800).
dUsing (500,500,500,800,800).

show that the dispersion coefficients for the He(1 1S)–He(1 1S)
system and the hexadecapole polarizability for He(1 1S)
increase with increasing plasma strength. Our findings indicate
that when the plasma screening effect increases, the multipole
polarizabilities for the helium atom increase as the ground-
state wave functions becoming more diffused. Now when two
such diffused atoms come together, the dispersion coefficients
will be increased, analogous to the free-atom cases; for
example, the C6 for the H–H case (with dipole polarizability
equal to 4.5 for H) is larger than that for the He–He case (with
dipole polarizability equal to 1.383192174 for He).

IV. CONCLUSIONS

We have obtained reasonably accurate dispersion C6,
C8, C10, and C12 coefficients for the interactions between
helium atoms in their ground states and the hexadecapole
polarizability of He(1 1S) for the unscreened case as well as

for the screened cases. In the unscreened case, there are no
other results to compare the hexadecapole polarizability and
the dispersion coefficient C12. In the screened cases, there
are no other reported results to compare with our present
results. The Van der Walls force constants, particularly the
leading term C6 arising from the induced dipoles, are of
great theoretical and experimental interest in atomic and
molecular physics [1,2,7–22]. With the recent advancement
in laser plasmas [36], we hope our findings will provide new
insight and useful information to the communities in atomic,
molecular, chemical, and plasma physics.
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