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Heavy He-like ions are considered to be promising candidates for atomic parity-nonconservation (PNC) studies,
thanks to their relatively simple atomic structure and the significant mixing between the almost degenerate (for
the atomic numbers Z ∼ 64 and Z ∼ 91) opposite-parity levels 1s2s 1S0 and 1s2p 3P0. A number of experiments
exploiting this level mixing have been proposed, and their implementation requires a precise knowledge of the
2 3P0–2 1S0 energy splitting for different nuclear charges and isotopes. In this paper we performed a theoretical
analysis of the level splitting, employing the relativistic many-body perturbation theory and including QED
corrections for all isotopes in the intervals 54 � Z � 71 and 86 � Z � 93. Possible candidates for future
experimental PNC studies are discussed.
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I. INTRODUCTION

Parity-nonconservation (PNC) studies in atomic systems,
stemming from the original proposal by Bouchiat and Bouchiat
[1], have attained considerable interest both in experiments and
theory [2]. Atomic PNC investigations are complementary
to high-energy collider experiments insofar as they provide
stringent tests of the standard model at low-momentum trans-
fer. Up until the present, most atomic PNC experiments have
been performed with neutral atoms. In particular, large parity-
violating amplitudes were observed in forbidden transitions
in ytterbium [3], while precise measurements with cesium
beams [4] led to an accurate value of the weak nuclear charge
QW in perfect agreement with the standard model [5,6].

The interpretation of the results of experiments with neutral
atoms is hindered by the precision of atomic-structure calcula-
tions. Instead, in heavy highly charged ions electron-electron
correlations are suppressed by a factor 1/Z with increasing
atomic number Z. A theoretical treatment of few-body systems
[7] [for example, making use of relativistic perturbation theory
or multiconfiguration Dirac-Fock methods and including cor-
rections of quantum electrodynamics (QED)] can nowadays
achieve the required accuracy to extract PNC effects.

Heavy He-like ions are particularly envisaged for atomic
PNC studies as was pointed out by Gorshkov and Labzovskii
[8]. In fact, they are the simplest ions in which excited levels
of opposite parity and equal total angular momentum get close
in energy within certain intervals of the atomic number Z. In
particular, the two levels 1s2s 1S0 and 1s2p 3P0 cross at Z ∼ 64
and Z ∼ 91. Moreover, they are characterized by a significant
overlap between the electronic wave functions and the nucleus.
Both these features enhance the PNC mixing between the two
opposite-parity levels 1s2s 1S0 and 1s2p 3P0 that is described
by the coefficient

iη = 〈ψ(2 3P0)|HW |ψ(2 1S0)〉
E(2 1S0) − E(2 3P0) + i�/2

, (1)

where � is the total width of the states.
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Several proposals of PNC experiments exploit the near
degeneracy of the states 1s2s 1S0 and 1s2p 3P0 in high-Z He-
like ions and employ different techniques: laser-induced [9] or
spontaneous [10] two-photon transitions, as well as radiative
[11] or dielectronic recombination [12] in initially H-like ions.
All proposed experiments require accurate calculations of the
energy difference between the opposite-parity states.

Precise theoretical calculations of the 2 3P0–2 1S0 energy
splitting have been performed in recent years for a wide
range of atomic numbers [13–17]. All these studies were
done only for the most abundant isotope of a given Z. It is
important, however, to also know the isotopic dependence
of the 2 3P0–2 1S0 splitting near the crossing points. In fact,
the use of different isotopes may help to adjust the energy
splitting to the needs of a particular experiment (e.g., in order
to employ visible light to induce the two-photon electric-dipole
2E1 transition between 1s2s 1S0 and 1s2p 3P0) and, moreover,
will allow one to extract the weak charge QW [3] for neutrons
and protons separately [18]. The isotopic dependence of the
transition energy in uranium was partly considered only in
Ref. [13]; nevertheless, the numerical uncertainty that resulted
was too large.

On the ground of these motivations, we performed a sys-
tematic theoretical analysis of the 2 3P0–2 1S0 energy splitting
in He-like ions for several isotopes with atomic number Z in
the intervals 54 � Z � 71 and 86 � Z � 93. In comparison
to the most accurate results to date available in Ref. [17], we
improved the treatment of electron correlations by applying a
relativistic many-body perturbation theory (RMBPT) method
to all orders and, in the important case of uranium, we adopted
the most recent nuclear parameters in our calculations.

We will show that the isotopic dependence makes it possible
to tune the energy splitting of the 1s2s 1S0 and 1s2p 3P0

levels within an interval of about ±4 eV, and we discuss the
implications on future PNC experiments with He-like ions.

The paper is organized as follows. In Sec. II we shall give a
few details of the theoretical method. In Sec. III our results on
the isotopic dependence of the 2 3P0–2 1S0 energy splitting will
be discussed, and the case of 238U treated in detail. Conclusions
will follow in Sec. IV.
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II. THEORETICAL TREATMENT OF THE
2 3P0–2 1S0 ENERGY SPLITTING

A. Electron correlations

The 2 3P0–2 1S0 energy splitting has been evaluated by
separately treating electron correlations and QED corrections
of the two levels 1s2s 1S0 and 1s2p 3P0. Electron correlations
have been obtained using an all-order RMBPT method of
two open-shell electrons [19] (see also Ref. [20] for an
implementation of the method in nonrelativistic systems) that
we shall briefly describe here.

We split the Hamiltonian H that describes a two-electron
He-like ion as

H = H0 + V, (2)

where V accounts for electron correlations and H0 is an
independent-particle Hamiltonian that reads

H0(r1,r2) = H̄0(r1) + H̄0(r2). (3)

In Eq. (3), r1 and r2 are the positions of the electrons with
respect to the nucleus, and

H̄0(ri) = HD(ri) − Ze2
∫ +∞

0
dr′ ρN (r′)

|ri − r′| , (4)

where HD is the free-particle Dirac Hamiltonian and ρN is
the charge distribution of the nucleus. The perturbation V

contains both the Coulomb and Breit interactions between
the two electrons (1s and 2p1/2 or 1s and 2s) on the same
footing. The Breit term in the RMBPT is widely adopted to
describe magnetic interactions and retardation effects [21]. No
hyperfine interaction was considered here because both levels
1s2s 1S0 and 1s2p 3P0 have total angular momentum J = 0.

The aim of the RMBPT is to calculate perturbatively
the energy spectrum E of the Hamiltonian H in Eq. (2).
The Hamiltonian H0 is discretized in a radial box and its
two-electron eigenfunctions �0 are evaluated numerically, as
discussed, e.g., in Ref. [22]. A relativistic jj -coupling scheme
is used here, since we are dealing with high-Z ions.

The problem is simplified by focusing on a subspace P
(called model space), spanned by d eigenstates �i

0 of H0 (with
i = 1, . . . ,d): P is generally defined by including strongly
mixing configurations, while all other configurations form an
orthogonal space whose influence on the states of interest is
accounted for in a perurbative way. In this work, in order
to evaluate the energy level 1s2p 3P0 we chose a model
space P that contains the two configurations (1s2p1/2)J = 0
and (2s2p1/2)J = 0, while for 1s2s1S0 we chose solely the
configuration (1s2s1/2)J = 0.

It is possible to establish a correspondence between d

eigenfunctions �a of the full Hamiltonian H and their
projections �a

0 upon P , called model functions,

�a
0 = P�a (a = 1, . . . ,d), (5)

by using the the projection operator P that reads

P =
∑
�i

0∈P

∣∣�i
0

〉 〈
�i

0

∣∣. (6)

Under general conditions, Eq. (5) can be inverted, that is,

�a = ��a
0 (a = 1, . . . ,d), (7)

by making use of the wave operator � that satisfies the
generalized Bloch equation [23,24]

[�,H0]P = V �P − �PV �P. (8)

From the eigenvalue equation of the full Hamiltonian H of
the system,

H�a = Ea�a (a = 1, . . . ,d), (9)

and by employing Eq. (7) and operating with the projection
operator P on both sides of Eq. (9), we can now define in P
an effective Hamiltonian H eff [23],

