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We investigate general probabilistic theories in which every mixed state has a purification, unique up to
reversible channels on the purifying system. We show that the purification principle is equivalent to the existence
of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded
as arising from a reversible interaction of the system with an environment, which is eventually discarded.
From the purification principle we also construct an isomorphism between transformations and bipartite states
that possesses all structural properties of the Choi-Jamio�lkowski isomorphism in quantum theory. Such an
isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite
states giving perfect correlations in independent experiments, no information without disturbance, no joint
discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity
between correctable channels and deletion channels, characterization of entanglement-breaking channels as
measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

DOI: 10.1103/PhysRevA.81.062348 PACS number(s): 03.67.Ac, 03.65.Ta

I. INTRODUCTION

In the past two decades the field of quantum information
theory has brought to light an enormous amount of protocols
and tasks that originate from the structure of quantum theory
and have dramatic consequences in the way information can
be processed. Nonlocality, no-cloning, teleportation, dense
coding, quantum key distribution, quantum algorithms, and
quantum error correction are only the most celebrated ex-
amples of a much longer list. An important lesson from
this experience is that the abstract formalism of quantum
mechanics has a huge number of operational consequences.

At the same time, the question whether quantum the-
ory is the only conceivable theory with such operational
consequences has attracted the attention of an increasing
number of researchers. In a seminal article [1], Popescu
and Rohrlich showed that nonlocality is not an exclusive
feature of quantum theory and that there are in fact possible
theories that exhibit stronger nonlocality than quantum theory
without violating relativistic no-signaling. An intense work
on nonlocality in general nonsignaling theories has followed
this observation, opening a very active line of research (see,
e.g., Refs. [2–5]). On the other hand, the authors of Refs.
[6,7] have analyzed tasks like cloning and broadcasting of
states, showing that the impossibility of achieving them is a
highly generic property, while Ref. [8] thoroughly discussed
theories with a local discriminability property that share other
features of quantum mechanics, like the nonunique convex
decomposition of a mixed state or the nonexistence of ideal
nondisturbing measurements. Entanglement swapping and
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teleportation protocols have been considered in Refs. [9,10],
where the authors noticed the remarkable fact that the no-
signaling boxes of Popescu and Rohrlich allow for neither
entanglement swapping nor for teleportation. Very recently, the
authors of Ref. [11] have introduced the new physical principle
of information causality, showing that while the principle holds
for quantum theory, it is violated by Popescu-Rohrlich boxes.

Despite the numerous advancements in the understanding
of general probabilistic theories, the fundamental problem of
deriving quantum mechanics from basic physical principles
is still completely open. In particular, no physical principle is
known that can single out quantum mechanics in the physically
motivated set of causal theories with local discriminability.
With this expression we mean probabilistic theories where (i)
the probability of outcomes of an experiment performed at a
given time does not depend on the choice of experiments that
will be performed at later times and (ii) if two bipartite states
are different, then one can discriminate between them using
only local devices with an error probability that is smaller than
1/2, the random guess value. In the case of classical physics,
finding a description is relatively simple: among theories in the
above family, classical probability is the only one where all
pure states are perfectly distinguishable. On the contrary, every
current description of quantum theory is a description of its
mathematical apparatus: e.g., one can say that quantum theory
is the theory where pure states are unit vectors in complex
Hilbert spaces and probabilities are given by the Born rule or,
equivalently, that it is the theory where observables form a
C*-algebra of complex matrices.

In the past there have been many attempts to find a
more basic description of quantum theory, in particular by
discussing it from the point of view of logic [12–15] (see also
Ref. [16] and references therein). More recently, Hardy [17]
has approached the problem from a different perspective,
providing a characterization of quantum theory based on
principles of mathematical simplicity in the interplay among
dimension of the state space, structure of subsystems and
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subspaces, number of distinguishable states, and topology
of the set of pure states. On the other hand, in recent years
one of the authors has tackled the problem using physical
principles related to tomography and calibration of physical
devices, experimental complexity, and to the composition of
elementary (atomic) transformations (see Ref. [18] for the state
of the art of this project). In particular, Ref. [19] introduced
the concept of dynamically and preparationally faithful state,
which will play an important role in this article.

In this article we introduce the purification principle “Every
mixed state has a purification, unique up to reversible channels
on the purifying system.” The main message of our work is
simple: most of the characteristic features of quantum theory
can be summarized in the physical statement “quantum theory
is a causal theory with purification and local discriminability.”
In particular, from the purification principle we derive the
following features: no information without disturbance, no
joint discriminability and no cloning of pure states, existence
of pure entangled states with perfect correlations, probabilistic
teleportation, one-to-one correspondence between transforma-
tions and bipartite states, dilation of physical processes to
reversible interactions with an environment, necessary and
sufficient conditions for error correction in terms of the
reversible dilation, no bit commitment, no programming of
reversible channels without perfectly distinguishable program
states, and identification of causal channels with sequences of
channels with memory, and characterization of entanglement
breaking channels as measure-and-prepare channels. More-
over, we also discuss a stronger version of the purification
principle: “For every system A there exists a conjugate system
Ã such that every state of A has a purification in AÃ. The
conjugate of Ã is A (symmetry), and the conjugate of a
composite system AB is the composite system ÃB̃ (regularity
under composition).” With this further property one can
prove deterministic teleportation and show that its structure is
unique: the resource state for deterministic teleportation must
be a purification of the unique mixed state that is invariant
under all reversible channels.

As we will show, the purification principle is equivalent to
the fact that every irreversible process arises from a reversible
interaction with an environment that is eventually lost. This
can be viewed as a law of “conservation of information”:
information cannot be erased, it can only be discarded.
Moreover, we will see that the purification principle has other
remarkable consequences: From the structural point of view, a
theory with purification is completely identified by the states of
all possible systems in it. Once the states are given, all possible
measurements and evolutions are fixed. Even more strongly,
the purification postulate implies the completeness property
“whatever transformation is mathematically admissible (in
a sense that will be made precise later) must be feasible.”
Conversely, we can explicitly say that whatever limitation to
the feasibility of a mathematically admissible map results in a
limitation to the purifiability of some state. The analog of this
property in quantum information is that every trace-preserving
completely positive map must be feasible.

It is important to stress that we are not claiming that we
derived quantum theory. What we can say is that we “zipped”
a large part of it by reducing a long list of features to a single
physical principle. In the process of doing this, we found proofs

that are often simpler (or at least more intuitive) than the
original quantum proofs.

In order to minimize the notational burden due to the lack
of a commonly established formalism, in presenting these
proofs we opted for a graphical notation, which is equivalent
to formulas and replaces them in most of the article. Since this
notation is exactly the same notation used in quantum circuits,
a reader with a background in quantum information can easily
read the general equations without spending too much time
in the introductory part of the article. On the other hand, an
extended discussion on graphical calculus can be found in
the work by Penrose [20] and in the rigorous formalization
by Joyal and Street within the theory of symmetric monoidal
categories [21] (we also suggest the beautiful introductions in
the topic by Selinger [22] and Coecke [23]). In any case, we
stress that in the present article the choice of graphical notation
is just the choice of a more user-friendly way of presenting
formulas and that no prerequisite on, e.g., category theory is
needed from the reader.

II. OPERATIONAL-PROBABILISTIC THEORIES

In this section we introduce some basic notions that will
be used in the article. In particular, we introduce the notion of
operational-probabilistic theory as a theory that (i) describes
a set of possible experiments that can be done with physical
devices and (ii) gives predictions about the probabilities of the
outcomes in these experiments.

A. Systems and tests

Systems and tests are the primitive notions of an operational
theory. Each test represents one use of a physical device, like
a Stern-Gerlach magnet, a beamsplitter, or a photon counter.
Systems play the role of labels attached to physical devices:
any device has an input and an output port labeled by an
output and an input system, respectively. These labels establish
a rule for connecting physical devices among themselves: two
devices can be connected in a sequence only if the output of
the first device is a system of the same type as the input of the
second.

All throughout the article we will denote systems with
capital letters, like A,B,C, and so on. We reserve the letter
I for the trivial system, which simply means “nothing.” A
device with input (output) system I is a device with no input
(no output).

Let us now make more precise the notion of a test. We
already mentioned that a test represents one use of a physical
device. When the physical device is used, it produces an
outcome i in some set X, e.g., the outcome could be a sequence
of digits appearing on a display, a light, or a sound emitted by
the device. The outcome produced by the device heralds the
fact that some event has occurred. These intuitive features
concur in the definition of a test:

Definition 1 (Test). A test with input system A and output
system B is a collection of events {Ci}i∈X labeled by outcomes
in some outcome set X. Diagrammatically, the test {Ci}i∈X is
represented as follows:

(1)
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while the specific event Ci is represented by

. (2)

We denote by T(A,B) the set of all events appearing in all tests
from A to B. When B ≡ A we will write T(A).

Tests with trivial input will be called preparation tests, and
the corresponding events will be called preparation events.
In quantum information, a preparation test is what is called
a “random source of quantum states.” Analogously, we will
adopt for preparation events the usual notation as for states in
quantum circuits:

. (3)

In formulas, we will often use the “Dirac-like” notation |ρi)B

to denote a preparation event of system B. We will denote
by S(A) the set of preparation events for system A, namely
S(A) := T(I,A).

Similarly, we will call tests with trivial output observation
tests, and the corresponding events observation events. In
quantum theory, an observation test is a quantum measurement
and is represented by positive operator valued measure
(POVM), that is, by a collection of positive operators {Pi}i∈X

satisfying
∑

i∈X Pi = IA, where IA is the identity on the
Hilbert space of system A. For observation tests we will then
adopt the usual notation for measurements in quantum circuits:

. (4)

In formulas, we will often denote observation events with the
notation (aj |A. We will denote by E(A) the set of observation
events for system A, namely E(A) := T(A,I).

For tests from the trivial system to itself we will omit the
box and the wires, as follows:

. (5)

In subsection II F we will interpret events from the trivial
system to itself as probabilities.

Another important case of tests is that of single-outcome
tests, in which the outcome space X consists of a single
element: X = {i0}. Whenever a device represented by a single-
outcome test is used, the experimenter is sure that only one
event can take place. This motivates the following definition:

Definition 2 (Deterministic tests). A test is deterministic if
its outcome set has a single element, namely |X| = 1.

B. Sequential composition of tests

Physical devices can be used in sequences, as long as the
output of each device coincides with the input of the next one.
When two tests are composed in a sequence we obtain a new
test, as in the following

Definition 3 (Sequential composition of tests). If {Ci}i∈X

is a test from A to B and {Dj }j∈Y is a test from B to
C, then their sequential composition is test from A to C,
with outcomes (i,j ) ∈ X × Y, and events {Dj ◦ Ci}(i,j )∈X×Y.
Diagrammatically, the events Dj ◦ Ci are represented as
follows:

. (6)

We will say that test {Dj } “follows” test {Ci}, or, equiv-
alently, {Ci} “precedes” {Dj }. For the moment, the order of
composition is not necessarily temporal. The interpretation of
sequential composition as a sequence of time steps will be
given in Sec. III within the framework of causal theories.

The sequential composition of tests brings immediately the
notion of identity test.

Definition 4 (Identity test). The identity test for system A is
a test with a single event IA such that for every system B

.
(7)

Performing the identity test on a system just means “doing
nothing” on it. We can think of the outcome of the identity test
as a blank character, which provides no information.

In some protocols, such as teleportation, one wants to
emphasize that one is dealing with two different systems
“of the same type.” For example, in quantum theory one can
have two electrons in different (spatially separated) regions.
Distinguishing two systems of the same type is essentially
a matter of bookkeeping. Moreover, we can have different
physical systems that are “operationally equivalent,” e.g., the
polarization of a single photon and the spin of an electron
in quantum theory are both represented by a qubit and can
be (at least in principle) converted one to another in a
reversible fashion. For this reason we introduce a formal notion
of operational equivalence between systems, based on their
mutual convertibility.

Definition 5 (Operationally equivalent systems). Two sys-
tems A and A′ are operationally equivalent—denoted as
A′ � A—if there exist a deterministic test {IA,A′ } from A to
A′ and a deterministic test {IA′,A} from A′ to A, respectively,
such that

.
(8)

Accordingly, if {Ci}i∈X is a test for system A, performing the
“same test” on system A′ means performing the test {C ′

i }i∈X

defined by

(9)

Clearly, the above notion of “same test on a different
system” depends on the choice of the privileged test {IA,A′ }
used to set up the operational equivalence between A and A′.
We will often drop the primes and write Ci instead of C ′

i .

C. Composite systems and parallel composition of tests

Given two systems A and B, one can consider them
together, thus forming the corresponding composite system,
here denoted by AB. A test with input (output) system AB
(CD), represents one use of a physical device with two input
(output) ports, labeled by A and B (C and D), respectively.

Definition 6 (Composite system). If A,B are systems,
the corresponding composite system is AB. Composition of
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systems enjoys the properties (i) A = IA = AI, (ii) AB � BA,
and (iii) A(BC) = (AB)C := ABC.

Diagrammatically, an event from AB to CD is represented
as a box with multiple wires:

. (10)

The property (i) in Definition 6 expresses the fact that
system A together with “nothing” is still system A, while
properties (ii) and (iii) express the fact that the specification
of a composite system depends only on the list of component
systems and not on how the elements of the list are ordered
(up to operational equivalence, implemented by a deterministic
test that permutes the component systems) or on how they are
grouped.

In general, we will represent the N -partite composite
system A1 . . . AN with N wires, as follows:

. (11)

In the case of trivial systems, we will typically omit the wire.
In the sequential composition of two boxes with multiple wires
we will always match the output wires of the first box with the
input wires of the second.

Physical devices can be run in parallel on different systems,
thus performing a test on the composite system, as in the
following.

Definition 7 (Parallel composition of tests). If {Ci}i∈X is
a test from A to B and {Dj }j∈Y is a test from C to D,
then their parallel composition is the test from AC to BD,
with outcomes (i,j ) ∈ X × Y, and events {Ci ⊗ Dj }(i,j )∈X×Y.
Diagrammatically the events Ci ⊗ Dj are represented as
follows:

. (12)

If Ci ,Dj ,Ek,Fl are events from A to B, B to C, D to E,
and E to F, respectively, their parallel composition enjoys the
property

.
(13)

[end of Definition 7].
Note that property (13) implies that tests on different

systems commute, that is, for every couple of events Ci ,Dj

. (14)

From now on, in diagrams like the above we will typically
omit the box with identity test, leaving just a wire for the

corresponding system. Also in formulas we will often omit
the identity, e.g., for C ∈ T(A,B) and ρ ∈ S(AC) we will
often write C |ρ)AB in place of (C ⊗ IC)|ρ)AC.

Note that the difference between parallel and sequential
composition of two tests is already encoded in their input
and output spaces: if the input of a test is the output of the
other the composition is sequential, if all spaces are distinct
the composition is parallel. For this reason, when the kind of
composition is evident we will omit the symbols ◦ and ⊗. For
example, if ρ is a preparation event for A and C is an event
from A to B we will write C |ρ)A in place of C ◦ |ρ)A, whereas
if ρ and σ are preparation events for A and B, respectively, we
will write |ρ)A|σ )B in place of |ρ)A ⊗ |σ )B.

