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Quasiequilibrium time-domain susceptibility of semiconductor quantum wells
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We analyze the time-domain optical response of quantum well (QW) media in the quasiequilibrium
approximation. The resulting macroscopic polarization can be expressed as a convolution integral that
permits a simple and efficient numerical implementation for its use in dynamical modeling. As a practical
example, the resulting polarization is used in conjunction with a travelling-wave model (TWM) for analyzing
saturable absorption as a pulse propagates in a waveguide that incorporates an unpumped QW in its core.
Frequency-selective saturable absorption and pulse distortion are observed.
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I. INTRODUCTION

The analysis of the dynamical properties of lasers requires a
knowledge of the coupling between the active material and the
optical field. The interaction between individual atoms and the
electromagnetic radiation is at the origin of the development
of quantum mechanics, and the interpretation of atomic
spectra has been the object of a large wealth of work, e.g.,
cf. Refs. [1–5].

Within the semiclassical approach often invoked to model
lasers, several authors have developed ways of treating the
interaction between a quantized two-level or multilevel atom,
with a formalism analogous to the vector description of spin
states and the classical macroscopic electromagnetic field [6].
Such an approach provides the basis for successfully modeling
gas and solid-state lasers. In these systems, the active medium
can be described in an effective way as an ensemble of atoms
or molecules with only two levels among which stimulated
emission takes place [7,8]. In this approximation, the relevant
variables for describing the active medium are the population
inversion between these two levels, and the corresponding
nonlinear polarization. Although the two-level atom model
has been studied thoroughly and is usually assumed to be
simple, subtle phenomena arise when high power [9,10],
multichromatic fields [11], or atomic motion [12] come into
play.

Semiconductor media are conceptually similar to an en-
semble of interacting atoms with different transition energies
defined by the electronic band structure [13–15], but in spite
of this conceptual similarity, a time-domain description of the
macroscopic optical response of semiconductor materials is
still an open problem. This is not only due to the complications
arising from the band structure, but also because Fermi
statistics imposes that the electronic states have different
occupations depending on their energy. These two effects
induce a large inhomogeneous broadening [16] that profoundly
influences the dynamics of semiconductor lasers as compared
to gas or solid state lasers. While the gain spectrum of
a two-level atom is symmetric, even in the presence of
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Doppler inhomogeneous broadening, it is strongly asymmetric
in semiconductors [13–15], resulting in a large degree of
amplitude-phase coupling [17] that substantially affects the
dynamical regimes and can even destroy any coherent emission
in presence of feedback [18].

A direct approach to the interaction between a semiconduc-
tor material and an optical field is provided by the microscopic
semiconductor Bloch equations [19] which consider the
dynamics of each electronic state either including many-body
effects [19–23] or neglecting them as in [13–15,24]. These
microscopic theories describe each individual transition by
the occupation of the initial and final electronic states, and
the material polarization is obtained by superposing the
contributions from each transition. A dynamical description
of the lasing process then requires dealing with a large
number of two-level like systems coupled among them by
scattering processes (N -body coupling) and by the optical
field (mean-field coupling). This approach offers an excellent
description of the material properties, but the complexity
of such a description requires intensive numerical com-
putations [25] which, in turn, limit their applicability for
parametric studies of the dynamical scenarii in semiconductor
lasers.

In order to bypass the complexity and high computational
cost of microscopic theories, analytical approximations for the
optical response of semiconductor media can be found in sim-
ple cases for both bulk [26,27] and QW [28,29] semiconductor
media. However, these results are known only in frequency
domain and strictly valid only for a monochromatic field. For
quasi-monochromatic fields, these analytical optical responses
have been used in time-domain for studying the dynamics
of the transverse modes in broad-area vertical-cavity surface-
emitting lasers (VCSELs) [30,31], the passive mode locking of
external-cavity VCSELs [32,33] or the multimode dynamics in
conventional edge-emitting lasers [34,35]. Nevertheless, their
application for studying intense and broadband time dependent
optical fields is not straightforward.

A method for circumventing this problem was presented
in [36], where a Padé approximation to the semiconductor
susceptibility of [28,29] was developed. Since the Padé
approximant is a rational fraction of frequency, transformation
to time domain is immediate, hereby allowing to explic-
itly determining an evolution equation for the macroscopic
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polarization of the active medium. This approach is similar to
that in [37], where the optical response of the semiconductor
medium determined from the semiconductor Bloch equations
was fitted to the sum of several Lorentzians, each of them
allowing for a two-level like description.

It must be noted, however, that the accuracy of the
results based on this type of rational fits is expected to
decrease either when increasing the optical bandwidth or
when dealing with response functions that vary rapidly in
frequency domain, like a saturable absorber (SA) close to
its bandgap. In this case, the sharp transition—in frequency
domain—from transparent to absorptive behavior is poorly
described by any kind of fit based on polynomials or rational
functions. It is worth noting that the two effects of broad-band
dynamics and rapidly varying spectral features simultaneously
occur in passively mode-locked lasers based on intracavity
SA [38].

The large number of potential applications of short pulse
sources in medicine, metrology and telecommunications [39]
calls for a better understanding of the mode-locking problem
and more generally the mechanisms by which modes in
a semiconductor laser synchronize. However, the study of
multimode dynamics faces a huge stiffness problem: while the
multimode evolution of semiconductor lasers usually settles
on asymptotic time scales of the order of hundreds of ns or
even a µs, the fastest time scale at work is typically a hundred
of fs. Thus, the microscopic approach becomes too costly for
attacking such regimes that span seven decades in time domain.

In this paper, we present an analytical time-domain optical
response of a two-band semiconductor QW obtained in the
quasiequilibrium limit. In spite of the approximations made, it
yields realistic carrier dependent gain and index spectra, and it
can be a useful tool for studying parametric dependencies at a
marginally low computational cost. The resulting macroscopic
polarization can be expressed as a convolution integral that
permits a simple and efficient numerical implementation for
its use in dynamical modeling. The validity and accuracy of
this approach are tested by analyzing pulse propagation in a
waveguide that incorporates an unpumped QW as a saturable
absorber.

The paper is organized as follows. In Sec. II, we present
the analytical results for the time-domain response. In
Sec. III we discuss their numerical implementation within a
TWM approach. In Sec. IV we perform several numerical
experiments, e.g., frequency dependent absorption and strong
nonlinear pulse shaping thereby demonstrating the physical
effects that can be reproduced with our approach. Finally, in
Sec. V we present the conclusions of our work.

II. ANALYTICAL RESULTS

A. Direct time domain approach

We consider a small volume of QW semiconductor material
with linear dimensions quite smaller than a wavelength but
yet encompassing many unit cells in the crystal. Assum-
ing that there are only one conduction and one valence
band, both parabolic with effective masses me and mh,
respectively, the time-dependent intraband electron [nk(t)]
and hole [hk(t)] distributions in the presence of an optical

field E = E(t)e−i�t + c.c. are given, in the rotating-wave and
dephasing-rate approximations, by [40]

∂tpk = −�kpk − igk(nk + hk − 1)E, (1)

∂tnk = −nk − nk

τe,k

− igk(E�pk − c.c.), (2)

∂thk = −hk − hk

τh,k

− igk(E�pk − c.c.), (3)

where nk and hk are the stationary intraband distributions
of electrons and holes, pk is the electron-hole coherence,
gk is the coupling strength which represents the dipolar
moment dk divided by h̄, and E(t) is the slowly varying
amplitude of the optical field whose carrier frequency is �.
The relaxation toward stationarity of the electron and hole
distributions is described in the simplest approximation of
constant rates τe,k and τh,k toward local equilibrium [41], where
the polarization dephasing rate reads γk = (τ−1

e,k + τ−1
h,k )/2,

and �k = γk + i(ωk − �). h̄ωk = Egap + h̄2k2/(2mr ) is the
reduced energy of the electron-hole pair and mr is the reduced
electron and hole mass. Since the optical carrier frequency
can be freely chosen, we shall henceforth consider that
� = Egap/h̄.

The macroscopic optical polarization of the system, P(t) =
P (t)e−i�t + c.c. is given by the electron-hole coherence
through

P (t) = 1

V

∑
k

dkpk(t), (4)

where the summation runs over all electronic states, i.e., spin
orientations and from k = 0 up to km, the maximum wave
vector in the first Brillouin zone of the crystal. Still, in order
to obtain P (t) we must integrate Eqs. (1)–(3), which do not
possess a closed-form analytical solution.

In order to obtain the time dependent macroscopic polar-
ization of the active medium, we define the saturation field of
the two-level atom transition, Esat = (4g2

k τeτh)−1/2, and define
a smallness parameter ε = 1/Esat. We consider fields weak
compared to Esat, i.e., E = εẼ with Ẽ ∼ O(1), and expand
the polarization and carriers into the odd-even series [11] as

pk = εp
(1)
k + ε3p

(3)
k + · · · , (5)

nk = n
(0)
k + ε2n

(2)
k + · · · , (6)

hk = h
(0)
k + ε2h

(2)
k + · · · . (7)

In this case, to the lowest order Eq. (1) reads

∂tpk = −�kpk − igk

(
n

(0)
k + h

(0)
k − 1

)
E + O(|E|2E). (8)

The higher order terms describe the effects of spectral hole
burning and they are usually small in semiconductor lasers
since the intraband relaxation rates are quite fast (of the order
of 100 fs).

For time scales longer than the intraband relaxation times,
the carriers have attained their stationary distributions, n̄k

and h̄k , respectively. Provided that we are not interested on
such time scales and that the fields are not saturating, the
quasiequilibrium approximation can be safely adopted. Within
this approximation, the stationary intraband distributions

062505-2



QUASIEQUILIBRIUM TIME-DOMAIN SUSCEPTIBILITY . . . PHYSICAL REVIEW A 81, 062505 (2010)

of electrons and holes are given by the quasi-Fermi-Dirac
distributions

nk = F
[

1

kBT

(
h̄k2

2me

− µn (t)

)]
, (9)

hk = F
[

1

kBT

(
h̄k2

2mh

− µh (t)

)]
, (10)

where µ(t) is the slowly time dependent Fermi level, kB is
Boltzmann’s constant, T is temperature, and F(x) represents
the Fermi-Dirac function.

Therefore, Eq. (8) can be formally solved as

pk(t) =
∫ ∞

0
dt ′Rk(t ′,t − t ′)E(t − t ′) + O(|E|2E), (11)

where we have defined the k-dependent convolution kernel

Rk(t ′,t − t ′) = −igke
−�kt

′
[nk(t − t ′) + hk(t − t ′) − 1].

(12)

Hence, the quasiequilibrium macroscopic optical polarization
is given by

P (t) = ε0

∫ ∞

0
dt ′χ (t ′,t − t ′)E(t − t ′) + O(|E|2E), (13)

where the convolution kernel reads

χ (t ′,t − t ′) = 1

ε0V

∑
k

dkRk(t ′,t − t ′) . (14)

It is worth recalling that Eq. (8) was the starting point
in [29] for finding the quasiequilibrium frequency-dependent
susceptibility χ̃(ω,N ) of the medium to a monochromatic field
under the approximations of low temperature, charge neutrality
and k-independent dipolar moment and intraband relaxation
rates, i.e., gk = g and γk = γ⊥. This yields

χ̃ (ω,N ) = −χ0

[
2 ln

(
1 − D

u + i

)

− ln

(
1 − b

u + i

)]
, (15)

where χ0 = mrd
2/(πε0Wh̄2), b = h̄k2

m/(2mrγ⊥), and the car-
rier density and frequency were scaled as

D = N

Nt

, Nt = mrγ⊥
πWh̄

, u = ω

γ⊥
, (16)

with W being the width of the of the QW and Nt its trans-
parency carrier density. In the absence of current injection,
i.e., N = 0, the susceptibility in Eq. (15) exhibits absorption
for field frequencies between the bandgap, i.e., ω = 0, and
that corresponding to the maximum span of the bands, i.e.,
�T = γ⊥b = h̄k2

m/(2mr ). Outside this interval, the system is
transparent as dictated by the lack of electronic states, and the
transition from transparent to absorptive or viceversa occurs
in a frequency interval spanning ∼6γ⊥. When N > 0 due to
current injection, the system presents gain in the frequency
interval between the gap and the transparency level defined by
the Bernard-Duraffourg condition [42].

Performing the summation in Eq. (14) under the same
assumptions as in [29], we find that the explicit form of the
convolution kernel χ (t ′,t − t ′) reads

χ (t ′,t − t ′) = χ0e
−γ⊥t ′ 2e−iγ⊥D(t−t ′)t ′ − 1 − e−iγ⊥bt ′

t ′
,

≡ χ [t ′,N (t − t ′)]. (17)

B. Discussion

The convolution kernel in Eq. (17) determines the time-
domain optical response of the semiconductor material in the
quasiequilibrium approximation. The constraints imposed to
the maximum field energies and the minimum pulse widths
define the limits of applicability of our approach.

Notice however that these restriction are not too severe since
in most situations, typical pulse widths in semiconductor lasers
are of the order of the picosecond, i.e., longer than the intraband
time, and possess modest energies. For definiteness, assuming
τe = 160 fs, τh = 100 fs and dk = 4.7 × 10−29 Cm, which
are typical for In-Ga-As-P lasers, one obtains a saturation
field Esat = 8.9 × 106 Vm−1. For a typical effective mode
area Sm ∼ 1 µm2 and as-cleaved facets (reflectivity r ∼ 0.55),
the power per facet emitted at saturation corresponds to
Pout = (1 − r2)ε0cn

2 |Esat|2 Sm/ng ∼ 500 mW. In the case
of a mode-locked laser operating at a repetition frequency
frep ∼ 50 GHz, this would correspond to pulse energies
Epulse ∼ 10 pJ. Therefore, the quasiequilibrium approximation
still holds even for ps pulses provided that their energy is not
too high.

In addition, before discussing the practical aspects of
our approach it is worth examining the convolution kernel
χ (t ′,t − t ′) in some detail.

(1) The convolution kernel depends only on the past values
of the carrier density in accordance with physical intuition.
It depends both on the retarded time argument t ′ and on the
instantaneous value of the time instant t . This simply reflects
the fact that the value of the gain and of the refractive index
depends on the current value of the time evolving population
inversion N (t − t ′). Furthermore, this N -dependence is non
linear. As such χ (t ′,t − t ′) is a causal, nonlinear and time
variant filter.

(2) Equation (17) can be obtained by Fourier transform
of the frequency and carrier-dependent susceptibility defined
by Eq. (15), although the procedure is quite involved and
it is unclear at which times the contributions of the carrier
density have to be considered in the convolution kernel. Indeed,
Eq. (15) was derived under the monochromatic assumption for
which the carrier density is time independent. The approach
taken here is more direct and clearer in what concerns the time
dependence of the contribution of the carriers.

(3) The convolution kernel χ (t ′,t − t ′) is well behaved at
t ′ = 0 since

χ [t ′,N (t − t ′)] −−−−−→
t ′→0+

iχ0γ⊥[b − 2N (t)/Nt ]. (18)

(4) The convolution kernel rapidly decays to zero with
the characteristic time scale γ −1

⊥ ∼ 100 fs, i.e., the inverse
of the polarization decay rate. This characteristic is very
convenient for numerical purposes, since it implies that in
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order to determine the macroscopic polarization only field
and carrier contributions within the last 1 ps, say, must be
considered.

(5) The inspection of Eqs. (13) and (17) calls for a helpful
approximation. The kernel of integration χ being nonzero from
t ′ = 0 to t ′ ∼ 3γ −1

⊥ , i.e., a few hundred femtoseconds it is
possible to assume that the carrier density N (z,t) does not
change appreciably over this time interval. This suggests to
perform a first order Taylor expansion of Eq. (17)

χ [t ′,N (t − t ′)]∼ χ [t ′,N (t)] + t ′Ṅ (t)
∂χ

∂N
+ · · · . (19)

Typically, QW lasers operate close to transparency, i.e.,
N ∼ O(Nt ), and the carrier density decays on a time scale of
γ −1

|| ∼ 1 ns, hence the relative error incurred when the first
order correction is neglected is

e =
∣∣∣∣t ′Ṅ (t)

∂χ

∂N

/
χ [t ′,N (t)]

∣∣∣∣ ∼ γ||γ −1
⊥ ∼ 10−4. (20)

Thus, provided that the time evolution of the carrier density
over a time γ −1

⊥ remains small, we can safely replace
N (t − t ′) → N (t) in Eqs. (13) and (17). The above statement
can only be violated if one considers the dynamics of highly
energetic sub-picosecond pulses where the strongly nonlinear
stimulated emission can modify appreciably the carrier density
within a time interval of a few hundred femtoseconds. Notice
however that in this case not only our first order expansion
in the field amplitude in Eq. (13) is invalid, but also that
the quasiequilibrium approximation does no longer hold.
We conclude that neglecting the retarded time argument in
Eqs. (13) and (17) is consistent with neglecting the O(|E|2E)
terms in Eq. (13).

(6) In order to derive Eqs. (15) and (17) we neglected the
k-dependence of the dipole moment gk and of the polarization
dephasing rate γk . It is however known that the dipolar
moment and the dephasing rate are decreasing and increasing
functions of the energy [19], respectively. We note that
these effects can be incorporated in our approach but at the
price of a more elaborated convolution kernel and a less
intuitive interpretation. One of the dominant effects of this
k-dependence is to decrease of the light-matter interaction for
high energies thereby inducing an effectively smaller energy
span of the bands: the strongly blue detuned transitions possess
a lower interaction with the field and a faster decay rate so
that their contributions to the optical response become less
important.

III. IMPLEMENTATION

The macroscopic polarization of the system given by
Eq. (13) provides the source term that has to be considered
when analyzing the dynamics of the optical field. For this
purpose, different modeling strategies have been developed,
the most widely used being—in order of increasing numerical
difficulty—the rate equation (RE) description, the traveling
wave modeling (TWM) [43] and the finite differences in
time-domain (FDTD) [44] method.

RE-based descriptions do not explicitly consider the spatial
variations. The field is expanded into cavity modes, and the
spatial dependence of all variables is removed by projection

onto these modes. In this case, Eq. (13) can be directly used,
with the convention that the field E in Eq. (13) has to be
understood as the amplitude of the sought optical mode, P as
the projection of the total polarization onto this cavity mode,
and N as the spatial average of the carrier density.

Conversely, the FDTD method is based on the direct
resolution of Maxwell’s equations, so the local polarization
of the active medium has to be provided. In this case, Eq. (13)
can also be directly used as the local constitutive relation of
the active medium, with just one trivial modification: note that
the FDTD method deals with the total field, polarization, and
carrier density—which exhibit temporal and spatial variations
of the order of the optical frequency and the wavelength,
respectively—hence a rotating exponential exp(i�r) must
multiply Eq. (17).

Instead, the application of Eq. (13) to the case of a TWM
is not direct, because the TWM is based on the slowly varying
approximation (SVA) and it involves decomposing the field
into forward and backward propagating waves and the carrier
density into slow and fast spatially evolving components.
Therefore in Sec. III A we briefly recall the TWM approach
and discuss how to exploit Eq. (13) in this context.

In Sec. III B we discuss the numerical algorithm used
to implement the convolution integral that determines the
macroscopic polarization from the past values of the local
field and carrier density. The temporal discretization inherent
to numerical integration imposes that the convolution has to be
performed from a sampled signal, which induces several kind
of errors that we discuss in Sec. III C. In addition, the large
energy span of the semiconductor QW bands, represented by
the b factor in Eqs. (15) and (17), proves to be the main source
of stiffness in the convolution method. We discuss how this
problem can be overcome in Sec. III D.

A. General form of the TWM

In this subsection we briefly recall the general form of
TWMs and we discuss how to implement the convolution
integral defining the macroscopic polarization in this context.
We refer the reader to [36,45] and references therein for more
details on the traveling wave modeling approach.

The evolution of the normalized slowly-varying amplitudes
of the forward and backward waves E± reads

(∂t ± ∂z)E±(z,t) = i
qw��L

2ε0ngc
P±(z,t) − αiE±(z,t), (21)

where αi are the internal losses of the system scaled to
length of the cavity L,� is the confinement factor of the
optical field to one QW, qw the number of QW, and ng

the group index. Space and time are scaled to the cavity
length L and transit time τc = ngL/c, respectively. P± are
the projection of the total polarization at (z,t) onto the forward
and backward propagation directions. They are obtained by a
coarse graining procedure by averaging the polarization over
a few wavelengths [46].

The total carrier density is decomposed as N (z,t) =
N0(z,t) + [N+2(z,t)e2iq0z + N−2(z,t)e−2iq0z], where N0(z,t)
is the quasi-homogeneous component, N±2(z,t) is the complex
amplitude of the (weak) grating component arising from
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standing wave effects in the system and q0 = (2πng)/λ is
the optical carrier wave vector. Their evolution is given by

τ−1
c ∂tN0(z,t) = I

eqwVa

− R(N0)

− i

h̄
(P+E�

+ + P−E�
− − c.c.), (22)

τ−1
c ∂tN±2(z,t) = −[

R′(N0) + 4Dq2
0

]
N±2

− i

h̄
(P±E�

∓ − E±P �
∓), (23)

where I is the current injected into a QW whose volume is Va , e
is the electron charge, and R stands for the recombination term
that includes the usual nonradiative, bimolecular, and Auger
recombination terms, as such R(N ) = AN + BN2 + CN3,
R′(N ) = dR/dN and the ambipolar diffusion coefficient
is D.

The closure is made by linking the counter-propagating
waves E±(z,t) to the spatially and time dependent active
material. From Eq. (13) we have that

P ±(z,t) = ε0

∫ ∞

0
dt ′{χ [t ′,N0(z,t − t ′)]E±(z,t − t ′)

+χN [t ′,N0(z,t − t ′)]N±2(z,t − t ′)E∓(z,t − t ′)},
(24)

with χ [t ′,N (t − t ′)] defined in Eq. (17) and

χN (t ′,N ) ≡ ∂χ (t ′,N )

∂N
= −2iγ⊥

Nt

e−γ⊥(1+iD)t ′ . (25)

Upon inspection of Eq. (24) one notices that the counter-
propagating waves E±(z,t) couple through the grating induced
in the carrier density N±2(z,t), the so-called spatial hole
burning. For all purposes, one shall only keep track of N+2(z,t)
since N−2(z,t) = N�

+2(z,t).
We recall that the field amplitudes E± and the polarization

waves P ± are in SI units, i.e., Vm−1 and CVm2, respectively.
The conversion to optical energy (in Joules) is achieved by
integrating the optical power (in Watts) ε0c|E±|2Sm/ng over
time where Sm is the surface of the mode.

However, since our TWM is better described in dimen-
sionless spatial and temporal units we shall give some order
of magnitude of the relevant scales. By assuming a cavity
length of 1.04 mm and an group index of refraction of
ng = 3.6, we obtain a single trip in the cavity of τc =
12.5 ps. A typical spatial discretization requires M = 400
mesh points, which in turns fixes the temporal discretization
of the field time evolution by the Courant-Friedrichs-Lewy
(CFL) condition [47]. In our notation both the temporal and
spatial discretizations read h = 1/M which corresponds to
a spatial step of hL = 2.6 µm and a temporal step of hτc =
31.25 fs. By choosing a typical value of an intraband relaxation
time of γ −1

⊥ = 125 fs one obtains a scaled decay rate of the
polarization of γ̃⊥ = τcγ⊥ = 100, which in turns gives a scaled
product of the time step and of the polarization decay rate
γ̃⊥h = 0.25.

To conclude, we refer the reader to [48] where the
discussion of how to impose proper boundary conditions in
the TWM can be found. It is also worth to mention that the

TWM method of integration described in [48] is second order
accurate, i.e., exact up to O(h3).

B. Convolution algorithm

We assume that time is discretized with step h, so at time
tn = nh Eq. (13) can be expressed as

P (tn) = ε0

∫ ∞

0
dt ′χ [t ′,N (tn − t ′)]E(tn − t ′),

≈ ε0

∫ Kh

0
dt ′χ [t ′,N (tn − t ′)]E(tn − t ′),

= ε0

K−1∑
m=0

Jnm, (26)

where we have assumed that the convolution integral can be cut
at a long enough delay tK = Kh. Moreover, we have defined

Jnm =
∫ (m+1)h

mh

dt ′χ [t ′,N (tn − t ′)]E(tn − t ′), (27)

which represents the contribution of the state of the system m

time steps ago to the present macroscopic polarization. Using
the trapezoidal approximation to the integral, up to third order
in h we have that

Jnm 	 h

2
(χn,mEn−m + χn,m+1En−m−1), (28)

where En = E(tn) and χn,m = χ [mh,N (tn−m)]. Notice that
this second order approximation to the integral is consistent
with the algorithm of integration of our TWM [48]. Hence we
can finally express the macroscopic polarization at time tn as

Pn

ε0χ0
=

K−1∑
m=1

qn,mEn−m + i
hγ̃⊥

2
En(b − 2Dn), (29)

where

qn,m = e−γ̃⊥hm 2e−iDn−mγ̃⊥mh − e−ibγ̃⊥mh − 1

m
. (30)

In Eq. (29), the second term represents the contribution of the
first exterior point (m = 0) and we have considered that the
contribution of the last exterior point is vanishingly small due
to the decreasing exponential, i.e., qn,K = 0.

In the case where one neglects the delayed argument in the
carrier density, this expression allows for an efficient numerical
implementation as it can be streamlined as

qn,m = [2km − (lm + rm)]/m,

km = κkm−1,
(31)

lm = λlm−1,

rm = ρrm−1,

with κ = e−γ̃⊥h(1+iDn), λ = e−γ̃⊥h(1+ib), ρ = e−γ̃⊥h, and with
the initial conditions k0 = l0 = r0 = 1. Therefore, besides
the cost of calculating the three complex exponentials κ,λ

and ρ, only three complex multiplications and one division
are needed for each iteration of m. This implementation is
versatile, although not the fastest since lm/m and ρm/m are
time independent quantities that can be evaluated once and
for all. The only important quantities that cannot be tabulated
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beforehand are the km/m cutting the cost to one initial complex
exponential as well as one complex multiplication and division
for each value of m.

To conclude, the same numerical algorithm can be used in
conjunction with a TWM. In this case the discretized version
of Eq. (24) reads

P ±
n

ε0χ0
=

K−1∑
m=1

qn,mE±
n−m + i

hγ̃⊥
2

E±
n

(
b − 2D0

n

)

− 2iγ̃⊥h

[
K−1∑
m=0

D±2
n−m

(
kn,mE∓

n−m − E∓
n

2

)]
, (32)

where qn,m is given by Eq. (30) with D0 instead of D, and
kn,m = e−iγ̃⊥mhD0

n−m .

C. Numerical errors

The numerical implementation of the convolution integral
according to the algorithm above presents some computational
problems that are worth discussing.

The most obvious error steams from the fact that the integral
in Eq. (13) should span from t ′min = 0 to t ′max = ∞. This poses
the problem that a possibly infinite segment of the past history
of the field has to be kept at each spatial position. However,
convergence is reached fairly quickly in our case due to the
decaying exponential in Eq. (17). The results are well within
the convergence region if one uses tK = 6γ −1

⊥ in Eq. (26) and
therefore K is the nearest integer to 6/ (hγ⊥). This typically
corresponds to a time of the order of the picosecond which
conveys a typical memory segment of K = 20 past sampled
values of the fields and carrier densities. Thus, the memory
cost is marginal and the computing cost is light. An efficient
way to store this past information is to use a circular array
at each point of the spatial grid where for each time step the
oldest value is replaced by the newest one.

A second, quite more subtle problem arises from the
discrete nature of numerical integration. While the convolution
integral in Eq. (13) determining the macroscopic polarization
involves continuous time functions, its numerical implementa-
tion in Eqs. (29) and (32) relies on quantities that are sampled
with a time interval h. First, the sampling rate h has to be
smaller than the inverse of the polarization decay time γ̃ −1

⊥
for numerical stability. Second, the sampling introduces a
Nyquist cut-off frequency �N = π/h, hence the numerical
implementation has to automatically present some aliasing.
Clearly, the finer the discretization, the larger the cut-off
frequency, but at the price of an increased computation time.

In order to test the numerical convolution algorithm, we
present in Fig. 1 the comparison between the exact and the
numerical susceptibilities of the medium for a monochromatic
field at different frequencies ω, in the case where b = 10.
The scaled numerical susceptibility (dashed lines) determined
as Pn/(ε0χ0Ene

iωnh) from Eq. (29) has been obtained with
quite a large value of the product γ̃⊥h = 0.25 but already
represents a very good approximation to the exact suscep-
tibility χ̃ (ω,N )/χ0 (solid lines) defined by Eq. (15) over
the central frequency interval for both low and high carrier
densities, i.e., N = 0 and N = 3Nt , respectively. However,
one clearly sees a discrepancy for the reddest and bluest

1000 500 500 1000
ω

2

1

1

Im χ

1000 500 500 1000
ω

2.5

2

1.5

1

0.5

Im χ

FIG. 1. (Color online) Analytical (black) and effective imaginary
parts susceptibilities (red dashes) obtained from numerical convolu-
tion for fields at different frequencies ω for γ̃⊥ = 100 and b = 10.
Left (right) panel corresponds to N = 3Nt (N = 0).

frequencies close to the Nyquist border. The reason of the
this deformation is immediately clear if one looks at the
same graph over a broader frequency range as in Fig. 2: we
obtain an aliased, or periodized, susceptibility, the period being
twice the Nyquist frequency. The effective susceptibility at the
reddest frequency ω = −�N has to be equal to the effective
susceptibility at the bluest frequency u = �N since these two
frequencies are indistinguishable due to aliasing. In our case,
we have taken h = 1/400, therefore the cut-off frequency is
�N ∼ 1256 while the top of the band where the blue transition
to reabsorption occurs is located at �T = γ̃⊥b = 1000.

For a two-level atom, this problem would be less stringent
since the shape of the gain is symmetric with respect to its peak
value, therefore the bluest and reddest values are identical
and only a slight distortion in the antisymmetric index of
refraction should be expected. Instead, semiconductor media
are transparent at the reddest frequencies and absorptive at
the bluest ones, hence a deformation of the absorption/gain
spectrum occurs.

This problem is readily overcome by using a sufficiently
small value of h in such a way that the dynamics expected in
the central frequency region is not affected by the deformations
occurring close to the Nyquist border and by choosing a cut-off
�N larger than �T .

D. Stiffness and fidelity

Inspection of Eq. (30) reveals that the term e−imγ̃⊥bh poses
the most severe restrictions to the choice of h: in principle,
a faithful discretization of the numerical convolution kernel
does not only require small values of γ̃⊥h but the more
stringent condition γ̃⊥bh < π hence the large values of γ̃⊥

2000 1000 1000 2000
ω

2

1

1

Im χ

FIG. 2. (Color online) Same as Fig. 1 but extending the frequency
interval to twice the Nyquist frequency. Aliasing in the numerical
convolution clearly manifests as a periodization of the susceptibility.
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FIG. 3. (Color online) Left: Imaginary part of the susceptibility
obtained from Eq. (15) for b = 10 (black line), b = 50 (red dashes),
and b = 100 (green dots). The parameters are γ̃⊥ = 100 and N =
3Nt . Right: Zoom of the normalized gain spectrum close to the gap
region. In this spectral range the three curves almost coincide in spite
of the different values of b.

and b in semiconductor lasers would lead to extremely small
and unpractical time steps.

In order to overcome this difficulty, it is worth reexamining
the role of b in the dynamics of the system. In frequency
domain, b represents the interval of photon energies above
the gap—normalized to γ⊥—over which optical transitions
can occur, and bigger values of b simply allow for transitions
with higher energy (see Fig. 3 left panel). In addition, b also
determines the refractive index of the QW system (see Fig. 4
right panel), but in the frequency interval close to the bandgap,
it does so in a trivial way, just adding a constant contribution
that does not modify the effective α factor.

In addition, note that although unpractically small time
steps would be required in order to describe dynamics over
the large spectral region of absorption in the QW material, in
most cases we are interested only in dynamics occurring in the
spectral region close to the bandgap of the QW, where gain and
saturable absorption occur. From a numerical point of view,
the time step h has to be chosen in such a way that it provides
a faithful representation of such dynamics, hence much longer
time steps could be used.

The above facts suggest that, since we are interested in
the dynamics of fields whose spectral contents is close to the
bandgap, we can artificially reduce the value of b without
affecting the amplification or attenuation in the spectral
region of interest (see Fig. 3 right panel). The accompanying
reduction in refractive index is not relevant: on one hand, this
constant contribution can be absorbed into the propagation
constant thereby renormalizing the optical length of the cavity;
on the other, it has to be recalled that the actual refractive
index to be considered in the active region is the difference

2000 2000 4000 6000 8000 10000
ω

4

2

2

4

6
Re χ
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FIG. 4. (Color online) Same as in Fig. 3 but for the real part of
the susceptibility. Notice that, in the spectral range of interest around
the bandgap (right panel), the three curves are simply shifted upward
as b increases.

between the refractive index of the active region and that
of the nucleus of the waveguide (see Eq. (17) in [36]).
Therefore, even if the actual semiconductor band is very wide
as corresponding to b ∼ 103, a smaller value of b ∼ 10–50
can provide us with a good description of the dynamics close
to the band edge; in fact, b = 10 corresponds to an absorption
band of �ν = bγ⊥/ (2π ) = 13 THz—i.e., about 100 nm at
λ ∼ 1.55 µm—which is much broader than most optical fields.
In addition, it is worth recalling that—as discussed in Sec. II B
7—absorption at high frequency is overestimated due to the
decrease of dipole moment and the increase in dephasing rate
with energy, hereby lowering the effective values of b. For all
these reasons, we can use a lower value of b which allows
us to safely use much longer time steps h provided that the
condition γ̃⊥bh < π holds.

In summary, the main restriction on the time step h does not
stem from the fast evolution of the polarization as compared to
the field and carrier density, this requirement being controlled
by the scaled quantity γ̃⊥h. Instead, it comes from the effective
value of b that can be used in order to have the resulting
dynamics in a frequency region well contained in the middle
of the numerical bandwidth, far from the numerical artifacts
at the reddest and the bluest frequencies. This last condition
is controlled by using a sufficiently large value of b and by
fulfilling the more stringent requirement γ̃⊥bh < π , which
ultimately controls the stiffness of the system.

IV. NUMERICAL TESTS

In order to evaluate the potential of our method, in this
section we analyze different situations encountered when
an optical pulse is injected into a waveguide containing an
unpumped QW in its core. As already commented, this case,
which corresponds to propagation into a SA, can hardly
be reproduced with a Padé approximant due to the sharp
frequency dependence of the absorption, see for instance
Fig. 1.

We consider a cavity of length 1.04 mm and effective group
index ng = 3.6 with both facets being antireflection coated
(r = 10−6). Note that this cavity configuration with extremely
small reflectivities represents quite a special case of our model.
We have chosen it because it allows for simpler physical
understanding of the numerical results since in this limit, when
one injects a pulse from the left facet into the forward direction,
the reflected component E−(z,t) is always very small and as
such P−(z,t) ≈ 0 ≈ N2(z,t), hereby permitting to compare
the results of the bidirectional TWM with the intuitive picture
of unidirectional propagation. We remark however that that
this special configuration serves only as an illustration of the
capabilities of our approach for reproducing the strong spectral
filtering of a SA. See for instance [45] for a more general use
of our model in a two-section Fabry-Pérot mode-locked laser
with cleaved facets.

The active material consists of five QWs, i.e., qw = 5
of width W = 6 nm, the dipole moment is d = 4.7 ×
10−29 Cm, the reduced mass is mr = 5 × 10−32 kg, the
confinement factor is � = 1%, and the electron and hole
relaxation times are τe = 160 fs and τh = 100 fs, respectively.
The saturation field is Esat = 8.9 × 106 Vm−1, and assuming
a mode spot size of 1 µm2 we obtain a saturation power of
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∼750 mW. We deduce that the gain bandwidth is γ −1
⊥ = 125 fs,

the transparency carrier density Nt = 2.1 × 1023 m−3 and that
the maximum modal absorption in the unpumped QW amounts
to qw�πχ0 �/(cng) = 120 cm−1.

Due to the very large absorption of the QW, internal losses
are not playing any role in the numerical tests that follow,
therefore we assume for the sake of simplicity αi = 0. For
the same reasons, due to the low carrier density present in the
SA we neglect as well bimolecular and Auger recombination
coefficients. We assume that we are in the case of a slow SA,
as such the recovery time A−1 is 1 ns.

The cavity is discretized with M = 400 spatial points. We
monitor the field output through the right facet of the slab,
while an optical pulse can be injected through the opposite,
left facet.

Finally, in order to simulate spontaneous emission noise
we add to the polarization waves P±, at each time step and
at each spatial point, a stochastic component consisting of
Gaussian white noise of zero mean and variance β = 10−2

which we assume for the sake of simplicity to be carrier density
independent. The noise was generated by the Box-Muller
method [49] and a Mersenne twister [50].

A. Noise emission spectrum

We produced several noise spectrum by the following
method. The simulation time is 12.5 ns which correspond to
4 × 105 samples used for the Fourier transform. The memory
segment is composed of K = 25 points. Thorough this section,
we checked that we obtained identical results with K = 50.
The optical spectra were smoothed by averaging over M

channels. We therefore cut the M first channels on the red and
blue side that cannot be averaged. We started by producing
a noise spectrum of a passive cavity, which is achieved by
enforcing χ0 = 0, and a second noise spectrum with χ0 = 2.
In this latter case, since there is no electrical pumping in the
cavity, i.e., J = 0 the population inversion is N (z,t) = 0, up
to small statistical fluctuations.

The red (lower) line in Fig. 5 presents the optical spectrum
of the emission through the right facet while for the sake
of comparison, we also show the noise spectrum of the
transparent waveguide as a black (upper) line. We can see
that transparent waveguide yields a flat noise spectrum,
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FIG. 5. (Color online) Optical spectra of a transparent waveguide
[black (upper)] and of a waveguide with an unpumped QW in its core
[red (lower)].

while the results for the QW system nicely reproduce the
absorption characteristics of the unpumped QW, in particular
the band edge of the semiconductor. However, one can also
notice the extra residual absorption below the band edge due
to the aliasing artifacts discussed earlier. It must be noted that
at the band-edge frequency, where the absorption coefficient
of the empty QW should be exactly 1/2 of the maximum
value, the spectral density of the noise is not midway between
the maximum and minimum noise densities. This is a simple
consequence of the fact that even in the linear regime, the
resulting spectral density is not a linear but an exponentially
decreasing function of the slab length times the absorption
coefficient.

B. Small signal multimode response

When a pulse is injected into the waveguide with the
unpumped QW, the output field has to present frequency-
selective absorption with saturable effects appearing as the
input power is increased. In order to study the effects of this
frequency-selective saturable absorption, which leads to pulse
distortion, we consider the injection into the slab of Gaussian
pulses of the form

Einj =
√

Ip

ε0cSm

exp[−t2/(4σ 2) − iωinjt],

where Ip represents the peak power, the corresponding pulse
energy being Ep = √

2πσIp. The length of the simulations is
31 ps, i.e., 103 steps. The pulse energy is kept as low as possible
in order to see only the linear spectral filtering (Ep = 0.01 fJ).
In other words, the carrier density N (z,t) remains close to
zero along the slab during the pulse propagation. The carrier
frequency of the pulse ωinj is in all cases taken to be zero,
meaning that the spectrum of the pulse is centered at the band
edge of the QW absorber.

Figure 6 shows the optical spectra of the input (black solid
lines) and the output (red dashed lines) pulses whose full-width
at half-maximum (FWHM) is 800 fs. The bluest frequency
components are strongly damped as intuition suggests. This
effect would be obviously larger for the shorter pulses, which
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FIG. 6. (Color online) Optical spectrum of a 800 fs FWHM
gaussian pulse after single propagation in the slab without QW
(black line) and with QW (red dashes). For clarity, both spectra are
normalized to the maximal spectral density of the pulse obtained
without QW.
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FIG. 7. (Color online) Time domain intensity profile of a 1 ps
FWHM pulse exiting the saturable absorber (black line) and carrier
density at the output facet (red dots). From top to bottom, the pulse
energy is e = 5.5 fJ and e = 55 fJ, respectively. The pulse peak
powers are normalized to unity for clarity. Notice that only the low
energy pulse remains symmetric and that the more energetic the
pulse, the longer the propagation time of the peak. On the bottom
panel, substantial absorption occurs that significantly increases the
carrier density close to the output facet.

span a larger frequency interval, but it is already clearly
noticeable for 800 ps pulses, hereby indicating the need to
consider absorption dispersion when studying systems with
a saturable absorbers as, e.g., passively mode-locked lasers.
Clearly, after a single propagation trough the slab, the output
pulses in time domain are distorted, but more important, they
present strong chirping due to this linear spectral filtering
effect.

C. Large signal multimode response

Finally, in order to study saturable absorption effects as
the pulse propagates in the QW system, we consider injected
pulses of constant FWHM of 1 ps but of increasing energy. The
black lines in Fig. 7 show the output pulses (normalized to a
maximum power of unity for the sake of comparison) obtained
for energies Ep = 5.5 fJ (top) and Ep = 55 fJ (bottom). The
corresponding to peak powers are Ip = 2.2 mW and Ip =
22 mW, respectively, well below the saturating power Isat. In
addition, the red dots depict the carrier density at the output
facet obtained in each case.

We can clearly observe that only the low energy pulse keeps
an almost symmetric intensity profile since the carrier density
is always kept at a low level. Instead, for intense pulses, the
leading edge is absorbed and the resulting pulse shape becomes
quite asymmetric. In this case we can also observe that the
carrier density at the output facet is substantially different
from zero, indicating the presence of strong saturation in the
absorption of the QW. We can moreover observe that the
peak of the pulse exits the slab after a propagation delay that
increases with the pulse energy. This is not only a consequence
of the pulse distortion due to the absorption, but also due to
the increase in effective group index associated with carrier
generation.

V. CONCLUSIONS

We have presented a time-domain analytical description of
the optical response of quantum well within the quasiequilib-
rium approximation valid for nonsaturating fields. The convo-
lution approach adopted here allows to treat systems which are
beyond reach of the Padé approximation developed in [36]. We
have thoroughly analyzed the numerical implementation of the
method and the potential sources of error. We have shown that
the method can be numerically implemented both accurately
and efficiently by artificially reducing the absorption band of
the QW medium without sacrificing the fidelity of the resulting
dynamics. The method has been applied to the analysis of
pulse propagation in a waveguide with an unpumped QW in
its core that acts as a saturable absorber. The obtained results
are in good correspondence with the reported behavior of these
systems, and build confidence in the use of the method as an
efficient and accurate tool for modeling the time response of
QW media.
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