H eff = PH0P + PV �P, (10)

whose eigenvalue equation reads

H eff�a
0 = Ea�a

0 (a = 1, . . . ,d). (11)

It follows from Eq. (11) that the eigenvalues of H eff that
correspond to the model functions �a

0 are the exact energy
eigenvalues Ea of the full Hamiltonian H that correspond to
�a for a = 1, . . . ,d. In order to solve Eq. (11) and obtain the
energies Ea , the wave operator � must be calculated from the
Bloch equation (8). To reduce the complexity of this problem,
in a perturbative approach � is expanded at nth order in a
series

�n = I + �(1) + · · · + �(n), (12)

where I is the identity operator. The generic term �(n) contains
n interactions with the perturbation V and follows recursively
from the Bloch equation. With �n, the nth order effective
Hamiltonian H eff

n = PH0P + PV �nP is defined, according
to Eq. (10), and upon numerical diagonalization of H eff

n one
gets the exact energies Ea

n at nth order.
In the interval 54 � Z � 93 considered in this work, we

found that numerical convergence is achieved after just a few
interactions.

B. Radiative corrections

The RMBPT method sketched in Sec. II A does not include
radiative corrections. The latter are, however, important in
heavy ions. Moreover, the accuracy that can be reached in
experiments is of the same order as the size of the QED
corrections, as shown, for example, in the recent measurement
of the 1s2p3/2 → 1s2s intrashell transition in He-like uranium
[25]. In the past, the lack of sufficient accuracy in QED
corrections hindered the calculation of level crossings (see,
e.g., the discussion in Ref. [13]).

In the present work, we added QED corrections taken
from recent literature to the eigenenergies Ea

n of the effective
Hamiltonian in Eq. (10). In Ref. [17], ab initio calculations
of two-electron QED effects to all orders in αZ in He-like
ions were performed within the range Z = 12–100. From that
paper we adopted the one-loop and the two-electron QED
corrections. The two-loop QED correction is important for
high-Z ions, since it scales as (αZ)4α2. Nevertheless, a precise
evaluation of this term is only available for uranium and
bismuth [26]. For other nuclides, we instead employed the
numerical results of the two-loop correction from Ref. [17],
which are the most accurate up to now. Higher-order [14] and
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relativistic recoil corrections [27] have been also included in
our final results.

III. RESULTS AND DISCUSSION

A. 2 3P0–2 1S0 energy splitting in He-like 238U ions

We shall discuss here in some detail our numerical results
of the 1s2s 1S0 and 1s2p 3P0 energies in He-like 238U, for the
important role played by this nuclide, and as a test case of
our method. A large source of theoretical uncertainty in the
calculations of the energy levels lies in nuclear-size effects and
in the nuclear model adopted. However, this can be reduced
in the case of uranium, since a recent study of 238U ions
led to improved nuclear parameters for a deformed Fermi
distribution [28].

References [28,29] discuss that the error produced by the
choice of the nuclear model and of the nuclear deformation
on the atomic energy levels is rather marginal, provided
the correct rms nuclear radius is used. Therefore, since the
RMBPT code that we are employing here was developed
for spherical symmetry, we adopted in Eq. (4) a spherically
symmetric Fermi radial distribution of the nuclear charge,
with the rms radius 〈r2〉1/2 = 5.8569(33) fm recommended
in Ref. [28]. Higher moments of the charge distribution were
discarded.

The numerical uncertainty ε on the 2 3P0–2 1S0 energy
splitting in He-like 238U was estimated by adding quadrati-
cally two different errors. The first one, εrms, was obtained
by varying the rms nuclear radius within its experimental
uncertainty; the second one, εdistr., was evaluated by calculating
RMBPT correlations alternatively with a spherical and with
a Fermi distribution of the nucleons. Our final estimate is
ε =

√
ε2

rms + ε2
distr. = 0.131 eV.

The numerical results of the 1s2s 1S0 and 1s2p 3P0 ioniza-
tion energies in He-like 238U ions are reported in Table I, while
a comparison of the 2 3P0–2 1S0 transition energy with previous
results is given in Table II. Although the results of different
authors are rather scattered, ours are in agreement, within

TABLE II. Comparison of the 2 3P0–2 1S0 transition energy
in He-like 238U ions (in chronological order) with previous
calculations. All energies are in eV.

2 3P0–2 1S0

This work −2.793(131)
Maiorova et al. [11] −2.81(8)
Artemyev et al. [17] −2.64(28)
Andreev et al. [16] −4.511
Maul et al. [13] 0.30
Plante et al. [15] −2.6398
Drake [14] −1.816

the calculated error bars, with those of Maiorova et al. [11],
Artemyev et al. [17], and Plante et al. [15].

B. Isotopic dependence of the 2 3P0–2 1S0 energy splitting

In order to explore the isotopic dependence of the 2 3P0–
2 1S0 energy splitting, extensive calculations have been per-
formed for several isotopic chains of nuclei with atomic
numbers close to Z = 64 and Z = 91 (i.e., where the 1s2s 1S0

and 1s2p 3P0 energy levels are expected to cross). Nu-
clides characterized by evanescent lifetimes were discarded,
setting a limit of 10−3 s, because PNC experiments will
be based on spectroscopy. RMBPT calculations of electron
correlations have been performed separately at all orders for
each (A,Z) combination, although only zeroth- and first-
order terms make a significant contribution to the isotopic
shift. The recoil correction has been taken into account
according to each isotope mass. Owing to their relatively
small value, QED corrections do not give any noticeable
contribution to the isotope shift and may be kept fixed for each
isotope.

For nuclides other than 238U and 232Th [for which, re-
spectively, the recommended values 〈r2〉1/2 = 5.8569(33) [28]
fm and 〈r2〉1/2 = 5.7210(613) fm [31] have been used], we
adopted a spherical homogeneous nuclear distribution ρN in
Eq. (4) with the rms nuclear radii listed in Ref. [32]. In

TABLE I. Contributions to the energies of the 1s2s 1S0 and 1s2p 3P0 states in He-like 238U ions, relative to the
ionization threshold. All energies are in eV.

1s2s1S0 1s2p3P0

Dirac energy (pointlike nucleus) −34 215.481 −34 215.4811
Nuclear size effectsa 37.738 4.4133
Total zeroth-order energy −34 177.743(27) −34 211.0678(56)

First-order correlation [30] 850.135 923.198
Second-order correlation −6.5368 −5.6726
Higher-order correlation −0.0005 −0.0174
Total electron correlations 843.598(1) 917.508(4)

One-electron QED correction [26] 49.547(75) 6.846(12)
Two-electron QED correction [17] −3.8259(4) −4.4740(3)
Higher-order QED correction [14] −0.009(51) 0.002(73)
Nuclear polarization and recoil correction [27] 0.0890 0.0491

Total energy −33 288.344(94) −33 291.137(74)

aA Fermi distribution for the nuclear charge with rms radius 〈r2〉1/2 = 5.8569(33) fm [28] was adopted.
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the case of actinides (86 � Z � 93), for which the radius
R(N,Z) of a given isotope with Z protons and N neutrons
is often unknown, we interpolated the reference radius R0 of
a neighboring nuclide with Z0 protons and N0 neutrons by
employing the formula

R(N,Z) ≈ R0

(
1 + 
N

A0

)kZ
(

1 + 
Z

A0

)kN

, (13)

where A0 = Z0 + N0, 
Z = Z − Z0, and 
N = N − N0 

N . Numerical values of the constants kZ and kN are 0.149(15)
and 0.484(15), respectively [32].

The results are presented in Fig. 1 for the 54 � Z � 71
interval (rare-earth metals) and in Fig. 2 for the 86 � Z � 93
interval (actinides). Level crossings have been found in the
Z = 64 isotopic chain of gadolinium between A = 155 and
A = 156, and in the Z = 91 isotopic chain of protoactinium
between A = 219 and A = 220.

According to Eq. (1), experiments on atomic parity-
nonconservation will strongly profit from a close proximity of
the two opposite-parity levels 1s2s 1S0 and 1s2p 3P0 since this
enhances the PNC mixing. For these experiments, therefore,
the ideal candidates are He-like protoactinium or gadolinium
ions. We report numerical values of the 2 3P0–2 1S0 energy
splitting and lifetimes of the nuclides along the Z = 64 and
Z = 91 chains in Table III. Results for Z = 92 are also listed
because He-like uranium has been repeatedly proposed in
the literature for PNC studies. The numerical uncertainties
in Table III have been estimated by varying the radius of the
nuclear distribution ρN within its experimental uncertainties.

100 120 140 160 180 200
A

-2
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2

∆E
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eV
]

Z=54 (Xe)
Z=55 (Cs)

Z=56 (Ba)
Z=57 (La)

Z=58 (Ce)

Z=60 (Nd)

Z=62 (Sm)

Z=63 (Eu)

Z=64 (Gd)
Z=65 (Tb)

Z=66 (Dy)

Z=67 (Ho)

Z=68 (Er)

Z=69 (Tm)

Z=70 (Yb)

Z=71 (Lu)

FIG. 1. Isotopic dependence of the 2 3P0–2 1S0 energy splitting,

E, in He-like rare-earth-metal ions (54 � Z � 71). Solid lines
connect nuclides of a given isotope chain. Solid squares represent
nuclides for which an experimental rms nuclear radius is reported in
the literature.

Some experimental schemes (e.g., those exploiting a 2E1
laser-induced transition between the 1s2s 1S0 and 1s2p 3P0

levels) require that the level splitting is not exceedingly small
because they can be best performed by employing methods
of optical spectroscopy. If we consider Fig. 2, the transition
energy for the 88 � Z � 92 isotopic chains is confined
between −3 and +3 eV: In order to employ these isotopes,

TABLE III. The 2 3P0–2 1S0 energy splitting 
E (in eV) along the isotopic chains of gadolinium (Z = 64), protoactinium (Z = 91), and
uranium (Z = 92). The numerical uncertainties are, respectively, εGd = 0.034 eV, εPa = 0.55 eV, and εU = 0.27 eV. Lifetimes were taken from
Ref. [33].

Nuclide 
E τ Nuclide 
E τ Nuclide 
E τ

146Gd −0.080 48.27 d 212Pa 0.202 5.1 ms 218U −1.987 1.5 ms
152Gd −0.029 1.08 × 1014 yr 213Pa 0.174 5.3 ms 224U −2.169 0.9 ms
154Gd −0.007 stable 214Pa 0.147 17 ms 225U −2.199 95 ms
155Gd −0.003 stable 215Pa 0.119 14 ms 226U −2.230 0.35 s
156Gd 0.002 stable 216Pa 0.091 0.20 s 227U −2.260 1.1 min
157Gd 0.004 stable 217Pa 0.064 4.9 ms 228U −2.290 9.1 min
158Gd 0.009 stable 218Pa 0.036 0.12 ms 229U −2.320 58 min
160Gd 0.018 stable 222Pa −0.072 2.9 ms 230U −2.351 20.8 d

223Pa −0.099 6.5 ms 231U −2.381 4.2 d
224Pa −0.126 0.79 s 232U −2.411 68.9 yr
225Pa −0.152 1.7 s 233U −2.442 1.592 × 105 yr
226Pa −0.179 1.8 min 234U −2.565 2.455 × 105 yr
227Pa −0.205 38.3 min 235U −2.563 7.038 × 108 yr
228Pa −0.231 22 h 236U −2.628 2.342 × 107 yr
229Pa −0.258 1.50 d 237U −2.658 6.75 d
230Pa −0.284 17.4 d 238U −2.749 4.468 × 109 yr
231Pa −0.310 32760 yr 239U −2.774 23.45 min
232Pa −0.335 1.31 d 240U −2.804 14.1 h
233Pa −0.440 26.967 d 242U −2.863 16.8 min
234Pa −0.439 6.70 h
235Pa −0.495 24.5 min
236Pa −0.521 9.1 min
237Pa −0.596 8.7 min
238Pa −0.622 2.3 min
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FIG. 2. Isotopic dependence of the 2 3P0–2 1S0 transition splitting,

E, in He-like actinide ions (86 � Z � 93). Solid squares represent
nuclides for which an experimental rms nuclear radius is reported in
the literature, while triangles represent nuclides whose nuclear radius
has been interpolated using Eq. (13). Solid lines connect nuclides of a
given isotope chain. Horizontal dashed lines at ±3.306 eV represent
the limits for the use of visible photons in a 2E1 transition between
2 3P0 and 2 1S0.

the two photons (each carrying half the transition energy)
should accordingly have a wavelength smaller than 826.56 nm
(i.e., in the infrared range). This situation, in principle, can be
improved by using the Doppler shift in experiments performed
at high-energy storage rings. Instead, optical photons may be
used for Z < 88 and Z > 92. However, one might want to
operate with high-Z ions in order to enhance PNC effects by
increasing the overlap of the atomic wave functions with the
nucleus. Therefore, suitable nuclides that allow employing
optical photons are the isotopes of radon (Z = 86) with
A <∼ 212, the one isotope of francium (Z = 87) with A = 207,
or the isotopes of neptunium (Z = 93) with A >∼ 238. Actually,
neptunium is the only transuranic ion conceivable for PNC
experiments since, for all heavier He-like ions, the 2 3P0–2 1S0

energy splitting is rather large (e.g., −8.8 eV for 239Pu), and
therefore parity-violating effects are negligibly small due to
the energy denominator in Eq. (1).

All actinide nuclides considered in this work are radioac-
tive. Radon ions with A <∼ 212 show very short lifetimes,
reaching a maximum of 13 s for 212Rn. A comparable lifetime
of 14.8 s is offered by 207Fr. The lifetimes of Np isotopes are
instead of the order of days for A = 238 and A = 239, and
decrease to a few minutes for A = 240. It is notable, however,
that the 237Np nuclide has a lifetime of 2.144 × 106 yr.
Its transition energy is −3.290 eV and, as far as PNC
experiments are concerned, photons of 753.7-nm wavelength
would be required (i.e., at the border of the visible spectrum) in
the near infrared. However, considering that PNC experiments

with He-like ions will be performed at storage rings, 237Np
represents a suitable candidate since one could exploit the
Doppler effect for a fine tuning of the photon frequency into
the optical range.

Among the nuclides in the region of the crossing points,
all protoactinium isotopes are radioactive with lifetimes of
the order of milliseconds, while several gadolinium isotopes
are stable or extremely long lived. The latter are therefore
preferable for PNC spectroscopy.

IV. CONCLUSIONS

In this paper we presented a study of the 2 3P0–2 1S0 energy
splitting in He-like heavy ions in view of future experiments to
measure PNC in atomic systems. We performed a systematic
investigation of the transition energy upon the atomic number
Z and the mass number A near the two crossings of the 1s2s 1S0

and 1s2p 3P0 levels at Z = 64 and Z = 91. Calculations were
carried out employing a RMBPT method to all orders and
including QED and recoil corrections from the literature. The
isotopic dependence was introduced by varying the rms radius
of the nuclear distribution ρN in Eq. (4). This allowed us to
determine precisely that the crossing points of the 1s2s 1S0

and 1s2p 3P0 levels lie between the two isotopes 155Gd and
156Gd and between the isotopes 219Pa and 220Pa. Therefore, it
is expected that PNC effects will be especially enhanced in
He-like gadolinium and protoactinium ions.

In addition to the conditions of maximum PNC effects,
we also discussed isotopes that can be used for spectroscopy
of the 1s2s 1S0 and 1s2p 3P0 levels. The wavelengths of the
photons required to induce the 2E1 transition lie in the
infrared range for most of the isotopic chains studied here.
Nevertheless, a few radioactive nuclides belonging to the
neptunium (Z = 93), francium (Z = 87), and radon (Z = 86)
chains may be used and their He-like ions stimulated with
visible photons. The lifetimes of actinides range from a few
seconds to days. Nevertheless, the long-lived He-like 237Np
ion could be used with visible photons in storage rings that
employ the Doppler effect and could be a candidate for PNC
spectroscopy experiments.
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