D. Operational theories

We are now in position to make more precise the notion
“operational theory.”

Definition 8 (Operational theory). An operational theory is
specified by a collection of systems, closed under composition,
and by a collection of tests, closed under parallel and sequential
composition.

In an operational theory one can draw circuits that (i)
represent the connections of physical devices in an experiment,
like, e.g., the circuit

(15)

and (ii) can also represent which specific set of events took
place in the experiment, like, e.g., the circuit

. (16)

In particular, the latter circuit represents the preparation event
ρi followed by the event Cj from system A to system B, which
is in turn followed by the observation event ak on system
B. The whole sequence can be seen as single event pkji :=
(ak|BCj |ρi)A from the trivial system to itself.

E. Relation with category theory

In the previous subsections we presented in an informal way
the basic notions pertaining to the use of physical devices in
sequences and in parallel. More formally, these notions can be
summarized with the language of category theory [24], which
provides the suitable mathematical framework capturing the
fundamental structure presented so far. In this language, an
operational theory is a category, where systems and events are
respectively objects and arrows. Every arrow has an input and
an output object, and arrows can be sequentially composed. A
test is then a collection of arrows labeled by outcomes.

The fact that in an operational theory we have a parallel
composition of systems, and that such a composition is
symmetric (i.e., AB � BA), is expressed in technical words by
saying that we have a strict symmetric monoidal category [24].
In the next subsection we will specify more requirements on
this category, imposing that the scalars (arrows from the trivial
system to itself) are probabilities.
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F. Probabilistic structure: states, effects, and transformations

An operational theory is a language whose words are
diagrams representing circuits. With this language one can give
instructions to build up experiments or, alternatively, one can
graphically represent which particular outcomes took place
in an experiment. However, in a physical theory one wants
more: one wants to give probabilistic predictions about the
occurrence of possible outcomes. To have this, there must be a
rule assigning a probability to every event from the trivial
system to itself [25]. More directly, we can say that in a
probabilistic theory the events from the trivial system to itself
are probabilities, as in the following

Definition 9 (Operational-probabilistic theory). An opera-
tional theory is probabilistic if for every test {pi}i∈X from the
trivial system I to itself one has pi ∈ [0,1] and

∑
i∈X pi = 1

and the composition of two events from the trivial system
to itself is given by the product of probabilities: pi ⊗ qj =
pi ◦ qj = piqj .

For short, we will often refer to operational-probabilistic
theories simply as probabilistic theories.

In a probabilistic theory, a preparation event ρi for system
A defines a function ρ̂i sending observation events of A to
probabilities:

ρ̂i : E(A) → [0,1], (aj | 	→ (aj |ρi). (17)

Likewise, an observation event aj defines a function âj from
preparation events to probabilities

âj : S(A) → [0,1], |ρi) 	→ (aj |ρi). (18)

From a probabilistic point of view, two observation events
(preparation events) corresponding to the same function are
indistinguishable. This leads to the notions of states and effects
(see Refs. [15,26]):

Definition 10 (States and effects). Equivalence classes of
indistinguishable preparation-events are called states. Equiva-
lence classes of indistinguishable observation events are called
effects.

From now on we will identify preparation events with
states and observation events with effects, without keeping
the distinction between an event ρi (aj ) and the corresponding
function ρ̂i (âj ). Accordingly, a preparation(observation) test
will be a collection of states (effects), and the sets S(A),E(A)
will be the set of states and and the set of effects of system A,
respectively.

Remark (states and effects in quantum theory). In quantum
theory systems are associated with Hilbert spaces. The
deterministic states of a system A are represented by density
matrices on the corresponding Hilbert space: a deterministic
state ρ is a matrix satisfying ρ � 0 and Tr[ρ] = 1. A
nondeterministic preparation test {ρi}i∈X, sometimes called
a quantum information source, is a collection of positive
operators with the property

∑
i∈X Tr[ρi] = 1. Accordingly,

the set S(A) of all states of system A is the collection of
all unnormalized density matrices ρ with Tr[ρ] � 1. An effect
is represented by positive operator P with P � IA (IA being
the identity operator), and the probability resulting from the
pairing between a state ρ and and effect P is given by the Born
rule: (P |ρ)A = Tr[Pρ].

Notice that according to the definition of states and effects
as equivalence classes, states are separating for effects and
effects are separating for states, that is,

|ρ0)A = |ρ1)A ⇐⇒ (a|ρ0)A = (a|ρ1)A ∀a ∈ E(A)
(19)

(a0|A = (a1|A ⇐⇒ (a0|ρ)A = (a1|ρ)A ∀ρ ∈ S(A).

Since states (effects) are functions from effects (states) to
probabilities, one can take linear combinations of them. This
defines two real vector spaces SR(A) and ER(A), one dual of
the other (we recall that the dual of a real vector space V is the
real vector space V ∗ of all linear functions from V to R). In
this article we will always restrict our attention to the case of
set of states that span finite dimensional vector spaces. In this
case, by construction one has

dim[SR(A)] = dim[ER(A)]. (20)

Notice that a spanning set for SR(A) is a separating set for
ER(A), while a spanning set for ER(A) is a separating set for
SR(A).

Moreover, linear combinations with positive coefficients
define two convex cones S+(A) and E+(A) (we recall that a
set S is a cone if for every x ∈ S and for every λ � 0 one
has λx ∈ S, whereas the set is convex if for every x,y ∈ S

and for every p ∈ [0,1] one has px + (1 − p)y ∈ S). Since
the pairing between states and effects yields positive numbers,
one has the inclusions

E+(A) ⊆ S+(A)∗
(21)

S+(A) ⊆ E+(A)∗,

where S+(A)∗ and E+(A)∗ are the dual cones of S+(A) and
E+(A), respectively. We recall that the dual of a cone S in
some vector space V is the cone S∗ defined by S∗ := {λ ∈
V ∗,λ(x) � 0∀x ∈ S}.

We conclude this subsection by noting that every event Ck

from A to B induces a linear map Ĉk from SR(A) to SR(B),
uniquely defined by [27]

Ĉk : |ρ) ∈ S(A) 	→ Ck|ρ)A ∈ S(B). (22)

Likewise, for every system C the event Ci ⊗ IC induces a
linear map from SR(AC) to SR(BC). From a statistical point
of view, if two events Ci and C ′

i induce the same maps for
every possible system C, then they are indistinguishable.

Definition 11 (Transformations). Equivalence classes of in-
distinguishable events from A to B are called transformations
from A to B.

Again, we will assume that the equivalence classes have
been already done since the start, and, consequently, we
will identify events with transformations, without introducing
new notation. Accordingly, a test will be a collection of
transformations.

Remark (transformations and tests in quantum theory). In
quantum theory, a transformation is usually called quantum
operation. Technically speaking, a quantum operation from
A to B is a linear, completely positive, trace nonincreasing
map sending density matrices of system A to (unnormalized)
density matrices of system B. A test {Ci}i∈X from A to B
is typically referred to as a quantum instrument [28] and
is a collection of quantum operations with the property that
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∑
i∈X Ci is trace preserving, namely

∑
i∈X Tr[Ci(ρ)] = Tr[ρ]

for every state ρ.

Remark (different transformations). Note that two transfor-
mations C ,D ∈ T(A,B) can differ even if C |ρ)A = D |ρ)A for
every ρ ∈ S(A): indeed to make C differ from D it is enough
that there exists an ancillary system C and a joint state |ρ)AC

such that (C ⊗ IC)|ρ)AC �= (D ⊗ IC)|ρ)AC. We will come
back on this point when discussing local discriminability in
Sec. IV.

The following definitions will be used in the following:
Definition 12 (Channel). A deterministic transformation

C ∈ T(A,B) is called channel.
Definition 13 (Reversible channel). A channel U ∈ T(A,B)

is called reversible if there is another channel W ∈ T(B,A)
such that

.
(23)

If there exists a reversible channel U from A to B, then the
systems A and B are operationally equivalent, in the sense of
Definition 5. Note that the reversible channels from A to itself
form a group. We will denote this group by GA.

We can now consider states that are invariant under the
group of reversible transformations GA:

Definition 14 (Invariant states). A state ρ ∈ S(A) is
invariant under the action of the group GA if

(24)

Similarly, we can consider channels with invariant output, that
we call twirling channels.

Definition 15 (Twirling channels and twirling tests). A
channel T ∈ T(A) is a twirling-channel if

(25)

If a test {Ci}i∈X is such that
∑

i∈X Ci is a twirling channel, we
call it a twirling test.

We will see that in a theory with purification there is a
unique invariant state and a unique twirling channel for every
system.

G. Relation with the convex sets framework

The standard assumption in the literature is that, since
the experimenter is free to randomize the choice of devices
with arbitrary probabilities, all sets of states, effects, and
transformations are convex. We will call the theories satisfying
this assumption “convex.” The assumption of convexity will be
clarified in subsection III D in the context of causal theories.
Nevertheless, for many of our results the assumption of
convexity is not essential, and we will discuss the validity
of our results in nonconvex theories, like the toy theories
considered by Spekkens in Ref. [29]. Bearing this in mind,
whenever possible we will present our results in a convexity-
independent language. We will add the specification “convex”

to the theory for those particular results in which convexity is
essential.

In addition to the convexity of all sets of states, effects, and
transformations, the usual convex sets framework (see, e.g.,
Refs. [13,15,26], and, more recently, Refs. [8,17]) includes
an assumption of mathematical simplicity. The assumption
is that every binary probability rule describes the statistics
of a possible two-outcome experiment. Precisely, with the
expression “probability rule” we mean a collection of positive
linear functionals {ai}i∈X ⊂ S∗

+(A) such that
∑

i∈X(ai |ρ)A =
1 for every deterministic state ρ ∈ S(A). We will refer to this
assumption as “no-restriction hypothesis,” as it states that there
is no restriction on the set of (binary) probability rules that can
be implemented in actual experiments.

Definition 16 (No-restriction hypothesis). A probabilistic
theory satisfies the no-restriction hypothesis if every binary
probability rule {a0,a1} ⊂ S∗

+(A) is an observation test.
In this article we will not make this assumption. However,

we will discuss a few implications of it in subsections VII D
and X C.

H. Coarse-graining and refinement

Here we give some definitions that will be often used in this
article.

Definition 17 (Coarse-graining). A test {Ci}i∈X is a coarse-
graining of the test {Dj }j∈Y is there is a partition of Y into
disjoint sets Yi such that Ci = ∑

j∈Yi
Dj for every i ∈ X.

Since we can always decide to join two (or more) outcomes
in a single outcome, the set of all tests must be closed under
coarse-graining.

The inverse of coarse-graining is refinement:
Definition 18 (Refinement of a test). If {Ci}i∈X is a coarse-

graining of {Dj }j∈Y, we say that {Dj }j∈Y is a refinement of
{Ci}i∈X.

Definition 19 (Refinement of an event). A refinement of the
event C is given by a test {Dj }j∈Y and a subset Y0 ⊆ Y such
that C = ∑

j∈Y0
Di .

Definition 20. We say that an event D ∈ T(A,B) refines
C ∈ T(A,B), and write D ≺ C , if there exist a refinement of
C such that D ∈ {Dj }j∈Y0 .

Definition 21 (Refinement set). The refinement set DC of
an event C ∈ T(A,B) is the set of all events D that refine C ,
namely DC := {D ∈ T(A,B)|D ≺ C }.

Definition 22 (Atomic vs. refinable events). An event C is
called atomic if it admits only trivial refinements, equivalently,
if D ≺ C implies D = λC for some λ ∈ [0,1]. An event is
refinable if it is not atomic.

In the case of preparation events the notion of refinement
gives rise to the definitions of pure and mixed states:

Definition 23 (Pure vs. mixed states). An atomic preparation
event ρ ∈ S(A) is called a pure state. A refinable preparation
event is called a mixed state.

Clearly, in a convex theory a state ρ is pure if and only if
it is an extreme point of the convex set S(A). Moreover, in a
convex theory the refinement set Dρ is a convex subset of the
state space. For example, in quantum theory the refinement set
of a density matrix ρ is the set of all (unnormalized) density
matrices σ such that σ � ρ and is clearly convex. Note that the
condition σ � ρ implies that the support of σ is contained in
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the support of ρ. In fact, any density matrix σ with Supp(σ ) ⊆
Supp(ρ), is proportional to a matrix in Dρ . In particular, if
the support of ρ is the whole Hilbert space (that is, if ρ is a
full-rank matrix), then any density matrix is proportional to a
matrix in Dρ . In this case Dρ is a spanning set for the set of all
Hermitian operators. The analog of a full rank density matrix
in the general context is given by the notion of internal state:

Definition 24 (Internal state). A state ω ∈ S(A) is in-
ternal if its refinements span the whole state space, i.e. if
Span(Dω) = SR(A).

In the probabilistic theories considered in this article every
preparation test {ρi}i∈X for system A admits an ultimate
refinement {ϕj }j∈Y, such that each state ϕj is pure. Using the
state-transformation isomorphism we will also prove in Sec.
X that in a theory with purification this property is enough to
imply that every test {Ci}i∈X from A to B admits an ultimate
refinement {Dj }j∈Y, such that each event Dj is atomic.

I. Discrimination and distance

By making tests one can try to discriminate between
different devices. For example, imagine that we have a black
box preparing one of the two deterministic states, ρ0,ρ1 ∈
S(A), and that we want to find out which one. To discriminate
between the two states we can perform a binary observation
test {a0,a1}. The probabilities of outcomes are then given by

p(j |i) := (aj |ρi)A i,j = 0,1. (26)

Assuming prior probabilities π0,π1 for the states ρ0,ρ1,
respectively, we can try to maximize the (average) probability
of correct discrimination, defined as psucc := π0p(0|0) +
π1p(1|1). Substituting the expression for the probabilities
given in Eq. (26) and using the fact probabilities sum up to
unit, we obtain

psucc = π0 + (a1|π1ρ1 − π0ρ0)A

= π1 + (a0|π0ρ0 − π1ρ1)A, (27)

and, optimizing over all binary tests,

p(opt)
succ = π0 + sup

a1∈E(A)
(a1|π1ρ1 − π0ρ0)A

= π1 + sup
a0∈E(A)

(a0|π0ρ0 − π1ρ1)A. (28)

Summing the two expressions above we finally get

p(opt)
succ = 1 + ‖π1ρ1 − π0ρ0‖A

2
(29)

where ‖·‖A is the operational norm defined by

‖δ‖A = sup
a1∈E(A)

(a1|δ)A − inf
a0∈E(A)

(a0|δ)A δ ∈ SR(A). (30)

Note that the norm ‖π1ρ1 − π0ρ0‖A ranges between 0 (when
the two states and the prior probabilities are equal) and 1 (when
the two states are perfectly discriminable). For real numbers
x ∈ SR(I) ≡ R one has ‖x‖I = |x|.

Remark (operational norm in quantum theory). In quantum
theory the operational norm is the usual trace-norm ‖·‖1:
Indeed, if we denote by δ+ and δ− the positive and negative
part of the Hermitian operator δ = π1ρ1 − π0ρ0, respectively,
we obtain ‖δ‖A = Tr[δ+] − Tr[δ−] = ‖δ‖1.

In addition to the defining properties of a norm, the
operational norm has a simple monotonicity property:

Lemma 1 (Monotonicity of the operational norm). If C ∈
T(A,B) is a channel from A to B, then for every δ ∈ SR(A)
one has

‖C δ‖B � ‖δ‖A. (31)

If C is reversible one has the equality.
Proof. By definition, ‖C δ‖B = supb1∈E(B)(b1|BC |δ)A −

infb0∈E(B)(b0|BC |δ)A. Since (b1|BC and (b0|BC are ef-
fects on system A, one has ‖C δ‖B � supa1∈E(A)(a1|B|δ)A −
infa0∈E(A)(a0|A|δ)A = ‖δ‖A. Clearly, if C is reversible one
has the converse bound ‖δ‖A = ‖C −1C δ‖A � ‖C δ‖B, thus
proving the equality ‖δ‖A = ‖C δ‖B. �

For a generic state ρ ∈ S(A), Eq. (30) reduces to

‖ρ‖A = sup
e∈E(A)

′(e|ρ), (32)

where sup′ denotes the supremum restricted to the set of de-
terministic effects. We can now give the notion of normalized
states:

Definition 25 (Normalized states). A state ρ ∈ S(A) is
normalized if ‖ρ‖A = 1. We will denote the set of normalized
states by S1(A).

Clearly, if ρ is deterministic, then Eq. (32) implies that
it is normalized (since ρ corresponds to a single-outcome
preparation test and e to a single-outcome observation test, the
probability of the only possible outcome, given by (e|ρ)A, must
be unit). In Sec. III we will consider causal theories, where the
deterministic effect e ∈ E(A) is unique, and, therefore one has
‖ρ‖A = (e|ρ)A. In this context one also has the converse: if a
state is normalized, then it is deterministic.

Definition 26 (Distinguishable states, discriminating tests).
The states {ρi}i∈X are perfectly distinguishable if there is a test
{ai}i∈X such that

(aj |ρi) = ‖ρi‖Aδij . (33)

The test {ai}i∈X is called a discriminating test.
Remark (Distinguishable states and discriminating test in

quantum theory). In quantum theory a set of distinguishable
states {ρi}ni=1 is a set of density matrices with orthogonal
support. An example of discriminating test for this set is the
collection of orthogonal projectors {Pi}ni=1, where Pi is the
projector on the support of ρi for all i < n, while Pn = I −∑n−1

i=1 Pi . Clearly, the maximum number of distinguishable
states available for a certain system is the dimension d of the
corresponding Hilbert space. In this case, the distinguishable
states are rank-one projectors on an orthonormal basis,
and the corresponding discriminating test is the projective
measurement on the same basis.

If we want a theory that can describe the exchange of
classical messages, we need at least two states ρ0 and ρ1

that are deterministic and perfectly distinguishable. In this
case, a sender can encode a classical bit b = 0,1 in these two
states and a receiver can decode perfectly the message by
using the binary discriminating test {a0,a1}. Indeed, one has
p(j |i) = δij . Clearly, using this encoding for any bit in a string
allows perfect deterministic decoding of the whole string.
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We conclude this subsection with a simple lemma that will
be useful in the discussion of the general no-cloning theorem
for probabilistic theories (see Theorem 12):

Lemma 2. In any convex theory, if two deterministic states
ρ0,ρ1 ∈ S(A) are distinct (i.e., ρ0 �= ρ1), then there exists a
binary test {a0,a1} such that

p(1|0) = p(0|1) < 1
2 . (34)

Proof. Since the states are distinct there exists at least an
effect a such that (a|ρ0) > (a|ρ1). Moreover, since the theory is
convex we can choose without loss of generality (a|ρ1) � 1/2
[if a does not meet this condition, we can replace it with the
convex combination a′ = 1/2(a + e)]. Now define the binary
test {a0,a1} by the convex combination{

a0 = qa + (1 − q)0

a1 = e − a0
q = 1

(a|ρ0) + (a|ρ1)
, (35)

where 0 is the null effect, defined by (0|ρ)A = 0,∀ρ ∈ S(A).
For this test one has p(1|0) = p(0|1) = (a|ρ1)/[(a|ρ0) +
(a|ρ1)] < 1/2. �

The above lemma states that if two states are different,
then the worst-case error probability, defined as pwc :=
max{p(1|0),p(0|1)}, can be reduced to a value that is strictly
smaller than 1/2. In other words, if two states are different, then
in the worst-case scenario we can always distinguish between
them better than with a random guess.

J. Closure

The closure of S(A) with respect to the operational norm
contains all the elements of SR(A) that can be approximated
arbitrarily well by physical states: a vector ρ ∈ SR(A) is in
the closure if there is a sequence of states {ρn} such that
limn→∞ ‖ρ − ρn‖A = 0. Since SR(A) is finite dimensional,
it is natural to assume that all such vectors correspond to
physical states. We will make this assumption in the article.
In particular, assuming that the set S(I) of states of the trivial
system is closed with respect to the operational norm means
assuming that the probabilities appearing in the theory form
a closed subset of the interval [0,1]. In fact, we have the
following:

Lemma 3. If an operational-probabilistic theory is not
deterministic, then S(I) is dense in the interval [0,1].

Proof. If the theory is not deterministic there is a binary test
giving outcomes 0,1 with probabilities q0,q1 �= 0, respectively.
Now, this test provides a biased coin, which can be tossed many
times, thus allowing for the approximation of any coin with
bias p ∈ [0,1] [30]. �

Therefore, if we assume that the set of states S(I) is closed,
then the previous lemma implies the following:

Corollary 1. If S(I) is closed, then it is the whole interval
[0,1].

In subsection III D we will discuss the relation between
closure and convexity in the context of causal theories.

III. CAUSAL THEORIES

In this section we restrict our attention to causal theories, in
which the probability of outcomes of an experiment at a given
time does not depend on the choice of experiments performed
at later times.

A. Definition and main properties

Although in the circuits discussed until now we had
sequences of tests, such sequences were not necessarily
causal sequences. The input-output arrow determined by
the connections of physical devices was not necessarily the
causal arrow defined by a signaling structure. In fact, one
can formulate operational-probabilistic theories even in the
absence of a predefined causal arrow, and this is a crucial
point to formulate a quantum theory of gravity (see, e.g.,
Hardy in Ref. [31]). A concrete example of noncausal theory
is the theory studied in Refs. [32,33], where the states are
quantum operations, and the transformations are “supermaps”
transforming quantum operations into quantum operations.
In this case, transforming a “state” means inserting the
corresponding quantum operation in a larger circuit, and the
sequence of two such transformations is not a causal sequence.
However, the analysis of noncausal theories is not the scope
of the present work. We now give the condition that allows us
to interpret sequential composition as a causal cascade:

Definition 27 (Causal theories). A theory is causal if for ev-
ery preparation test {ρi}i∈X and every observation test {aj }j∈Y

on system A the marginal probability pi := ∑
j∈Y(aj |ρi)A

is independent of the choice of the observation test {aj }j∈Y.
Precisely, if {aj }j∈Y and {bk}k∈Z are two different observation
tests, then one has∑

j∈Y

(aj |ρi)A =
∑
k∈Z

(bk|ρi)A. (36)

Loosely speaking, we may say that the condition of Eq. (36)
expresses the principle of “no-signaling from the future.”

Causal theories have a simple characterization:
Lemma 4 (Characterization of causal theories). A theory

is causal if and only if for every system A there is a unique
deterministic effect (e|A.

Proof. Suppose that e and e′ are two deterministic effects for
system A. Since deterministic effects belong to single-outcome
tests, Eq. (36) gives (e|ρi)A = (e′|ρi)A for every state ρi .
Therefore, e = e′. Conversely, suppose that the deterministic
effect is unique and take an observation test {aj }j∈Y on system
A. Then by coarse-graining one obtains a single-outcome test,
with deterministic effect (e′|A = ∑

j∈Y(aj |A, and, by unique-
ness of the deterministic effect, (e|A = (e′|A = ∑

j∈Y(aj |A.
Therefore, for every state ρi we have

∑
j∈Y(aj |ρi)A = (e|ρi)A,

independently of the choice of the observation test {aj }j∈Y.
This proves Eq. (36). �

Remark (quantum theory as an example of causal theory).
Ordinary quantum theory is an example of causal theory.
Indeed, there is a unique deterministic effect, corresponding
to the (trace with the) identity operator on the system’s Hilbert
space. In other words, the only operator P satisfying the
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equation TrA[Pρ] = 1 for every density matrix is P = IA,
the identity on A.

An immediate consequence of causality is that the deter-
ministic effect of a composite system AB is the product of the
deterministic effects of A and B, as expressed by the following.

Corollary 2 (Factorization of the deterministic effect on
product systems). Let A and B be two arbitrary systems. In a
causal theory one has

(e|AB = (e|A(e|B. (37)

Proof. Since the parallel composition of two single-
outcome tests is a single-outcome test, the effect (e|A(e|B
is deterministic, according to Definition 2. Since the deter-
ministic effect (e|AB is unique, one must have (e|A(e|B =
(e|AB. �

Note that in a causal theory there is a unique way of defining
marginal states:

Definition 28 (Marginal state). The marginal state of |σ )AB

on system A is the state |ρ)A := (e|B|σ )AB.
In a causal theory the channels (deterministic transforma-

tions corresponding to single-outcome tests) are characterized
as follows:

Lemma 5 (Characterization of channels). In a causal theory
a transformation C ∈ T(A,B) is a channel (deterministic
transformation, according to Definition 12) if and only if
(e|BC = (e|A. Diagrammatically,

.
(38)

In particular, a state ρ ∈ S(B) is deterministic if and only if
(e|ρ)B = 1.

Proof. If C is a channel, then (e|BC is a deterministic
effect. By uniqueness of the deterministic effect, Eq. (38)
holds. Conversely, suppose that {Ci}i∈X is a test from A to
B and C ≡ Ci0 is a transformation such that Eq. (38) holds.
By coarse-graining, we can define the channel C ′ := ∑

i∈X Ci .
Since C ′ is a channel, we must have (e|A = (e|BC ′ = (e|A +
(e|B(

∑
i �=i0

Ci), whence (e|B(
∑

i �=i0
Ci) = 0. But this implies∑

i �=i0
Ci = 0, and, therefore, C = C ′. Hence, C is a channel.

Finally, a deterministic state is nothing but a channel with
trivial input system A = I. Since the deterministic effect of the
trivial system I is the number 1, the normalization of Eq. (38)
becomes (e|ρ)B = 1. �

Lemma 5 also leads to the following
Corollary 3 (Normalization of tests). A test {Ci}i∈X from A

to B satisfies the normalization condition∑
i∈X

(e|BCi = (e|A. (39)

In particular, an observation test {ai}i∈X on system A must
satisfy the normalization condition∑

i∈X

(ai |A = (e|A. (40)

In quantum theory, the normalization condition of Eq. (38)
means that any quantum channel must be trace preserving
(identity preserving in the Heisenberg picture). Indeed, the
deterministic effect is the identity operator, and Eq. (38)
implies that, for every quantum state ρ, one has TrB[C (ρ)] =
TrA[ρ]. The normalization condition for observation tests
given in Eq. (40) is instead the normalization of quantum
measurements: a quantum measurement is a POVM, that
is a collection of positive operators {Ai}i∈X satisfying the
condition

∑
i∈X Ai = IA, where IA is the identity operator

on the system’s Hilbert space.
Moreover, in a causal theory we have a simple characteri-

zation of the normalized states:
Corollary 4 (Characterization of normalized states). Let ρ

be a state of system A. In a causal theory the following are
equivalent

1. ρ is normalized
2. (e|ρ)A = 1
3. ρ is deterministic.
Proof. Since there is a unique deterministic effect, the

expression of the norm given in Eq. (32) yields ‖ρ‖A = (e|ρ)A.
This proves the equivalence 1 ⇔ 2. The equivalence 2 ⇔ 3
was already proved in Lemma 5. �

For every state |ρ)A we can consider the normalized state

|ρ̄)A := |ρ)A

(e|ρ)A
. (41)

Operationally, this means that we can always make rescaled
preparations: we can perform a preparation test {ρi}i∈X, and,
if the test gives outcome i0 we can claim that we prepared
the normalized state ρ̄i0 . In other words, in a causal theory
any preparation event can be promoted to a single-outcome
preparation test. Following this observation, in a causal theory
there is no reason to forbid that every normalized state can be
actually produced in some single-outcome test. This implies
that every state is proportional to a deterministic one. In the
following we will always assume this fact as a property of
causal theories.

Note that also the converse is true:
Lemma 6 (Causality is necessary for rescaled prepa-

rations). A theory where every state is proportional to a
deterministic one is causal.

Proof. Let |ρ)A be an arbitrary state and e and e′ be two
deterministic effects. By hypothesis, we have |ρ)A = k|ρ̄)A,
where ρ̄ is deterministic. This implies (e|ρ)A = k = (e′|ρ),
and, since ρ is arbitrary e = e′. By Lemma 4, this implies that
the theory is causal. �

Remarkably, the causal principle of “no-signalling from the
future” implies the impossibility of signaling in space without
exchange of physical systems:

Theorem 1 (No signalling without exchange of physical
systems). In a causal theory it is impossible to have signaling
without exchanging systems.

Proof. Suppose that two distant parties, Alice and Bob,
share a bipartite state |�)AB, and that Alice (Bob) performs
a local test {Ai}i∈X ({Bj }j∈Y) on the system at her (his)
disposal. Let us define the joint probability pij := (e|AB(Ai ⊗
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Bj )|�)AB and its marginal p
(A)
i := ∑

j pij (p(B)
j := ∑

i pij )
on Alice’s (Bob’s) side. It is immediate to verify that the
marginal p

(A)
i on Alice’s side does not depend on the test

{Bj } on Bob’s side: indeed, one has

p
(A)
i =

∑
j

(e|A(e|B(Ai ⊗ Bj )|�)AB

= (e|A
⎛⎝Ai ⊗

⎡⎣∑
j

(e|BBj

⎤⎦⎞⎠ |�)AB

= (e|AAi |ρ)A, (42)

having used the normalization condition
∑

j (e|BBj = (e|B
(Corollary 3) and having defined the marginal state |ρ)A :=
(e|B|�)AB. The same reasoning holds for the marginal on
Bob’s side. �

B. Conditioning

In a causal sequence the choice of a device can depend on
the outcomes of previous devices. This gives rise to the notion
of conditioned test, which generalizes the notion of sequential
composition:

Definition 29 (Conditioned test). If {Ci}i∈X is a test from
A to B and, for every i, {D (i)

ji
}ji∈Yi

is a test from B to C,
then the conditioned test is a test from A to C, with outcomes
(i,ji) ∈ Z := ⋃

i∈X{i} × Yi , and events {D (i)
ji

◦ Ci}(i,ji )∈Z. Dia-

grammatically, the events D (i)
ji

◦ Ci are represented as follows:

.
(43)

The above definition of conditioning makes sense in a
causal theory, where the uniqueness of the deterministic
effect ensures that the test {D (i)

ji
◦ Ci}i∈X,ji∈Yi

satisfies the
normalization condition required by Corollary 3:∑

i∈X

∑
ji∈Yi

(e|CD (i)
ji

◦ Ci =
∑
i∈X

(e|BCi = (e|A. (44)

Conditioning expresses the possibility of choosing what to
do at a certain step using the classical information generated
in the previous steps. In a causal operational theory there is no
reason to forbid an experimenter to perform conditioned tests.
Accordingly, in the following we will assume that in a causal
theory any conditioned test is allowed. In fact, the possibility to
perform conditioned tests is essentially equivalent to causality.
Indeed, one has also the converse statement:

Lemma 7 (Causality is necessary for conditioned tests). A
theory where every conditioned test is possible is causal.

Proof. To prove that the theory is causal we show that
for every system A the deterministic effect (e|A is unique.
Suppose that (e|A and (e′|A are two deterministic effects,
and let ρ ∈ S(A) be an arbitrary state. By definition, there
is a preparation test {ρi}i∈X that contains ρ, that is, ρ = ρi0

for some outcome i0 ∈ X. Moreover, using coarse-graining
we obtain the two-outcome preparation test {ρ0,ρ1}, where
ρ0 = ρ and ρ1 := ∑

i �=i0
ρi . Now, consider the conditioned test

{(e|ρ0)A,(e′|ρ1)A}, defined by the following procedure: first
perform the preparation test {ρ0,ρ1}, and then, if the outcome
is 0 apply the effect (e|A, otherwise apply (e′|A. Now, since

{(e|ρ0)A,(e′|ρ1)A} is a test from the trivial system to itself one
must have

(e|ρ0)A + (e′|ρ1)A = 1. (45)

On the other hand, since the effect e′ is deterministic,
one must have (e′|ρ0)A + (e′|ρ1)A = 1. By comparison, this
implies (e|ρ0)A = (e′|ρ0)A, and, since ρ0 was a generic state,
e = e′. �

Remark (conditioning with different outputs and “direct
sum” systems). In principle, one could also consider a
conditioning where the output system of each test {D (i)

ji
} is

a system Ci that depends on the outcome i. In this case
the output of the conditioned test would be a “direct sum”
system “C := ⊕

i∈X Ci .” In quantum theory, this situation
can be described introducing a superselection rule, according
to which the possible states of the “direct sum” system
are the block-diagonal density matrices of the form ρ =⊕

i∈X ρi , where each ρi is a density matrix on the Hilbert
space associated to system Ci . This kind of extension would
also require treating the outcome spaces X as a classical
systems that can be the input or the output of some classical
information-processing device. However, we will not consider
here this generalization as it is not needed for the main purpose
of the article.

A particular case of conditioning is randomization.
Definition 30 (Randomization). If {pi}i∈X is a preparation

test for the trivial system and, for every outcome i, {C (i)
ji

}ji∈Yi

is a test from A to B, the randomized test {piC
(i)
ji

}i∈X,ji∈Yi
is

the test from A to B with events defined by

.
(46)

(on the left-hand side we used the fact that that the composition
with trivial systems is trivial, and, therefore, one has AI =
A,BI = B).

If a causal theory is not deterministic (i.e., if the possible
values of probabilities are not only 0 and 1) then randomization
and coarse-graining always allows one to construct an internal
state (see Definition 24): it is enough to take a spanning
set of states {ρi}i∈X, to randomize them with some nonzero
probabilities {pi}i∈X and then to coarse-grain, thus getting the
internal state ω = ∑

i∈X piρi .
Finally, conditioning allows one to prove that a causal

theory contains all possible measure-and-prepare channels,
defined as follows.

Definition 31 (Measure-and-prepare channels). A channel
C ∈ T(A,B) is measure-and-prepare if there exists an obser-
vation test {ai}i∈X on A, and a collection of normalized states
{βi}i∈X ⊂ S1(B) such that

C =
∑
i∈X

|βi)B(ai |A. (47)
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C. Distance between transformations

Here we introduce a norm for transformations that has a
direct operational interpretation: it quantifies the maximum
probability of success in the discrimination of two channels
in a causal theory. Suppose that we are given two channels
C0,C1 ∈ T(A,B) with prior probabilities π0,π1, respectively.
In a causal theory, the most general way to discriminate
is to prepare a bipartite input state ρ ∈ S1(AC), to apply
the unknown channel, and to perform a binary test that
distinguishes between the two possible output states C0|ρ)AC

and C1|ρ)AC. Optimizing over all binary tests and using
Eq. (29) we obtain the success probability psucc = 1/2(1 +
‖(π1C1 − π0C0)ρ‖BC). Moreover, optimizing the input state
and the extension we find the maximum probability of
success

popt
succ = 1

2 (1 + ‖π1C1 − π0C0‖A,B), (48)

where the operational norm for transformations is defined by

‖
‖A,B = sup
C

sup
ρ∈S1(AC)

‖
ρ‖BC 
 ∈ TR(A,B). (49)

In quantum theory our expression for the operational norm
reduces to the diamond norm in Schrödinger picture [34]
or, equivalently, to the completely bounded (CB) norm in
Heisenberg picture [35].

In the case of trivial input system A = I, Eq. (49) gives
back the norm of states introduced in Eq. (30). In the case of
trivial output system B = I, it provides an operational norm
for effects, given by

‖δ‖A,I = sup
C

sup
ρ∈S1(AC)

‖δρ‖C δ ∈ ER(A). (50)

In fact, the extension with the ancillary system C is not needed
in this case:

Lemma 8. The operational norm of an element of the vector
space δ ∈ ER(A) spanned by the effects for system A is given
by the expression

‖δ‖A,I = sup
ρ∈S1(A)

|(δ|ρ)A|. (51)

Proof. Taking C = I in Eq. (50) yields the lower
bound ‖δ‖A,I � supρ∈S1(A) ‖(δ|ρ)A‖I = supρ∈S1(A) |(δ|ρ)A|,
where we used the fact that the norm of a real number
x ∈ R ≡ SR(I) is given by its modulus: ‖x‖I = |x|. To prove
the equality of Eq. (51) we now prove converse bound. By the
definition of the operational norm for states in Eq. (30), for
every σ ∈ S1(AC) we have

‖δσ‖C = sup
c1∈E(A)

(δ|A(c1|C|σ )AC − inf
c0∈E(A)

(δ|A(c0|C|σ )AC

= sup
{c0,c1}

(δ|A(c1 − c0|C|σ )AC, (52)

where the optimization in the last equation is over all
possible binary tests {c0,c1} for system C. Now, applying
the observation test {c0,c1} to the bipartite state |σ )AC we
obtain a preparation test {ρ0,ρ1} for system A, defined by

|ρi)A = (ci |C|σ )AC,i = 0,1. Defining the probabilities pi =
(e|ρi)A and the normalized states ρ̄i = ρi/(e|ρi)A we then have

(δ|A(c1 − c0|C|σ )AC = p1(δ|ρ̄1)A − p0(δ|ρ̄0)A

� max{(δ|ρ̄1)A, − (δ|ρ̄0)A}
� sup

ρ∈S1(A)
|(δ|ρ)A|. (53)

�

In quantum theory the norm ‖D‖A,I of an Hermitian
operator on the Hilbert space of system A coincides with the
operator norm ‖D‖∞ = supρ�0,Tr[ρ]=1 |Tr[Dρ]| = maxi{|di |},
where {di} are the eigenvalues of D.

We conclude by mentioning a monotonicity property of the
operational norm of transformations:

Lemma 9 (Monotonicity of the operational norm for
transformations). If C ∈ T(A,B) and E ∈ T(C,D) are two
channels, then for every 
 ∈ TR(B,C) one has

‖E 
C ‖A,D � ‖
‖B,C. (54)

If C and E are reversible one has the equality.
Proof. Let R be an ancillary system, and

ρ ∈ S1(AR) be a normalized state of AR. Then,
since |σ )BR = C |ρ)AR is a normalized state of BR,
we have ‖E 
C ‖A,D = supR supρ∈S1(AR) ‖E 
C ρ‖DR �
supR supσ∈S1(BR) ‖E 
σ‖DR. Now, using Lemma 1 we
obtain ‖E 
σ‖DR � ‖
σ‖CR. Hence, ‖E 
C ‖A,D �
supR supσ∈S1(BR) ‖
σ‖CR = ‖
‖B,C. Clearly, if C
and E are reversible, one has the converse bound
‖
‖B,C = ‖E −1(E 
C )C −1‖B,C � ‖E 
C ‖A,D, thus proving
the equality. �

D. Closure and convexity in causal theories

In subsection II J we saw that if a theory is not deterministic,
then one can construct a circuit that simulates (with arbitrary
precision) a coin with arbitrary bias p ∈ [0,1].

In causal theories the possibility of conditioning gives
directly the following:

Lemma 10 (Approximation of convex combinations). If a
causal theory is not deterministic, then any convex combina-
tion of states, effects, and transformations can be approximated
with arbitrary precision.

Proof. Let p ∈ [0,1] be an arbitrary probability and pn ∈
S(I) be such that |p − pn| < 1/n (such a probability exists
because S(I) is dense in the interval [0,1], as stated by
Lemma 3). Consider two arbitrary tests {Ci}i∈X and {Dj }j∈Y

from A to B. By randomization, we get the test {pnCi}i∈X ∪
{(1 − pn)Dj }j∈Y. Then, by coarse-graining we can obtain the
convex combination pnCi + (1 − pn)Dj . The distance with
the desired convex combination pCi + (1 − p)Dj is bounded
by (‖Ci‖A,B + ‖Dj‖A,B)/n < 2/n. �

As a simple consequence we have the following.
Corollary 5 (Closure implies convexity). If a causal theory

is not deterministic and the set of states of the trivial system is
closed, then all sets of states, effects, and transformations are
convex.

In this article for simplicity we will always work with closed
sets of states. Our attention will be devoted to nondeterministic
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causal theories and, therefore, by the previous Corollary 5
closure implies convexity. Note that, however, most results
hold independently of the assumption of convexity, since in
the context of nondeterministic causal theories any desired
combination can be approximated with arbitrary precision.

E. No-restriction hypothesis in causal theories

In a causal theory the no-restriction hypothesis of Definition
16 implies that for every system A the cone generated by the
effects coincides with the dual of the cone generated by the
states:

Lemma 11. In a causal theory the no-restriction hypothesis
of Definition 16 implies the condition E+(A) = S∗

+(A) for
every system A.

Proof. Suppose that a is an element of S∗
+(A) and let ‖a‖A,I

be the operational norm of a, as defined in Eq. (51). If ‖a‖A,I =
0, then a is the null effect, which is trivially an element
of E+(A). If ‖a‖A,I �= 0, then define the normalized effect
a0 = a/‖a‖A,I. Upon defining a1 = e − a0, we now have
(a1|ρ) � 0 for all ρ ∈ S+(A), i.e., a1 ∈ S∗

+(A). Moreover,
(a0|ρ)A + (a1|ρ)A = (e|ρ)A = 1 for every normalized state
ρ ∈ S1(A). Hence, {a0,a1} is a probability rule. By the
no-restriction hypothesis, we then have that {a0,a1} is an
observation test, and, therefore, a0 and a1 are effects. This
proves that every a ∈ S∗

+(A) is proportional to an effect
a0, that is, S∗

+(A) ⊆ E+(A). On the other hand, all effects
are positive functionals on states, and, therefore S∗

+(A) ⊇
E+(A). �

The above condition will be useful when discussing the
implications of the no-restriction hypothesis in subsections
VII D and X C.

IV. LOCAL DISCRIMINABILITY

Here we discuss the property of local discriminability,
which expresses the possibility of distinguishing multipartite
states using only local devices.

A. Definition and main properties

A common assumption in the literature on probabilistic
theories is what we will call here local discriminability (see,
e.g., Refs. [7–11,17,18]).

Definition 32 (Local discriminability). A theory enjoys
local discriminability if whenever two states ρ,σ ∈ S(AB)
are distinct, there are two local effects a ∈ E(A) and b ∈ E(B)
such that

.
(55)

Note that local discriminability on bipartite states implies
local discriminability on multipartite states, as can be seen by
simple iteration.

The meaning of the local discriminability condition is
that if two bipartite states are different, then there is a
chance of distinguishing between them by using only local
devices. Of course, the resulting discrimination may not be
optimal, but at least it is strictly better than the random

guess. Indeed, in the next lemma we show that in a convex
theory with local discriminability two parties Alice and Bob,
holding systems A and B, respectively, can always find a
discrimination protocol that uses only local operations and
classical communication (LOCC) and outperforms the random
guess.

Lemma 12 (LOCC discrimination). In a convex theory
with local discriminability, if two states ρ0,ρ1 ∈ S1(AB) are
distinct, then there exists a LOCC discrimination protocol,
described by a binary test {A0,A1}, such that the probabil-
ity pwc := max{p(0|1),p(1|0)}, p(i|j ) = (ai |ρj )AB is strictly
smaller than 1/2.

Proof. If ρ �= σ , then by local discriminability there are
always two effects a,b such that (a ⊗ b|ρ)AB > (a ⊗ b|σ )AB.
The binary test {A,eAB − A} defined by A := a ⊗ b can
be obtained by performing the local tests {a,eA − a} and
{b,eB − b} and taking a coarse-graining. If the theory is
convex, exploiting the construction of Lemma 2 (which
only requires randomization and coarse-graining) we obtain
a binary test {A0,A1} satisfying p(0|1) = p(1|0) < 1/2 and,
therefore pwc < 1/2. �

Local discriminability is an enormous advantage in exper-
iments. For example it allows one to perform tomography
of multipartite states with only local measurements. Indeed,
every bipartite effect (E|AB can be written as linear com-
bination of product effects, and, therefore every probability
(E|ρ)AB can be computed as a linear combination of the
probabilities (ai ⊗ bj |ρ)AB arising from a finite set of product
effects:

Lemma 13 (Local tomography). Let {ρi} and {ρ̃j } be two
bases for the vector spaces SR(A) and SR(B), respectively,
and let {ai} and {bj } be two bases for the vector spaces ER(A)
and ER(B), respectively. A theory enjoys local discriminability
if and only if every state σ ∈ S(AB) (every effect E ∈ E(AB))
can be written as

|σ )AB =
∑
i,j

Aij |ρi)A|ρ̃j )B

(56)⎛⎝(E|AB =
∑
i,j

Bij (ai |A(bj |B
⎞⎠

for some suitable real matrix Aij (Bij ).
Proof. Suppose that local discriminability holds. By defini-

tion, the product effects a ⊗ b are a separating set for SR(AB),
and, therefore, they are a spanning set for ER(AB). Since
states and effects span vector spaces of equal dimension, this
also implies that the product states are a spanning set for
SR(AB). Conversely, if Eq. (56) holds, then the product effects
are a spanning set for the vector space ER(AB). Clearly, if
(a ⊗ b|ρ)AB = (a ⊗ b|σ )AB for all product effects, then one
has ρ = σ , and this proves local discriminability. �

This also implies:
Theorem 2 (Product of internal states is internal). In a

theory with local discriminability if the states ωA and ωB are
internal in S(A) and S(B), respectively, then the product ωA ⊗
ωB is internal in S(AB).
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Proof. By definition, one has Span(DωA⊗ωB ) ⊃
Span(DωA ) ⊗ Span(DωB ) = SR(A) ⊗ SR(B). Since
local discriminability holds, this is also equal to SR(AB). �

Moreover, local discriminability allows one to distinguish
two different transformations C ,D ∈ T(A,B) without consid-
ering their extension with an arbitrary ancilla system C.

Lemma 14. If two transformations C ,D ∈ T(A,B) are
different and local discriminability holds, then there exist a
state ρ ∈ S(A) such that

. (57)

Proof. By definition, if C and D are different there exist
a system C and a joint state σ ∈ S(AC) such that C |σ )AC �=
D |σ )AC. Now, since local discriminability holds, there are two
effects b,c on systems B,C, respectively such that

.

(58)

Defining |ρ) := (c|C|σ )AC we then obtain (b|BC |ρ)A �=
(b|BD |ρ)A. This implies C |ρ)A �= D |ρ)A. �

B. Causal theories with local discriminability

The results of this article can be formulated in the simplest
way for causal theories that enjoy local discriminability. In this
case one has the following useful properties:

Lemma 15. Let |σ )AB be a state of AB and |ρ)A :=
(e|B|σ )AB, |ρ̃)B := (e|A|σ )AB be its marginals on systems A,
B, respectively. In a causal theory with local discriminability
one has

σ ∈ Span(Dρ⊗ρ̃), (59)

where Dρ⊗ρ̃ is the refinement set of ρ ⊗ ρ̃, as defined in
Definition 21.

Proof. Take a basis {ρi}ni=1 ({ρ̃j }ñj=1) of states in the

refinement set of ρ (ρ̃), and extend it to a basis {ρi}DA
i=1 ({ρ̃j }DB

j=1)
of SR(A) [of SR(B)]. By local discriminability, we can write
σ as a linear combination as in Eq. (56) for some coefficients
Aij . Now, for every effect (a|A the state |ρ̃a)B := (a|A|σ )AB is
clearly in Dρ̃ . Therefore, we must have Aij = 0 for all j > ñ.
Likewise, applying an arbitrary effect (b|B on system B we
find that we must have Aij = 0 for all i > n. This implies

|σ )AB =
n∑

i=1

ñ∑
j=1

Aij |ρ)i |ρ̃)j , (60)

that is, σ ∈ Span(Dρ⊗ρ̃). �

Since in a nondeterministic causal theory the set of states
S(A) is convex [Corollary 5 along with the assumption that
S(I) is closed], we also have the following:

Theorem 3. Let |σ )AB be a state of AB and |ρ)A :=
(e|B|σ )AB, |ρ̃)B := (e|A|σ )AB be its marginals on systems A,
B, respectively. In a nondeterminisitc causal theory with local
discriminability there exists a nonzero probability k > 0 such
that

kσ ∈ Dρ⊗ρ̃ . (61)

The proof of the theorem is immediate using Lemma 15
along with the following

Lemma 16. In a nondeterministic causal theory, for every
couple of states σ,ρ ∈ S1(A) one has

σ ∈ Span(Dρ) =⇒ kσ ∈ Dρ, (62)

for some nonzero probability k > 0.
Proof. Take a basis {ρi}ni=1 of states in Dρ . By hypothesis,

we can write σ = ∑
i siρi with suitable real coefficients si .

Moreover, since we are in finite dimensions, there is surely
a maximum coefficient smax = maxi si . On the other hand,
since ρi belongs to Dρ , there is surely a state χi such that
ρ = ρi + χi . This implies

ρ = 1

n

∑
i

(ρi + χi). (63)

Let us define τ := ρ − kσ , with k = 1
2nsmax

, and normalize it
as τ̄ := τ/(e|τ )A. Using Eq. (63) it is easy to verify that τ̄ is a
state, since it is a convex combination of states (recall that in a
nondeterministic causal theory the set of states is convex).
Moreover, we have ρ = kσ + (1 − k)τ̄ , which implies the
thesis. �

Remark. In the previous Lemma 16 we used the fact that
in a nondeterministic causal theory a set of states is convex
[Corollary 5 along with the assumption that S(I) is closed]. In
fact, we can weaken this assumption in the proofs of Theorem 3
and Lemma 16. Indeed, in any nondeterministic causal theory
we can approximate the convex combinations needed for the
proof of Lemma 16 with arbitrary precision (Lemma 10), thus
proving Eqs. (61) and (62) with a nonzero probability k > 0
that arises from a test allowed by the theory.

Theorems 2 and 3 state two very natural properties. Even
when discussing the extension of our results beyond the
framework of local discriminability we will assume these
properties to hold.

Finally, causal theories with local discriminability enjoy
a nice characterization of states that are invariant under the
group of reversible transformations:

Theorem 4. In a causal theory with local discriminability if
systems A and B have unique invariant states |χ )A ∈ S1(A)
and |χ )B ∈ S1(B), respectively, then |χ )A|χ )B ∈ S1(AB) is
the unique locally invariant state of system AB.

Proof. Suppose that |σ )AB is a locally invariant state,
namely

. (64)

for all U ∈ GA and V ∈ GB. If we apply two arbitrary effects
(a|A and (b|B we then get

(65)

having defined |ρ̃a)B := (a|A|σ )AB and |ρb)A := (b|B|σ )AB.
Now, ρ̃a and ρb are invariant (unnormalized) states. Since χA
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is the unique state of B that is invariant and normalized, one
must have

|χ )A = |ρb)A

(e|ρb)A
= |ρb)A

(e ⊗ b|σ )AB
:= |ρb)A

(b|ρ̃)B
(66)

|χ )B = |ρ̃a)B

(e|ρ̃a)B
= |ρ̃a)B

(a ⊗ e|σ )AB
:= |ρ̃a)B

(a|ρ)A
,

|ρ)A, |ρ̃)B being the marginal states on systems A, B,
respectively. Inserting the above relations in Eq. (65), we then
obtain

(67)

for every a,b. By local discriminability, this implies |σ )AB =
|χ )A|ρ̃)B = |ρ)A|χ )B, and, therefore, |σ )AB = |χ )A|χ )B. �

V. BEYOND LOCAL DISCRIMINABILITY
AND CONVEXITY

Although the results of this article take their simplest
form for causal theories with local discriminability, most of
them are valid in causal theories under weaker requirements.
For example, they hold for quantum theory on real Hilbert
spaces, which is a well-known example of theory without
local discriminability. Moreover, although convexity is very
well motivated in the context of causal theories, most results
of this article hold even in nonconvex theories. In this section
we briefly discuss these generalizations.

A. Relaxing local discriminability

A weaker requirement than local discriminability is local
discriminability on pure states:

Definition 33 (Local discriminability on pure states). A
theory enjoys local discriminability on pure states if whenever
two states �,σ ∈ S(AB) are different, and one of the two
states (say �) is pure, there are two effects a ∈ E(A) and
b ∈ E(B) such that

.
(68)

An example of theory with this property is quantum theory
on real Hilbert spaces:

Lemma 17. Quantum theory on real Hilbert spaces enjoys
local discriminability on pure states.

Proof. Let ρ = ∑
i pi |
i〉〈
i | be a density matrix on the

real Hilbert space HA ⊗ HB with HA = Rm and HB = Rn

and |�〉 ∈ Rm ⊗ Rn be a unit vector. Suppose that Tr[(ρ −
|�〉〈�|)(a ⊗ b)] = 0 for every couple of real matrices a

and b. Taking a = |v〉〈v| for some v ∈ Rm we then obtain
〈v|A|
i〉AB = ki,v〈v|A|�〉AB for some constant ki,v . Likewise,
taking b = |w〉〈w| for some w ∈ Rn we obtain 〈w|B|
i〉AB =

li,w〈w|B|�〉AB for some constant li,w. Putting the two things
together we have

〈v|A〈w|B|
i〉AB = ki,v〈v|A〈w|B|�〉AB

= li,w〈v|A〈w|B|�〉AB (69)

hence ki,v ≡ li,w := ci . Finally, 〈v|A〈w|B|
i〉AB =
ci〈v|A〈w|B|�〉AB for every v,w implies |
i〉 = ci |�〉,
and, therefore σ = |�〉〈�|. �

When generalizing our results to theories without local
discriminability we will always assume local discriminability
on pure states along with the theses of Theorems 2, 3, and 4.
Again, all these requirements are met by quantum theory on
real Hilbert spaces.

An elementary property of causal theories with local
discriminability on pure states is that the product of two pure
states is pure, as stated in the following lemma.

Lemma 18 (Product of pure states is pure). In a causal
theory with local discriminability on pure states, if the states
|ϕ)A ∈ S1(A) and |ψ)B ∈ S1(B) are pure, then their product
|ϕ)A|ψ)B ∈ S1(AB) is pure.

Proof. Suppose that the product can be written as a con-
vex combination |ϕ)A|ψ)B = ∑

i∈X pi |�i)AB, with |�i)AB ∈
S1(AB). We now show that |�i)AB = |ϕ)A|ψ)B for every
i ∈ X. Let (b|B be an arbitrary effect for system B. We then
have

.

(70)

Since |ϕ)A is pure, this implies

(71)

for some coefficient λbi � 0. Clearly, for (b|B = (e|B one has
λei = 1. Similarly, if (a|A is an arbitrary effect for system A,
we obtain

(72)

for some coefficient µai � 0 satisfying µei = 1. Combining
the above facts, we obtain

(73)

Finally, this implies

(74)

and, by local discriminability on pure states |�i)AB =
|ϕ)A|ψ)B. �
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Clearly, iterating the above reasoning one can also show
that the product of N pure states |ϕ1)A1 |ϕ2)A2 . . . |ϕN )AN

is
pure.

B. Relaxing convexity

If one wants to relax convexity, it is clear from the proof of
Lemma 10 and Corollary 5 that one must have at least one of the
following features: (i) the theory is deterministic, i.e., all events
have either zero or unit probability; (ii) some randomizations
or some coarse-grainings are forbidden; and (iii) the set of
probabilities S(I) of the theory is not closed. For the purposes
of this article, deterministic theories are not quite interesting,
and theories with nonclosed sets of transformations are just
technically cumbersome, although most of the conclusions of
this paper remain unchanged. Therefore, in relaxing convexity
we will only consider the case in which some conditioned
tests or some coarse-grained tests are forbidden. Of course,
if one wants to drop a basic operational requirement like the
possibility of conditioning, one has to take care that some
minimal properties hold. For example, the existence of internal
states, the fact that every test has an ultimate refinement, and
the validity of the theses of Theorems 2 and 3 have to be
explicitly postulated. One would also need to assume that
is not forbidden (i) to attach a distinguishable state |ϕi)B to
every state in a preparation test {|ρi)A}i∈X, thus getting the
new test {|ρi)A|ϕi)B}i∈X, and (ii) to perform a discriminating
test {ai}i∈X for the perfectly discriminable states {ρi}i∈X, and
to re-prepare state ρi when the outcome is i, thus getting the
“measure-and-prepare” test {|ρi)A(ai |A}i∈X.

Finally, we will show that the existence of twirling tests
is necessary for deterministic teleportation. If one wants to
consider nonconvex theories with deterministic teleportation
one has also to require the existence of a twirling test and the
thesis of Theorem 4.

VI. SUMMARY OF THE FRAMEWORK

This short section concludes the presentation of the general
framework used in this article. The standing assumptions of
the article are summarized by the following.

In this article, if not otherwise stated, we will consider
operational-probabilistic theories satisfying the following re-
quirements:
1. The theory is causal (every state is proportional to a
normalized one).
2. Local discriminability holds.
3. The set of all tests is closed under coarse-graining and
conditioning.
4. For every system, the set of states is finite-dimensional and
closed in the operational norm.
5. There exist perfectly discriminable states.
6. The theory is not deterministic.

Note that the existence of perfectly discriminable states,
needed to describe perfect classical communication, is guar-
anteed in the usual convex framework, which contains the
no-restriction hypothesis of Definition 16. We do not make
this assumption here.

In most proofs the background requirement 2 can be always
weakened to: “2′. Local discriminability of pure states and

the theses of Theorems 2, 4, and 3 hold.” If a particular
result requires local discriminability or convexity this will be
mentioned explicitly in its statement.

VII. THEORIES WITH PURIFICATION

Here we introduce the purification postulate “every mixed
state has a purification, unique up to reversible transformations
on the purifying system,” and we explore its consequences
within the general framework outlined in the previous sections.

A. The purification postulate

Definition 34 (Purification). A pure state � ∈ S1(AB) is a
purification of ρ ∈ S1(A) if |ρ)A = (e|B|�)AB. Diagrammat-
ically,

.
(75)

Definition 35 (Purifying system). If system AB contains a
purification of ρ ∈ S1(A), we call system B a purifying system
for ρ.

Definition 36 (Complementary state). Let � ∈ S1(AB) be
a purification of ρ ∈ S1(A). The complementary state of ρ is
the state ρ̃ ∈ S1(B) defined by

. (76)

An elementary property of purification is the following:
Lemma 19. If ψ ∈ S1(A) is pure and � ∈ S1(AB) is a

purification of ψ , then � must be of the form � = ψ ⊗ ψ̃ ,
with ψ̃ ∈ S1(B) pure.

Proof. Take an observation test {bi}i∈X on B. Since∑
i bi = eB we have

,

(77)

namely the states {ρi}i∈X defined by ρi := (bi |B|�)AB form
a refinement of ψ . Since ψ is pure, we necessarily have
ρi = piψ for some probabilities {pi}. Precisely, we have
pi = (e|ρi)A = (eA ⊗ bi |�)AB = (bi |ψ̃)B, where ψ̃ is the
complementary state of ψ . Therefore, we have

(78)

The above equation implies that � cannot be distinguished
from ψ ⊗ ψ̃ by any local test. Since � is pure, this implies
� = ψ ⊗ ψ̃ . Clearly, ψ̃ has to be pure, otherwise we would
have a nontrivial refinement of the pure state �. �

It is important to stress that purification is not a physical
process: There is no physical transformation that is able to
turn any arbitrary mixed state ρ into some purification � of
it. In quantum mechanics, this has been noted by Kleinman
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et al. in Ref. [36]. Along the same lines, it is easy to prove the
following general theorem:

Theorem 5 (No purification of collinear states). Let ρi,i =
1,2,3 be three distinct collinear states of system A: i.e., ρ1 �= ρ3

and ρ2 = pρ1 + (1 − p)ρ3 for some 0 < p < 1. Suppose that
|�i)AB,i = 1,2,3 is a purification of |ρi)A. Then for every
finite number of copies N there is no physical transformation
C ∈ T(A⊗N,AB) such that C |ρi)

⊗N
A = |�i)AB for every i =

1,2,3.
Proof. The proof is by contradiction. Suppose that such a

transformation C exists for some finite N . Then, expanding
the product ρ⊗N

2 = [pρ1 + (1 − p)ρ3]⊗N and applying the
transformation C , we obtain

|�2)AB = C |ρ2)⊗N
A

= pNC |ρ1)⊗N
A + (1 − p)NC |ρ3)⊗N

A + |ρrest)AB

= pN |�1)AB + (1 − p)N |�3)AB + |ρrest)AB, (79)

where ρrest is a suitable non-normalized state. This is clearly
absurd, since we obtained a nontrivial convex decomposition
of the pure state �2. �

If � is a purification of ρ and UB is a reversible transfor-
mation on the purifying system, then also |� ′)AB = UB |�)AB

is a new purification of ρ. Indeed, UB |�)AB must be pure,
otherwise by inverting UB on UB |�)AB by linearity one would
find that |�)AB is mixed. In the following Postulate 1 we
impose that all purifications are of this form:

Postulate 1 (Purification). Every state has a purification,
unique up to reversible transformations on the purifying
system: if �,� ′ ∈ S1(AB) are two purifications of the same
state, then they are connected by a reversible transformation
U ∈ T(B), namely

.

(80)

Remark (Uniqueness of the complementary state). Note
that uniqueness of the purification assumed in the purification
postulate is equivalent to the uniqueness (up to reversible
transformations) of the complementary state defined in
Definition 36.

We now show some simple consequences of the purification
postulate. First, it implies that all pure states of a system are
connected by reversible transformations:

Lemma 20 (Transitivity of the group of reversible transfor-
mations on the set of pure states). For any couple of pure states
ψ,ψ ′ ∈ S1(A) there is a reversible transformation U ∈ T(A)
such that ψ ′ = U ψ .

Proof. Every system is a purifying system for the trivial
system. Then just apply Eq. (80) with A ≡ I. �

An obvious consequence of the purification postulate is
that in a theory with purification there are entangled states,
according to the usual definition:

Definition 37 (Separable states and entangled states). A
bipartite state σ ∈ S1(AB) is separable if it can be written as
a convex combination of product states, that is, as |σ )AB =∑

i pi |φi)A|ψi)B with pi � 0,
∑

i pi = 1. A bipartite state is
entangled if it is not separable.

As already anticipated, one has the following (trivial)
corollary:

Corollary 6 (Existence of entangled states). If �ρ ∈
S1(AB) is a purification of ρ ∈ S1(A) and ρ is mixed, then
�ρ is entangled.

Proof. By contradiction, suppose that �ρ is separable. Be-
cause it is pure, it must be of the form |�ρ)AB = |ϕ)A|ψ)B with
|ϕ)A and |ψ)B pure. Then the marginal |ρ)A = (e|B|�ρ)AB =
|ϕ)A is pure, in contradiction with the hypothesis. �

Remark (Purification and classical theories). Clearly,
Corollary 6 shows that the purification postulate rules out
classical probability theory. In fact, there is only one possibility
for a causal theory to satisfy the purification postulate without
having entangled states: the theory must not contain mixed
states. This necessarily implies that the theory is deterministic,
that is, that the probabilities of outcomes in any test are either
0 or 1 (if the theory were not deterministic one could construct
mixed states by randomization). In particular, this also implies
that in such a theory the pure states of an arbitrary system A
are perfectly distinguishable. In conclusion, the only causal
theories that satisfy the purification postulate and have no
entanglement are classical deterministic theories.

Another elementary consequence of the purification postu-
late is that “purity implies independence from the rest of the
world”:

Corollary 7 (Purity implies independence). If ψ ∈ S1(A)
is pure and ρ ∈ S1(AB) is an extension of ψ , namely |ψ)A =
(e|B|ρ)AB, then ρ = ψ ⊗ σ , for some state σ ∈ S1(B).

Proof. Let � ∈ S1(ABC) be a purification of ρ. Since �

is also a purification of ψ , by Lemma 18 we have |�)ABC =
|ψ)A|η)BC, for some pure state η ∈ S1(BC). But since � is a
purification of ρ we have |ρ) = (e|C|�)ABC = |ψ)A|σ )B, with
|σ )B := (e|C|η)BC. �

We conclude this subsection with an important lemma
that extends the uniqueness of purification to the case of
purifications with different purifying systems:

Lemma 21 (Uniqueness of the purification up to channels
on the purifying systems). Let � ∈ S1(AB) and � ′ ∈ S1(AC)
be two purifications of ρ ∈ S1(A). Then there exists a channel
C ∈ T(B,C) such that

. (81)

Moreover, channel C has the form

. (82)

for some pure state ϕ0 ∈ S1(C) and some reversible channel
U ∈ GBC.
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Proof. Let |η)B and |ϕ0)C be an arbitrary pure state of B
and C, respectively. Then |� ′)AC|η)B and |�)AB|ϕ0)C are two
purifications of ρ with the same purifying system BC. Due to
Eq. (80), we have

.
(83)

Applying the deterministic effect e on system B we obtain
Eq. (81), with C := (e|BU |ϕ0). �

B. Purification of preparation tests

We now show that the purification of normalized states
implies the purification of preparation tests.

Theorem 6 (Purification of preparation tests). Let {ρi}i∈X

be a preparation test for system A, and let � ∈ S1(AB) be
a purification of the coarse-grained state ρ := ∑

i∈X ρi . Then
there exists an observation test {bi}i∈X on system B such that

(84)

for any outcome i ∈ X. By suitably choosing the purifying
system B, the observation test {bi}i∈X can be taken to be
discriminating (Definition 26).

Proof. Take a set of |X| perfectly distinguishable states
{ϕi}i∈X ⊂ S1(C) for some system C. By definition of perfect
distinguishability, there exists a discriminating test {ci}i∈X

such that

(85)

for all i,j ∈ X. Now consider the state

σ :=
∑
i∈X

(ρi ⊗ ϕi) ∈ S1(AC), (86)

which is clearly an extension of ρ, namely |ρ)A = (e|C|σ )AC.
Let �σ ∈ S1(ACD) be a purification of σ . By definition, �

is also a purification of ρ. Using Eq. (85) we obtain for every
outcome i ∈ X

(87)

(88)

having defined the discriminating test (bi |CD := (ci |C(e|D. This
proves that there exists a purification of ρ with purifying
system B := CD, and a discriminating test {bi}i∈X on B such
that the thesis holds.

Finally, if � ∈ S1(AB′) is any other purification of ρ, using
Lemma 21 we have

(89)

(90)

where {b′
i}i∈X is the observation test on B′ defined by (b′

i | :=
(bi |C . �

The property stated by Theorem 6 is sometimes called
steering in quantum theory, with a terminology that dates
back to Schrödinger [37] (see also Ref. [38], for a very
recent discussion in the general probabilistic framework):
one says that a bipartite state |σ )AB steers its marginal
|ρ)A = (e|B|σ )AB on system A, if every convex decomposition
|ρ)A = ∑

i∈X pi |ρi)A is induced by a suitable observation test
on system B. Using the notion of steering, we may state the
following:

Corollary 8 (Pure bipartite states are steering for their
marginals). In a theory with purification any pure state
|�) ∈ S1(AB) steers its marginal states |ρ)A = (e|B|�)AB and
|ρ̃)A = (e|A|�)AB.

We now present a few other corollaries of the purification
of preparation tests stated by Theorem 6.

Corollary 9. Let � ∈ S1(AB) be a purification of ρ. Then,
a state σ is in the refinement set Dρ if and only if there is an
effect bσ ∈ E(B) such that

.

(91)

Proof. The “if” part is trivial. Conversely, if σ is in Dρ , by
definition there exists a preparation test {ρi}i∈X and an outcome
i0 such that ρi0 = σ . Using Theorem 6 and taking the effect
bσ := bi0 one proves the thesis. �

Corollary 10 (Bound on dimensions). Let � ∈ S1(AB) be
a purification of ρ ∈ S1(A). Then, one has the bound

dim SR(B) � dim Span(Dρ). (92)

In particular, if ρ is an internal state, one has

dim SR(B) � dim SR(A). (93)

Proof. Consider the map ω̂ : ER(B) → SR(A) defined by
b 	→ |ω̂b)A := (b||�)AB. By the previous corollary, the range
of ω̂ contains Dρ . Since ω̂ is linear, this implies dim ER(B) �
dim Span(Dρ). On the other hand, since states and effects
span dual vector spaces, one has dim ER(B) ≡ dim SR(B),
thus proving Eq. (92). �

Theorem 6 implies the existence of pure bipartite states
exhibiting perfect correlations in the statistics of independent
observations:

Corollary 11 (Pure states with perfect correlations). Let
ρ = ∑

i∈X piϕi be a mixture of perfectly distinguishable states
{ϕi} ⊂ S1(A), and let � ∈ S1(AB) be a purification of ρ.
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Then there exist two observation tests {ai}i∈X and {bj }j∈X on
systems A and B, respectively, such that

. (94)

Proof. Consider the preparation test {ρi}i∈X with ρi = piϕi .
Since its coarse-grained state is ρ, by Theorem 6 there exists
an observation test {bi} such that |ρi)A = (bi |B|�)AB. On the
other hand, the states {ϕi} are perfectly distinguishable with
a test {ai}i∈X. Hence, we have (ai |A(bj |B|�)AB = (ai |A|ρj ) =
piδij . �

This directly implies the following property:
Corollary 12. Let ρ = ∑

i∈X piϕi ∈ S1(A) be a mixture of
perfectly distinguishable states, � ∈ S1(AB) be a purification
of ρ, and ρ̃ = (e|A|�)AB be the complementary state of ρ.
Then, one has

ρ̃ =
∑
i∈X

piϕ̃i , (95)

where {ϕ̃}i∈X are perfectly distinguishable states of B.
We conclude this subsection with a crucial consequence

of the purification of preparation test stated by Theorem 6,
namely that if two transformations coincide on a purification
of ρ, they also coincide upon input of ρ, according to the
following definition:

Definition 38 (Equality upon input of ρ). Two transforma-
tions A ,A ′ ∈ T(A,B) are equal upon input of ρ, denoted by
A =ρ A ′, if one has

A |σ )A = A ′|σ )A ∀|σ )A ∈ Dρ. (96)

In quantum theory two quantum operations A ,A ′ are equal
upon input of ρ if and only of one has A (σ ) = A ′(σ ) for every
density matrix σ whose support is contained in the support
of ρ.

We then have the following:
Theorem 7 (Equality upon input of ρ vs. equality on

purifications). Let � ∈ S1(AC) be a purification of ρ ∈
S1(A), and let A ,A ′ ∈ T(A,B) be two transformations. Then
one has

A |�)AC = A ′|�)AC =⇒ A =ρ A ′. (97)

If local discriminability holds, one has the equivalence

A |�)AC = A ′|�)AC ⇐⇒ A =ρ A ′. (98)

If one of the two transformations is proportional to a
reversible transformation the equivalence of Eq. (98) holds
under the weaker assumption of local discriminability on pure
states.

Proof. By definition, a state σ is in the refinement set Dρ

if and only if there exists a preparation test {ρi}i∈X and an
outcome i0 such that ρi0 = σ . Using Corollary 9, we have that
σ is in Dρ if there exists an effect c on C such that

.
(99)

Therefore, we have that A =ρ A ′ if and only if

(100)

that is, if and only if the states A |�)AC and A ′|�)AC cannot
be distinguished by local tests, that is, if and only if

(101)

for every product effect (b|B(c|C. Clearly, if A |�)AC =
A ′|�)AC, this condition is verified: this proves Eq. (97). When
local discriminability holds, equality on local tests implies
equality on global tests, hence Eq. (98). Finally, if A ′ = λU
with U reversible, then the state A ′|�)AC = λU |�)AC is
pure, and, by local discriminability of pure states, equality on
local tests implies equality. �

C. Dynamically faithful pure states

We show now an important feature of theories with purifica-
tion: the possibility of imprinting physical transformations into
states in an injective way (that is, if two transformations differ,
then the corresponding states differ). This feature reduces
the tomography of a physical process to the tomography
of the corresponding state. Technically speaking, we call
dynamically faithful any state that allows for the tomography
of physical processes.

Definition 39 (Dynamically faithful state). We say that
a state σ ∈ S(AC) is dynamically faithful for system A
if for any couple of transformations A ,A ′ ∈ T(A,B) one
has

A |σ )AC = A ′|σ )AC =⇒ A = A ′. (102)

The existence of dynamically faithful mixed states is a
quite generic fact: for example, in any theory with local
discriminability if one takes a basis {ρi} ⊂ S1(A) for SR(A)
and a set {ϕi} ⊂ S1(C) of perfectly distinguishable states
of some system C, than any mixture σ = ∑

i piρi ⊗ ϕi is
dynamically faithful. The remarkable fact in a theory with
purification is that there exist dynamically faithful states,
which, in addition, are pure.

Theorem 8 (Existence of dynamically faithful pure states).
Let ω ∈ S1(A) be an internal state, and let �ω ∈ S1(AC)
be a purification of ω. Then �ω is dynamically faithful for
system A.

Proof. Suppose that A |�ω)AC = A ′|�ω)AC. Then take an
arbitrary system D, an internal state σ ∈ S1(D), and a purifi-
cation of σ , say �σ ∈ S1(DE). Clearly, we have A |�ω)AC ⊗
|�σ )DE = A ′|�ω)AC ⊗ |�σ )DE. According to Theorem 7, this
implies that A and A ′ coincide upon input of ω ⊗ σ . Since ω

and σ are internal in S(A) and S(D), respectively, by Theorem
2 ω ⊗ σ is internal in S(AD), that is, the refinement set Dω⊗σ

is a spanning set for SR(AD). Now A and A ′ coincide on
a spanning set, and, therefore, they coincide on every state of
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S(AD). Since the ancillary system D is arbitrary, this implies
A = A ′. �

The converse of the previous Theorem 8 also holds:
Theorem 9 (Characterization of dynamically faithful pure

states). A pure state � ∈ S1(AC) is dynamically faithful for
system A if and only if the marginal state |ω)A := (e|C|�)AC

is internal.
Proof. The “if” part has been just shown in Theorem

8. To prove the “only if” part, let a,a′ be two distinct
effects for system A. Since � is dynamically faithful one
has (a|A|�)AC �= (a|′A|�)AC. This means that there exists an
effect (c|C such that (a|A(c|C|�)AC �= (a|′A(c|C|�)AC. Defining
the state |ωc)A := (c|C|�)AC, this implies (a|ωc)A �= (a′|ωc)A.
Since ωc is in the refinement set of ω, such a refinement set is
separating for ER(A). But a separating set for ER(A) must be
a spanning set for the dual vector space SR(A). Hence, ω is
internal. �

Using this characterization it is immediate to show that
the product of dynamically faithful pure states is dynamically
faithful:

Corollary 13 (Product of dynamically faithful states is
dynamically faithful). Let �(A) ∈ S1(AC) and �(B) ∈ S1(BD)
be dynamically faithful for systems A and B, respectively.
Then �(A) ⊗ �(B) is dynamically faithful for the compound
system AB.

Proof. Since the product of two internal states is internal
(Theorem 2), the thesis trivially follows from the previous
theorem. �

The existence of dynamically faithful pure states has
remarkable consequences, among which the “no-information
without disturbance” and the “no cloning” theorems, that will
be analyzed in the following subsections.

D. No information without disturbance

Definition 40 (Nondisturbing tests). We say that a test
{Ai}i∈X on system A is nondisturbing upon input of ρ ∈ S(A)
if ∑

i∈X

Ai |σ )A = |σ )A ∀σ ∈ Dρ, (103)

or, equivalently, if
∑

i∈X Ai =ρ IA. If ρ is an internal state,
we say that the test is nondisturbing, because in this case one
has ∑

i∈X

Ai |σ )A = |σ )A ∀σ ∈ S(A). (104)

Theorem 10 (No information without disturbance). In a
theory with purification, a test {Ai} on system A is nondis-
turbing upon input of ρ if and only if each transformation
Ai is proportional to the identity upon input of ρ, namely
Ai =ρ piIA.

Proof. Let �AB be a purification of ρ. By Theorem 7,
the no-disturbance condition

∑
i∈X Ai =ρ IA holds if and

only if

. (105)

Since � is pure, this implies Ai |�)AB = pi |�)AB =
(piIA)|�)AB. Now, since the identity is trivially a reversible
transformation, according to Theorem 7 this is equivalent to
Ai =ρ piIA. �

Theorem 11 (No joint discrimination of a spanning set of
states). In a theory with purification the states in a spanning
set cannot be perfectly discriminated in a single observation
test.

Proof. By contradiction, suppose that a collection of states
{ρi}i∈X is a spanning set—namely Span{ρi}i∈X = SR(A)—
and there exists an observation test {ai}i∈X such that (ai |ρj )A =
δij . Then, since perfectly distinguishable states are linearly
independent, and they must span a finite dimensional vector
space, the number of perfectly distinguishable states must
be finite. Now consider the measure-and-prepare test {Ai}i∈X

defined by Ai = |ρi)A(ai |A. Since the states of the spanning
set are perfectly distinguishable, the test {Ai} is nondisturbing.
Indeed, expanding an arbitrary state ρ on the spanning set, one
has

∑
i

Ai |ρ)A =
∑

i

Ai

⎛⎝∑
j

cj |ρj )A

⎞⎠ =
∑

j

cj |ρj )A = |ρ).

(106)

Since Ai �= piIA, this is in contradiction with the “no
information without disturbance” Theorem 10. �

Corollary 14 (No joint discrimination of pure states). In a
theory with purification for every system the pure states cannot
be perfectly discriminated in a single observation test.

Proof. Since pure states are a spanning set, they cannot
be perfectly discriminated in a single test, according to
Theorem 11. �

Corollary 14 provides a simple alternative way to see that
classical probability theory is excluded by the purification
postulate.

Corollary 15 (Maximum number of perfectly distinguish-
able states). For every system A the maximum cardinality of
a set of perfectly distinguishable states is strictly smaller than
dim SR(A).

Proof. Since perfectly distinguishable states are linearly
independent, if one could find dim SR(A) perfectly distin-
guishable states, then they would form a spanning set, in
contradiction with Theorem 11. �

Note that the maximum number of distinguishable states
in quantum theory satisfies a much stronger bound: such a
number is given by the dimension dA of the system’s Hilbert
space, while the dimension of the vector space spanned by the
density matrices is dim SR(A) = d2

A.
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Corollary 16 (Nonunique convex decomposition on pure
states). In a theory with purification satisfying the no-
restriction hypothesis of Definition 16, for every system A
there is a mixed state ρ ∈ S1(A) with a nonunique convex
decomposition on pure states. In other words, the convex set
S1(A) cannot be a simplex.

Proof. By contradiction, suppose that S1(A) is a simplex.
Then the pure states {ϕi} of A are a finite set, and for each of
them there is a functional ai ∈ ER(A) such that (ai |ϕj ) = δij .
Clearly, ai is positive on every state, namely ai ∈ S+(A)∗.
Hence, by the consequence of the no-restriction hypothesis
stated by Lemma 11, we have ai ∈ E+(A). Moreover, one has∑

i(ai |A = (e|A. In Corollary X C we will show that any such
collection {ai} is an observation test. But this test discriminates
all pure states, in contradiction with Corollary 14. This proves
that S1(A) cannot be a simplex. �

E. No cloning

Definition 41 (Cloning channels). Let A,A′ be two opera-
tionally equivalent systems, and let {ρi}i∈X be a set of states
of A. A channel C from A to AA′ is a cloning channel for the
set {ρi}i∈X if

C |ρi)A = |ρi)A|ρi)A′ . (107)

If there is a cloning channel, we say that the states {ρi}i∈X are
perfectly cloneable.

We now show that a spanning set of states (in particular,
the set of pure states) cannot be perfectly cloned. To see this
we use the equivalence between perfect cloning and perfect
discrimination, which was originally proved in Refs. [6,7]
for causal theories with local discriminability using the
tomographic limit. Here we use the stronger result of Ref. [39],
which proves the equivalence in any convex theory where
all “measure-and-prepare” channels are allowed, without
requiring causality and local discriminability, and without
resorting to the tomographic limit. For convenience of the
reader, the argument of Ref. [39] is reproduced here using the
notation of the present article:

Theorem 12 (Cloning and discrimination equivalence). In a
convex theory where all “measure-and-prepare” channels are
allowed, the deterministic states {ρi}i∈X ⊂ S(A) are perfectly
cloneable if and only if they are perfectly distinguishable.

Proof. Suppose that the states {ρi}i∈X can be perfectly
cloned and consider the binary discrimination between two
states ρi,ρj ,i �= j with a binary observation test {ai,aj }.
Define the worst-case error probability as

pwc := max{p(i|j ),p(j |i)} p(k|l) := (ak|ρl)A, (108)

and take its minimum over all binary tests

p(opt)
wc := min

{ai ,aj }
pwc. (109)

Now, if a cloning channel exists, we can apply it twice
to the unknown state, thus getting three identical copies of
it. Performing three times the optimal test, and then using
majority voting, we obtain the new error probabilities given
by

p′(i|j ) = f (p(opt)(i|j )) f (x) = x2(3 − 2x), (110)

where p(opt)(i|j ) := (a(opt)
i |ρj )A. Since f is a nondecreasing

function for x ∈ [0,1], we also have p′
wc = f (p(opt)

wc ), and,
since p

(opt)
wc is the minimum error probability, by definition

p′
wc � p

opt
wc . The only solutions of the inequality f (x) � x

are x = 0 and x ∈ [1/2,1], and, since p
(opt)
wc must be in the

interval [0,1/2) (see Lemma 2), we obtain p
(opt)
wc = 0. This

proves that any pair of states from the set {ρi}i∈X can be
perfectly distinguished. But this implies that using |X| − 1
pairwise tests we can perfectly discriminate all the states
{ρi}i∈X. This proves the implication “perfect cloning ⇒
perfect discrimination” in any convex theory. If the theory
contains all possible “measure-and-prepare” channels, the
converse is obviously true: If the states can be perfectly
discriminated by an observation test {ai}i∈X, then the measure-
and-prepare channel C := ∑

i∈X |ρi)A|ρi)A′(ai |A is a cloning
channel. �

Since measure-and-prepare channels can be obtained by
conditioning the choice of a preparation test on the outcome of
an observation test, any causal theory satisfies the hypotheses
of the previous theorem, which becomes

Corollary 17 (Cloning and discrimination equivalence in
causal theories). In a causal theory the states {ρi}i∈X ⊂ S1(A)
are perfectly cloneable if and only if they are perfectly
distinguishable.

Remark (Noncausal theories with all measure-and-prepare
channels). Note that there are also noncausal theories that
contain all measure-and-prepare channels. An example can
be constructed by starting from a causal theory � and by
regarding the set of transformations T(A,B) from A to B as
the set of “states” S′(A → B) of the system “A → B” in a new
second-order theory �′. Performing an observation test on a
“state” C ∈ S′(A → B) is then interpreted in the underlying
causal theory � as applying the transformation C ∈ T(A,B)
to an input state σ ∈ S1(AC), and subsequently performing an
observation test {bi}i∈X on the output state (C ⊗ IC)|σ )AC. Of
course, since the theory � is causal, one can use conditioning
and perform a channel Ci that depends on the outcome i. This
provides the realization of an arbitrary measure-and-prepare
channel in the noncausal theory �′.

Coming back to causal theories with purification, the results
proved so far imply the following no-cloning statement:

Corollary 18 (No cloning of states in a spanning set). In
a theory with purification, a cloning channel for a spanning
set of states cannot exist. In particular, pure states cannot be
cloned.

Proof. Immediate consequence of Corollary 17 combined
with Theorem 11 and Corollary 14. �

VIII. PROBABILISTIC TELEPORTATION

A. Entanglement-swapping and teleportation

As we previously showed, in a theory with purification there
must be entangled states (according to the usual definition, see
Definition 37). We now show the possibility of probabilistic
entanglement swapping:
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Theorem 13 (Probabilistic entanglement-swapping). Let
� ∈ S1(AB) be a pure state, and let A′ and B′ be operationally
equivalent to A and B, respectively. Then there exist an
atomic effect E� ∈ E(BA′) (see Definition 22) and a nonzero
probability p� such that

. (111)

Proof. Let us define the marginal states

|ρ)A := (e|B|�)AB
(112)

|ρ̃)B := (e|A|�)AB.

By Theorem 3 we have that there exists a nonzero probability
p� such that p�� ∈ Dρ⊗ρ̃ . Since |�)AB|�)A′B′ is a purifi-
cation of |ρ)A|ρ̃)B′ , using Corollary 9 we get the thesis. The
effect E� can be taken to be atomic: indeed, if it were refinable,
i.e., E� = ∑

i Ei , since the right-hand side of Eq. (111)
is a pure state, each effect Ei would achieve entanglement
swapping. �

Remark (PR boxes are excluded by the purification postu-
late). The possibility of probabilistic entanglement swapping
shows that the purification postulate excludes the theory of
Popescu-Rohrlich boxes (see Ref. [8] for the definition of
transformations on boxes and states of multipartite boxes).
Indeed, Refs. [9,10] showed that probabilistic entanglement
swapping is impossible in this theory.

Corollary 19 (Probabilistic teleportation). Let � ∈
S1(AB) be a pure state, and let ρ ∈ S1(A) and ρ̃ ∈ S1(B)
be its marginals. Let A′ and B′ be operationally equivalent
to A and B, respectively. Then, there exists an atomic effect
E� ∈ E(BA′) and a nonzero probability p� such that

(113)

and

. (114)

In particular, if ρ is an internal state, one has the probabilistic
teleportation scheme

. (115)

Proof. Just combine Theorems 13 and 7. �

The diagram of probabilistic teleportation (115) is one of
the main axioms in the categorial approach by Abramsky and
Coecke [40]. In the present approach, this property is derived

from the purification postulate, rather than being assumed from
the start.

For theories with local discriminability the probability of
teleportation is related to the dimension of the state space as
follows.

Lemma 22 (Maximum teleportation probability). If local
discriminability holds, then the probability of teleportation
p� in Eq. (115) satisfies the bound

p� � 1

dim SR(A)
. (116)

Proof. Let us choose two bases {ρi} and {ρ̃j } for the
vector spaces SR(A) and SR(Ã), respectively, and write
� as |�)AÃ = ∑

i,j Aij |ρi)A|ρ̃j )Ã. Now take the dual bases
{ρ∗

i } and {ρ̃∗
j } for the dual vector spaces ER(A) and ER(Ã),

respectively—so that (ρ∗
i |ρj )A = δij and (ρ̃∗

k |ρ̃l)Ã = δkl—and
write E� as (E� |ÃA′ = ∑

k,l Bkl(ρ̃∗
k |Ã(ρ∗

l |A′ . The teleportation
diagram (115) is then equivalent to the matrix equality

AB = p�IA, (117)

where IA is the identity matrix of size dim(SR(A)). Finally,
since probabilities are bounded by unit, we obtain

1 � (E� |�)AÃ = Tr[AB] = p� dim(SR(A)), (118)

which is the desired bound. �

Remark (quantum theory achieves the bound). Note that
in quantum theory the teleportation probability achieves the
maximum value allowed by the bound of Eq. (116): For a
d-dimensional Hilbert space, the real vector space spanned by
all density matrices has dimension d2, which is exactly the
maximum probability of conclusive teleportation.

A simple consequence of probabilistic teleportation is the
possibility of remotely preparing any bipartite state by acting
locally on the purifying system only, according to the following
definition

Definition 42 (Preparationally faithful state). A state � ∈
S1(AB) is preparationally faithful for system B if for every
bipartite state σ ∈ S1(AB) there are a transformation Aσ ∈
T(B) and a nonzero probability pσ such that

.
(119)

Corollary 20 (Existence of preparationally faithful pure
states). Let � ∈ S1(AB) be the purification of an internal state
ω ∈ S1(A). Then, � is preparationally faithful for system B.

Proof. Let E� be the teleportation effect for �, as defined
in Corollary 19. Define the transformation Aσ as

.
(120)
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Applying Aσ to � and using Eq. (115) with A′ ≡ A we then
obtain

. (121)

Hence, the thesis holds with pσ ≡ p� independently
of σ . �

B. Storing and probabilistic retrieving of transformations

Here we consider the task of storing an unknown trans-
formation in the state of some system. The output state of
such a storing protocol then becomes a “program” from which
the transformation can be retrieved at later time. The task is
achieved probabilistically by a machine that retrieves the trans-
formation from the program and applies it on a new input state.

Corollary 21 (Storing and probabilistic retrieving). Let � ∈
S1(AÃ) be a pure dynamically faithful state for system A,
according to Definition 39. The storing protocol, consisting in
the application of a transformation C ∈ T(A,B) to the input
state �, as in the following diagram

(122)

defines an injective map from transformations C ∈ T(A,B) to
bipartite states R ∈ S(BÃ) satisfying the property

(e|B|R)BÃ ∈ Dω̃, (123)

where ω̃ is the marginal state |ω̃)Ã = (e|A|�)AÃ. The inverse
map is given by the probabilistic retrieving protocol

,

(124)

where E� is the teleportation effect for state � and p�

is the corresponding teleportation probability, as defined in
Eq. (115).

Proof. Since the state � is dynamically faithful, the map
C 	→ RC is injective. Now, any transformation C is part of
a test {Ci}i∈X, namely one has C = Ci0 for some outcome i0.
Defining the coarse-grained channel CX := ∑

i∈X Ci we have∑
i∈X

(e|B|RCi
)BÃ =

∑
i∈X

(e|BCi |�)AÃ

= (e|BCX|�)AÃ

= (e|A|�)AÃ

= |ω̃)Ã. (125)

using the normalization condition (e|BCX = (e|A. This im-
plies (e|B|RC )BÃ is in the refinement set of ω̃, thus
proving Eq. (123). The identity (124) simply follows by

writing p�C = C ◦ (p�IA) and substituting p�IA as in
Eq. (115). �

In Sec. IX we will show that the correspondence C 	→ RC

is also surjective on the set of bipartite states satisfying
Eq. (123). This will provide an isomorphism between trans-
formations and bipartite states that enjoys all the structural
properties of the Choi-Jamio�kowski isomorphism of quantum
theory [41].

The probabilistic retrieving of Eq. (124) implies a bound on
the operational distance between two transformations A0,A1

in terms the operational distance between the corresponding
states:

Theorem 14. Let A0,A1 ∈ T(A,B) be two transformations
and RA0 ,RA1 ∈ S(BÃ) be the corresponding states as in
Eq. (122). Then one has the bound

‖A1 − A0‖A,B � ‖RA1 − RA0‖BÃ

p�

, (126)

where p� is the probability of retrieving a transformation from
the corresponding state, as defined in Eq. (124).

Proof. Define 
 := A1 − A0 and R
 := RA1 − RA0 . Take
an ancillary system C and a state ρ ∈ S1(AC). Then Eq. (124)
implies

.

(127)

Applying a bipartite effect (a|BC on both sides we then obtain

(a|BC
|ρ)AC = (bρ |R
)BÃ

p�

, (128)

where (bρ |BÃ := [(a|BC ⊗ (E� |ÃA]|ρ)AC. Since bρ is an effect,
the above equality implies the bound

infb(b|R
)BÃ

p�

� (a|BC
|ρ)AC � supb(b|R
)BÃ

p�

. (129)

By the definition of operational norm of Eq. (49) of operational
norm, this implies

‖
ρ‖BC � ‖R
‖BÃ/p�. (130)

Finally, taking the supremum over the ancillary system C we
get the desired bound. �

C. Systems of purifications and the link product

For every system A we now fix a dynamically faithful
pure state |�(A))AÃ, where Ã is some suitable purifying
system. According to the characterization of dynamically
faithful pure states given in Theorem 9, the marginal state
|ω)A := (e|Ã|�(A))AÃ must be internal. The role of the upper
index in �(A) is precisely to recall that the marginal is internal
for system A, while it may not be internal for the purifying
system Ã. Moreover, we denote by (E(A)|ÃA and by pA the
effect and the probability appearing in the teleportation scheme
(115), respectively.

Note that since the product of dynamically faithful pure
states is dynamically faithful (Corollary 13), for bipartite
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systems AB we can choose |�(AB))ABÃB := |�(A))AÃ|�(B))BB̃.
Likewise, we can choose (E(AB)|ÃBAB = (E(A)|ÃA(E(B)|B̃B,
and pAB = pApB. We call a system of purifications such a
choice of bipartite states and effects:

Definition 43 (System of purifications). A system of purifi-
cation is a choice of a dynamically faithful pure states |�(A))AÃ
and teleportation effects (E(A)|ÃA that satisfies the properties

|�(AB))ABÃB = |�(A))AÃ|�(B))BB̃
(131)

(E(AB)|ÃBAB = (E(A)|ÃA(E(B)|B̃B.

Once a system of purifications has been fixed, one
can discuss the composition of transformations in terms
of composition of states, generalizing the definitions and
the results introduced by Refs. [33,42] in the quantum
setting.

Definition 44 (Link product). The link product of two
vectors ρ ∈ SR(BÃ) and σ ∈ SR(CB̃) is the vector ρ ∗ σ ∈
SR(CÃ) given by

.

(132)

Note that if ρ and σ are proportional to states, then also ρ ∗ σ

is proportional to a state: one has ρ ∗ σ ∈ S+(CÃ) for any
couple ρ ∈ S+(BÃ),σ ∈ S+(CB̃).

The product and composition of transformations are then
given by the following

Corollary 22 (Composition of states). Consider the cor-
respondence given by the storing protocol in Eq. (122).
For two transformations C ∈ T(A,B) and D ∈ T(C,D) one
has

.

(133)

For two transformations C ∈ T(A,B) and D ∈ T(B,C) one
has

. (134)

Proof. The first equation follows from the fact that
|�(AC))ACÃC := |�(A))AÃ|�(C))CC̃, while the second follows

from the probabilistic retrieving of Eq. (124):

(135)

�

IX. DILATION OF PHYSICAL PROCESSES

In this section we derive dilation theorems for channels,
observation tests, and general tests. These theorems extend to
all theories with purification the validity of the theorems by
Stinespring [43], Naimark [44], and Ozawa [45], originally
obtained in the setting of operator algebras.

A. Reversible dilation of channels

In order to derive the reversible dilation of a channel we
need the following lemma:

Lemma 23. Let R ∈ S1(BÃ) be a state such that

, (136)

where �(A) is a pure dynamically faithful state for system A.
Then there exist a system C, a pure state ϕ0 ∈ S1(BC), and a
reversible channel U ∈ T(ABC) such that

.
(137)

Moreover, the channel V ∈ T(A,ABC) defined by V :=
U |ϕ0)BC is unique up to reversible channels on AC.

Proof. Take a purification of R, say �R ∈ S1(CBÃ) for
some purifying system C. One has

. (138)

that is, the pure states �R and �(A) have the same marginal on
system Ã. Applying the uniqueness of purification as expressed
by Lemma 21 one then obtains

.
(139)

Applying the deterministic effect on system C on both sides,
one then proves Eq. (137). Moreover, if V ′ := U ′|ϕ′

0)BC

is channel such that Eq. (137) holds, then the pure states
V |�(A))AÃ and V ′|�(A))AÃ have the same marginal on system
BÃ. Uniqueness of purification then implies

(140)
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for some reversible channel W ∈ T(AC). Since �(A) is
dynamically faithful for A, this implies V ′ = W V . �

We now give the definitions of dilation, environment, and
reversible dilation:

Definition 45 (Dilation of a channel). A dilation of channel
C ∈ T(A,B) is a channel V ∈ T(A,BE) such that

.
(141)

We refer to system E as to the environment.
Definition 46 (Reversible dilation). A dilation V ∈

T(A,BE) is called reversible if there exists a system E0 such
that AE0 � BE and

(142)

for some pure state ϕ0 ∈ S1(E0) and some reversible channel
U ∈ T(AE0,BE).

According to the above definitions, we have the following
dilation theorem:

Theorem 15 (Reversible dilation of channels). Every chan-
nel C ∈ T(A,B) has a reversible dilation V ∈ T(A,BE). If
V ,V ′ ∈ T(A,BE) are two reversible dilations of the same
channel, then they are connected by a reversible transformation
on the environment, namely

(143)

for some reversible channel W ∈ GE.
Proof. Let us store the channel C in the faithful state �(A) ∈

S1(AÃ), thus getting the state RC , as in Eq. (122). Since C is
a channel, it satisfies the normalization condition

(144)

which implies

. (145)

Now, applying Lemma 23 we obtain

.
(146)

Since �(A) is dynamically faithful for system A, this implies

(147)

Therefore, V := U |ϕ0)BC is a reversible dilation of C , with
E0 := BC and E := AC. Finally, the uniqueness clause in
Lemma 23 implies uniqueness of the dilation. �

Moreover, two reversible dilations of the same channel with
different environments are related as follows.

Lemma 24. Let V ∈ T(A,BE) and V ′ ∈ T(A,BE′) be two
reversible dilations of the same channel C , with generally
different environments E and E′. Then there is a channel Z
from E to EE′ such that

.
(148)

The channel Z has the form

(149)

for some pure state η0 and some reversible transformation
U ∈ T(EE′).

Proof. Apply V and V ′ to the faithful state 
(A) and then
use the uniqueness of purification stated in Lemma 21. �

The above results represent the general version—holding
in all probabilistic theories with purification—of the dilation
scheme implied by Stinespring’s Theorem [43] in quantum
theory. However, differently from the proof of Stinespring’s
Theorem, the present proof does not require any C*-algebraic
structure, being based just on the purification postulate. In fact,
it is easy to see that the purification of states and the reversible
dilation of channels are equivalent features, in the following
sense.

Corollary 23 (Equivalence between purification and re-
versible dilation). Existence and uniqueness (up to reversible
channels on the purifying system) of the purification of states
is equivalent to existence and uniqueness (up to reversible
channels on the environment) of the reversible dilation of
channels.

Proof. The direction “purification ⇒ dilation” has been just
proved by the dilation theorem. The converse is obvious, since
a normalized state ρ ∈ S1(B) is a special case of channel from
the trivial system I to B, and in this special case purification
coincides with dilation. �

Finally, the reversible dilation of a channel allows one to
define the complementary channel as follows.

Definition 47 (Complementary channel). Let V ∈ T(A,BE)
be a reversible dilation of channel C ∈ T(A,B), as in Theorem
15. The complementary channel of C is the channel C̃ ∈
T(A,E) defined by

.
(150)

Note that the complementary channel C̃ is unique up to
reversible transformations on the environment E.

The notion of complementary channel has played a crucial
role in the research about capacity of quantum information
channels (see, e.g., Refs. [46–48]) and we expect that having
the same definition in general probabilistic theories will be
very fruitful (in fact, a number of consequences is already
presented in Sec. XI).
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B. Reversible dilation of tests

We now generalize the dilation of channels (i.e., single-
outcome tests) to the case of arbitrary tests. For this purpose,
we need the analog of Lemma 23:

Lemma 25. Let {Ri}i∈X be a preparation test for system BÃ
with the property

, (151)

where �(A) is the purification of an internal state of system
A. Then, there exists a system C, a pure state ϕ0 ∈ S1(BC),
a reversible channel U ∈ T(ABC), and an observation test
{ci}i∈X on C such that

(152)

for any outcome i ∈ X. By suitably choosing system C, the
observation test {ci}i∈X can be taken to be a discriminating
test.

Proof. Take a purification of the coarse-grained state R =∑
i Ri , say �R ∈ S1(CBÃ) for some purifying system C.

According to Theorem 6, there is an observation test {ci}i∈X

on C such that

|Ri)BÃ = (ci |C|�R)CBÃ ∀i ∈ X, (153)

and, by suitably choosing C, {ci} can be chosen to be a
discriminating test. Following the same line of Lemma 23
we then obtain the thesis. �

Following the proof of the reversible dilation of channels
given in Theorem 15 we have the following.

Theorem 16 (Reversible dilation of tests). For every test
{Ci}i∈X from system A to system B there exist a system C, a
pure state ϕ0 ∈ S1(BC), a reversible channel U ∈ T(ABC),
and an observation test {ci}i∈X on C such that for all outcomes
i ∈ X

.
(154)

By suitably choosing system C, the observation test {ci}i∈X

can be taken to be a discriminating test.
In the case we choose the observation test {ci}i∈X to

be discriminating, the above theorem yields a (simplified)
version of Ozawa’s Theorem in quantum theory [45]. Here
the simplification comes from the fact that we consider
finite-dimensional-state spaces and tests with finite outcomes,
whereas the challenging part of Ozawa’s Theorem is the
rigorous treatment of infinite dimension and continuous
spectrum.

Moreover, we can apply the dilation theorem to tests with
trivial output B ≡ I, thus obtaining the operational version of
Naimark’s Theorem [44] in the finite-outcome case:

Corollary 24 (Discriminating dilation of observation tests).
For every observation test {ai}i∈X on A there exists a system

C, a pure state ϕ0 ∈ S1(C), a reversible channel U ∈ T(AC),
and a discriminating test {ci}i∈X on C such that

(155)

for all outcomes i ∈ X.
Another corollary is the following:
Corollary 25 (Characterization of theories with purifi-

cation). In a theory with purification every test can be
realized using only pure states, reversible transformations, and
discriminating tests.

In fact, only one pure state for each system is enough, since
due to Corollary 20 all pure states can be obtained from a fixed
one by acting with reversible channels.

X. STATES-TRANSFORMATIONS ISOMORPHISM

The results of the previous section allow a complete
identification of transformations with bipartite states, thus
providing the general version of the Choi-Jamiolkowski
isomorphism [49,50] in quantum theory. The correspondence
is summarized in the following

Theorem 17 (States-transformations isomorphism). The
storing map C 	→ RC := C |�(A))AÃ, where |�(A))AÃ is a
pure dynamically faithful state for system A, has the following
properties:

1. It defines a bijective correspondence between tests
{Ci}i∈X from A to B and preparation tests {Ri}i∈X for BÃ
satisfying ∑

i∈X

(e|B|Ri)BÃ = (e|A|�(A))AÃ. (156)

2. A transformation C is atomic (according to Definition
22) if and only if the corresponding state RC is pure.

3. In convex theory the map C 	→ RC defines a bijective
correspondence between transformations C ∈ T(A,B) and
bipartite states R ∈ S(BÃ) satisfying the property

(e|B|R)BÃ ∈ Dω̃ |ω̃)Ã = (e|A|�(A))AÃ. (157)

Proof. Let us start from the proof of item 1. One direction
is obvious: if {Ci}i∈X is a test from A to B, it must
satisfy the normalization condition

∑
i∈X(e|BCi = (e|A [see

Eq. (39)]. The preparation test {RCi
}i∈X defined by |RCi

)BÃ =
Ci |�(A))AÃ satisfies the property

∑
i∈X(e|B|RCi

)BÃ =∑
i∈X(e|BCi |
(A))AÃ = (e|A|�(A))AÃ; that is, it satisfies

Eq. (156). Moreover, if two tests {Ci}i∈X and {C ′
i }i∈X satisfy

RCi
= RC ′

i
for all i ∈ X, then by injectivity of the map

C 	→ RC (proved in Corollary 21), one has Ci = C ′
i for all

i ∈ X. Conversely, suppose that {Ri}i∈X is a preparation test
satisfying Eq. (156). Then, by Lemma 25 there is a a system C,
a pure state ϕ0 ∈ S1(BC), a reversible channel U ∈ T(ABC),
and an observation test {ci}i∈X on C such that for every
outcome i ∈ X one has

.

(158)
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Defining the test {Ci}i∈X by Ci := (ci |C(e|AU |ϕ0)BC, we then
obtain

. (159)

This completes the proof of item 1. Item 2 is an immediate
consequence of the item 1: If C is atomic, then RC must be
pure, otherwise we would have a nontrivial decomposition of
C . Vice versa, if RC is pure, then C must be atomic, otherwise
we would have a nontrivial decomposition of RC . Regarding
item 3, injectivity was already established in Corollary 21.
To prove surjectivity, suppose that R ∈ S(BÃ) is such that
(e|B|R)BÃ is in the refinement set of |ω̃)Ã. This means that
there is a preparation test {ω̃i}i∈X such that ω̃ = ∑

i∈X ω̃i

and (e|B|R)BÃ = |ω̃i0 )Ã for some outcome i0. Now choose
an arbitrary set of normalized states {ρi}i∈X ⊂ S1(B) and
consider the collection of states {Ri}i∈X defined as follows:
Ri0 = R, Ri = ρi ⊗ ω̃i for i �= i0. Because the theory is
convex the collection of states {Ri}i∈X is a preparation test
(it can be obtained by randomization of the normalized
states R̄i = Ri/(e|Ri)BÃ with probabilities pi = (e|Ri)BÃ).
Moreover, it clearly satisfies Eq. (156). Therefore, using item
1 we see that there exists a test {Ci}i∈X from A to B such
that Ri = RCi

. In particular, R = Ri0 = RCi0
, thus proving

surjectivity. �

Clearly, the correspondence C 	→ RC can be extended via
linear combinations to an injective linear map between the
vector spaces TR(A,B) and SR(BÃ).

An immediate consequence of the states-transformations
isomorphism is the following.

Corollary 26 (Existence of an ultimate refinement). In a
convex theory with purification, every test {Ci}i∈X from A
to B admits an ultimate refinement {Dj }j∈Y where every
transformation Dj is atomic.

Proof. Consider the preparation test {RCi
}i∈X and take

the normalized states RCi
= RCi

/(e|RCi
)BÃ. Since the states

form a finite-dimensional compact convex set, each state
RCi

has a convex decomposition on a finite number of pure
states. Collecting together all these decompositions yields a
preparation test {Rj }j∈Y, containing only pure states, that
refines {RCi

}i∈X. By the states-transformations isomorphism,
one has Rj = RDj

, for a test {Dj }j∈Y that refines {Ci}i∈X and
contains only atomic transformations. �

A. First consequences of the isomorphism

Two simple consequences of the states-transformations
isomorphism are the following:

Corollary 27. A channel V from A to AB is atomic if and
only if it is of the form

(160)

for some pure state ϕ0 ∈ S1(B) and some reversible channel
U ∈ GAB.

Proof. