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Distribution of chirality in the quantum walk: Markov process and entanglement
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The asymptotic behavior of the quantum walk on the line is investigated, focusing on the probability distribution
of chirality independently of position. It is shown analytically that this distribution has a longtime limit that is
stationary and depends on the initial conditions. This result is unexpected in the context of the unitary evolution
of the quantum walk as it is usually linked to a Markovian process. The asymptotic value of the entanglement
between the coin and the position is determined by the chirality distribution. For given asymptotic values of both
the entanglement and the chirality distribution, it is possible to find the corresponding initial conditions within a
particular class of spatially extended Gaussian distributions.
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I. INTRODUCTION

The quantum walk (QW) on the line [1] is a natural
generalization of the classical random walk in the frame of
quantum computation and quantum-information processing
and is receiving much attention [2–4]. It has the property
of spreading over the line linearly in time, as characterized
by the standard deviation σ (t) ∼ t , while its classical analog
spreads as σ (t) ∼ t1/2. This property, as well as quantum
parallelism and quantum entanglement, could be used to
increase the efficiency of quantum algorithms. As an example,
the QW has been used as the basis for optimal quantum search
algorithms [5,6] on several topologies. On the other hand,
some experimental implementations of the QW have been
reported [7], and others have been proposed by a number of
authors [8].

The concept of entanglement is an important element in
the development of quantum communication, quantum cryp-
tography, and quantum computation. In this context, several
authors have studied the QW subjected to different types of
coin operators and/or sources of decoherence to analyze the
longtime entanglement between the coin and the position
and its relation with the initial conditions [9,10]. Carneiro
et al. [11] investigated entanglement between the coin and the
position, calculating the entropy of the reduced density matrix
of the coin. The relation between asymptotic entanglement and
nonlocal initial conditions (in the one- and two-dimensional
QW) is treated in Refs. [12–17]. References [18–20] analyze
the effect of entanglement on the initial coin state, which is
measured by the mean value of the walk, and the relation
between the entanglement and the symmetry of the probability
distribution. In Ref. [21], the relation between entanglement
and decoherence is studied numerically. Refereneces [22,23]
propose to use the QW as a tool for quantum algorithm
development and as an entanglement generator, potentially
useful for testing quantum hardware.

In previous works [11–23], QW evolution was studied using
the amplitude of probability to evaluate the dynamics. In this
work, I introduce a new probability distribution, the global
chirality distribution (GCD), that is the distribution of chirality
independently of the walker’s position. I show that the GCD
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has an asymptotic limit, and I connect this limit with the
entropy of entanglement between the coin and the position. The
asymptotic behavior of GCD is an unexpected result because,
owing to the unitary evolution, the QW does not converge to
any stationary state, as would be the case, for example, with
a Markov chain. In order to show these results, I rewrite the
QW evolution equation as the sum of two different terms, one
responsible for the classical diffusion and the other for the
quantum coherence [24]. As we shall see, the first term obeys
a master equation, as is typical of Markovian processes, while
the second term includes the interference needed to preserve
the unitary character of the quantum evolution. This approach
provides a more intuitive framework which proves useful for
analyzing the behavior of quantum systems with decoherence.
It allows us to study the quantum evolution together with the
associated classical Markovian process at all times and, in
particular, the asymptotic behavior of the GCD.

The article is organized as follows. In the next section, I
develop the standard QW model; in the third section, I build
the master equation for the GCD; in the fourth section, I present
the asymptotic solution for the QW; in the fifth section, the
entropy of entanglement is connected with the GCD; and in
the last section, I draw conclusions.

II. THE STANDARD QW

The QW on the line corresponds to a one-dimensional
evolution of a quantum system in a direction which depends
on an additional degree of freedom, the chirality, with two
possible states: “left” |L〉 or “right” |R〉. The global Hilbert
space of the system is the tensor product Hs ⊗ Hc, where Hs

is the Hilbert space associated with the motion on the line
and Hc is the chirality Hilbert space. Let us call T− (T+) the
operators in Hs that move the walker one site to the left (right)
and |L〉〈L| and |R〉〈R| the chirality projector operators in Hc.
We consider the unitary transformations

U (θ ) = {T− ⊗ |L〉〈L| + T+ ⊗ |R〉〈R|} ◦ {I ⊗ K(θ )} , (1)

where K(θ ) = σz cos θ + iσx sin θ , I is the identity operator
in Hs , and σz and σx are Pauli matrices acting in Hc. The
unitary operator U (θ ) evolves the state in one time step as

|�(t + 1)〉 = U (θ )|�(t)〉. (2)
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The wave vector can be expressed as the spinor

|�(t)〉 =
∞∑

k=−∞

[
ak(t)

bk(t)

]
|k〉, (3)

where the upper (lower) component is associated with the left
(right) chirality. Substituting Eqs. (3) and (1) into Eq. (2) and
projecting over the position vector |k〉, the unitary evolution is
written as the map

ak(t + 1) = ak+1(t) cos θ + bk+1(t) sin θ,
(4)

bk(t + 1) = ak−1(t) sin θ − bk−1(t) cos θ.

III. UNITARY EVOLUTION AND MASTER EQUATION
FOR THE CHIRALITY

In Refs. [24,25], it is shown how a unitary quantum
mechanical evolution can be separated into Markovian and
interference terms. Here we use this method to recognize a
master equation in chirality starting from the original map
Eqs. (4). First I define the left and right distributions of po-
sition as PkL(t) = |ak(t)|2 and PkR(t) ≡ |bk(t)|2, respectively.
Combining the two components of Eqs. (4), and after some
simple algebra, we obtain

Pk,L(t + 1) = Pk+1,L(t) cos2 θ + Pk+1,R(t) sin2 θ

+βk+1(t) sin 2θ, (5)
Pk,R(t + 1) = Pk−1,L(t) sin2 θ + Pk−1,R(t) cos2 θ

−βk−1(t) sin 2θ,

where βk ≡ Re[ak(t)b∗
k (t)] is an interference term, with Re(z)

indicating the real part of z. Of course, the probability
distribution for the position is Pk(t) = PkL(t) + PkR(t). I
define the global left and right chirality probabilities as

PL(t) ≡
∞∑

k=−∞
PkL(t) =

∞∑
k=−∞

|ak(t)|2 ,

(6)

PR(t) ≡
∞∑

k=−∞
PkR(t) =

∞∑
k=−∞

|bk(t)|2 ,

with PR(t) + PL(t) = 1, and the GCD is defined as the
distribution formed by the couple[

PL(t)

PR(t)

]
.

Using the definition Eq. (6) in Eq. (5), we have[
PL(t + 1)

PR(t + 1)

]
=

(
cos2 θ sin2 θ

sin2 θ cos2 θ

) [
PL(t)

PR(t)

]

+ Re[Q(t)] sin 2θ

[
1

−1

]
, (7)

where

Q(t) ≡
∞∑

k=−∞
ak(t)b∗

k (t). (8)

In Eq. (7), the two-dimensional matrix can be interpreted as
a transition probability matrix for a classical two-dimensional

random walk as it satisfies the necessary requirements, namely,
all its elements are positive, and the sum over the elements of
any column or row is equal to 1. On the other hand, it is
clear that Q(t) accounts for the interferences. When Q(t)
vanishes, the behavior of the GCD can be described as a
classical Markovian process. However, Q(t) = 0 does not
necessarily imply the loss of unitary evolution; such a loss
requires the vanishing of all the βk(t) [see Eq. (5)]. As shown
in Ref. [26], the primary effect of decoherence is to make
the interference terms βk(t) negligible; in this case, Eq. (5)
becomes a true master equation. On the other hand, when Q(t)
is time independent, that is, Q(t) = Q = constant, then Eq. (7)
is solved using the methods developed in [27]; its solution as
a function of the initial GCD is

[
PL(t)

PR(t)

]
= 1

2

(
1 + cost 2θ 1 − cost 2θ

1 − cost 2θ 1 + cost 2θ

) [
PL(0)

PR(0)

]

+ Re[Q]
1 − cost 2θ

tan θ

[
1

−1

]
. (9)

Taking the limit t → ∞ in Eq. (9), it is possible to obtain the
asymptotic value of the GCD as a function of its initial value
and Q.

In the generic case, Q(t) is a time-dependent function, but
in this system (as will be seen in the next section), Q(t), PL(t),
and PR(t) have longtime limiting values which are determined
by the initial conditions of Eqs. (4). Therefore we can solve
Eq. (7) in this limit, defining

�L ≡ PL(t → ∞),

�R ≡ PR(t → ∞), (10)

Q0 ≡ Q(t → ∞),

and substituting these asymptotic values in Eq. (7) to obtain
the stationary solution for the GCD:

[
�L

�R

]
= 1

2

[
1 + 2Re(Q0)/ tan θ

1 − 2Re(Q0)/ tan θ

]
. (11)

This interesting result for the QW shows that the longtime
probability to find the system with left or right chirality has a
limit.

In the next section, I show that it is possible to have Q0 = 0,

choosing adequately the initial conditions. In this case, Eq. (7)
approaches a Markov chain [27] with two states, and the
dynamics of the GDC turns into an example of dependent
Bernoulli trials in which the probabilities of success or failure
at each trial depend on the outcome of the previous trial.
Now the only asymptotic solution is �L = �R = 1/2 [see
Eq. (11)].

If we look back at Eq. (2) in connection with Eq. (11), a
paradoxical situation arises. The dynamical evolution of the
QW is unitary, but the evolution of its GCD has an asymptotic
value characteristic of a diffusive behavior. This situation is
further surprising if we compare our case with the case of the
QW on finite graphs [28], where it is shown that there is no
convergence to any stationary distribution.
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IV. ASYMPTOTIC SOLUTION FOR THE QW

In previous works [3,25], an alternative analytical approach
was presented to obtain the asymptotic behavior of the QW on
the line. The discrete map was substituted by two continuous
differential equations for ak(t) and bk(t), starting from a
characteristic time t0 
 1. The initial conditions for these
equations are not necessarily the same as those used in
the discrete map of Eqs. (4) because the approximation of
a finite difference by a derivative does not hold for small
times. However, these initial conditions must ensure the same
asymptotic behavior as that of the discrete map.

The asymptotic solutions of Eqs. (4) given by the differen-
tial equations are

ak(t) �
∞∑

l=−∞
(−1)k−l a0

l Jk−l(t cos θ ),

(12)

bk(t) �
∞∑

l=−∞
(−1)k−l b0

l Jk−l(t cos θ ),

where Jl is the lth-order cylindrical Bessel function and a0
k

and b0
k are initial amplitudes for the differential equations. To

ensure that the behavior of the discrete map and the differential
equations are the same in the asymptotic regime, we should
choose a0

k and b0
k to be smoothly extended in space.

Replacing Eq. (12) in Eqs. (6) and (8) and noting that the
Bessel functions satisfy

∑∞
j=−∞ Jj (t)Jj−k(t) = δk0, we have

Q(t) =
∞∑

k=−∞
a0

kb
0∗
k = Q0, (13)

PL(t) =
∞∑

j=−∞

∣∣a0
k

∣∣2 = �L, (14)

PR(t) =
∞∑

k=−∞

∣∣b0
k

∣∣2 = �R. (15)

The time independence of Q(t), PL(t), and PR(t) is a
consequence of the asymptotic approach given by Eq. (12),
and evidently their values are Q0, �L, and �R , respectively.
When Q(t), PL(t), and PR(t) are calculated with the map
Eqs. (4), they have a transient time dependence (for t < t0),
after which they attain their asymptotic values Q0, �L, and
�R , as shown in [25].

I propose for the initial conditions a0
k and b0

k the following
extended Gaussian distributions [29]:

a0
k ≡

{
1

σ0

√
2π

exp

[
− (k − k0)2

2σ 2
0

]} 1
2

cos α, (16)

b0
k ≡ a0

k tan α exp(iδ), (17)

where σ0 is the initial standard deviation, k0 is the central
position of the Gaussian distribution, α is a parameter that
determines the initial proportion of the left and right chiralities,
and δ is a phase to be determined later, as a function of α

and θ .

Now I evaluate Q0, �L, and �R using the initial conditions
Eqs. (16) and (17) in Eqs. (13), (14), and (15) and noting that∑∞

k=−∞ exp[−k2/2σ 2
0 ] ∼=

√
2πσ0, for σ0 
 1:

Q0 = 1
2 sin 2α cos δ, (18)

�L = cos2 α, (19)

�R = sin2 α. (20)

On the other hand, from Eq. (11), we see that Q0 and �L are
not independent; then, substituting Eqs. (18), (19), and (20)
into Eq. (11), we have

cos δ = tan θ

tan 2α
. (21)

Then I rewrite Eq. (18) as a function of the two independent
parameters of the model θ and α:

Q0 = 1
2 cos 2α tan θ ; (22)

note that Q0 vanishes for α = π/4. In order to verify the
approximations made in our analytical treatment, I shall
compare the result of Eq. (19) with the numerical evaluation of
the asymptotic behavior of PL(t) using the map Eqs. (4) and the
initial conditions given by Eqs. (16) and (17). This calculation
is presented in Fig. 1. Our selection of the initial amplitudes
ensures that the asymptotic value for PL(t) is equal to the initial
one, which in turn is the same as that given by Eq. (19). Thus
the asymptotic behaviors of Eqs. (4) are in excellent agreement
with our theoretical approach. Our treatment works very well
for values of σ0 > 10. The asymptotic regime of PL(t) sets in
at the time t0 after some strong oscillations. The value of t0
depends on the parameters of the problem.

To sum up, the dynamical evolution of the QW is defined by
Eqs. (4), but it is possible to obtain a predetermined asymptotic
value of the GCD

[
�L

�R

]
,

using as initial conditions Eqs. (16) and (17), where the
parameters α and δ are determined by Eqs. (19) and (21) and
the parameters k0 and σ0 are free to be adjusted.

V. ENTROPY OF ENTANGLEMENT

The unitary evolution of the QW generates entanglement
between the coin and position degrees of freedom. This entan-
glement will be characterized [11,12] by the von Neumann
entropy of the reduced density operator, called entropy of
entanglement. The quantum analog of the Shannon entropy
is the von Neumann entropy

SN (ρ) = −tr(ρ log ρ), (23)

where ρ = |�(t)〉〈�(t)| is the density matrix of the quantum
system. Owing to the unitary dynamics of the QW, the system
remains in a pure state, and this entropy vanishes. However, for
these pure states, the entanglement between the chirality and
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FIG. 1. The global left probability PL(t) as a function of the
dimensionless time t calculated with the map Eqs. (4). The initial
conditions are given by Eqs. (16) and (17). It is shown for three
values of θ that σ0 = 100, k0 = 0, and cos2 α = 0.3. The approximate
values of t0 are, from top to bottom, 300, 500, and 700. The
asymptotic values for the dimensionless entropy S0 are also presented.

the position can be quantified by the associated von Neumann
entropy for the reduced density operator:

S(ρ) = −tr(ρc log ρc), (24)

where ρc = tr(ρ) and the partial trace is taken over the posi-
tions. Using the wave function Eq. (3) and its normalization
properties, the reduced density operator is explicitly expressed
as

ρc =
[

PL(t) Q(t)

Q(t)∗ PR(t)

]
. (25)

The reduced entropy can be expressed through the two
eigenvalues {λ+,λ−} of the reduced density matrix as

S(t) = −λ+ log2 λ+ − λ− log2 λ−. (26)

The expressions for the eigenvalues are

λ± = 1

2
{1 ±

√
1 + 4[|Q(t)|2 − PL(t)PR(t)]}. (27)

In the asymptotic regime λ± → �±,

�± = 1

2
[1 ±

√
1 + 4(|Q0|2 − �L�R)], (28)

and the corresponding entropy [S(t) → S0] is

S0 = −�+ log2 �+ − �− log2 �−. (29)

Using the initial conditions Eqs. (16) and (17) in Eq. (28), we
have

�± = 1

2

[
1 ± cos 2α

cos θ

]
. (30)

For α = π/4, both eigenvalues are �± = 1/2, and from
Eqs. (19), (20), and (22), �L = �R = 1/2 and Q0 = 0. For
this value, the entropy of entanglement Eq. (29) has its
maximum value S0 = 1. Therefore the maximum value of
the entropy of entanglement is achieved for the classical
Markovian process (Q0 = 0). Note that this result is true for
all initial conditions that satisfy Q(t) → 0 as it follows from
Eqs. (7), (11), (28), and (29).

For α = θ/2, the entropy attains its minimum value S0 =
0 [see Eqs. (29) and (30)]. Then, in this case, there is no
entanglement between coin and position.

Using the results of the previous section, it is clear that
starting from given initial conditions, the asymptotic values
�L and Q0 are obtained, and then the entropy of entanglement
is calculated using Eqs. (28) and (29). The inverse path is also
possible; that is, starting from a predetermined value of the
entropy of entanglement [Eq. (29)], it is possible to obtain
the initial conditions [Eqs. (16) and (17)] of the system that
produce this entanglement asymptotically.

The previous ideas are numerically implemented using
Eqs. (11), (28), and (29) and taking Q0 as a real constant,
and the results are presented in Figs. 2 and 3. Figure 2 shows
that for each value of S0, there are two values of �L, and

FIG. 2. The dimensionless entropy of entanglement S0 as a
function of the asymptotic global left probability �L for three
different values of θ .
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FIG. 3. Level curves for the dimensionless entropy of entan-
glement S0 as a function of the dimensionless angle θ/π and the
asymptotic global left probability �L. Five curves, in full line, are
presented; each curve has two branches placed symmetrically on both
sides of the central straight dashed line �L = 0.5. Starting from this
line, where S0 = 1, the values of S0 are 0.99, 0.95, 0.90, 0.85, and
0.70.

that the width of the entropy curve grows inversely with θ . In
Fig. 3, the level curves of the entropy as a function of θ and �L

are presented as projections of the three-dimensional surface.
From these figures, it is clear that the maximum of the entropy
of the entanglement is achieved for the classical Markovian
process (�L = 1/2)

To conclude this section, it is interesting to compare the
entropy of entanglement with the usual Shannon entropy used
in the theory of communication. In particular, one could
wonder if the entropy of the entanglement may be used as
a measurement of the degree of disorder of chirality. The
Shannon entropy, in the asymptotic GCD model, is

SS ≡ −�L log2 �L − �R log2 �R, (31)

where �L and �R are given by Eq. (11).
It is clear from Eqs. (29) and (31) that when Q0 = 0

(�L = �R = 1/2), both entropies attain the maximum value

S0 = SS = 1. However, for other values of Q0, they are
different, in particular, when there is perfect statistical order;
that is, when �L = 1 and �R = 0 (or �L = 0 and �R = 1),
the Shannon entropy vanishes as it should, but the entropy
of entanglement does not vanish. Therefore, although the
behavior of the entropy of entanglement is correlated with
the behavior of the GCD, it does not describe correctly the
degree of disorder of the GCD.

VI. CONCLUSION

This article provides a different view of QW dynamics.
It studies the QW, focusing on the probability distribution
of the chirality independently of the position (GCD), and
connects this distribution with the entropy of entanglement.
Using an alternative analytical approach for the QW on the line,
developed in previous works [3,25], I show analytically that
the GCD converges to a stationary solution. The asymptotic
behavior of the GCD looks like the behavior of the two-
dimensional classical random walk, but unlike the latter,
the asymptotic GCD depends on the initial conditions. The
coexistence of the unitary evolution of the amplitude together
with the asymptotic value of the GCD is a striking result about
the behavior of the system.

I study the entanglement between the coin and the position
in the QW on the line and show that the behavior of the entropy
of entanglement depends on the GCD. I also show that the
asymptotic entanglement is maximized when the evolution of
the GCD follows a Markovian process. However, the entropy
of entanglement does not describe correctly the degree of
disorder of the GCD; this is well described by the Shannon
entropy. In previous works [11–13,21], the dependence of the
asymptotic entropy of entanglement on the initial conditions
was studied; here I provide an analytical recipe to obtain a
predetermined entanglement using extended Gaussian initial
conditions. In other words, starting from a given value of
the entropy of entanglement, it is possible to choose the
corresponding initial conditions. These exact expressions can
also be used to obtain a predetermined asymptotic GCD; that
is, starting from a given asymptotic limit of the GCD, one can
obtain the corresponding initial conditions for the QW.
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2008).

[2] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[3] A. Romanelli, Phys. Rev. A 80, 042332 (2009).
[4] N. Linden and J. Sharam, Phys. Rev. A 80, 052327

(2009).
[5] N. Shenvi, J. Kempe, and K. BirgittaWhaley, Phys. Rev. A 67,

052307 (2003).
[6] A. Childs, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman,

in Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (ACM Press, New York, 2003), p. 59.

062349-5

http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1098/rsta.2006.1901
http://dx.doi.org/10.1098/rsta.2006.1901
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevA.80.042332
http://dx.doi.org/10.1103/PhysRevA.80.052327
http://dx.doi.org/10.1103/PhysRevA.80.052327
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1103/PhysRevA.67.052307


ALEJANDRO ROMANELLI PHYSICAL REVIEW A 81, 062349 (2010)

[7] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and
Y. Silberberg, Phys. Rev. Lett. 100, 170506 (2008); A. Schreiber,
K. N. Cassemiro, V. Potocek, A. Gabris, P. J. Mosley,
E. Andersson, I. Jex, and C. Silberhorn, ibid. 104, 050502
(2010); M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt,
D. Meschede, and A. Widera, Science 325, 174 (2009); M. A.
Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik,
and A. G. White, Phys. Rev. Lett. 104, 153602 (2010).

[8] W. Dür, R. Raussendorf, V. M. Kendon, and H. J. Briegel,
Phys. Rev. A 66, 052319 (2002); B. C. Travaglione and G.
J. Milburn, ibid. 65, 032310 (2002); B. C. Sanders, S. D.
Bartlett, B. Tregenna, and P. L. Knight, ibid. 67, 042305 (2003);
P. L. Knight, E. Roldán, and J. E. Sipe, ibid. 68, 020301(R)
(2003); Opt. Commun. 227, 147 (2003); 232, 443(E) (2004);
J. Mod. Opt. 51, 1761 (2004); D. Bouwmeester, I. Marzoli,
G. P. Karman, W. Schleich, and J. P. Woerdman, Phys. Rev. A
61, 013410 (1999); B. Do et al., J. Opt. Soc. Am. B 22, 499
(2005); C. M. Chandrashekar, Phys. Rev. A 74, 032307 (2006).

[9] A. Romanelli, A. Auyuanet, R. Siri, G. Abal, and R. Donangelo,
Phys. A 352, 409 (2005).

[10] A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, and
M. Bednarska, Phys. Rev. Lett. 93, 180601 (2004); M. C. Bañuls,
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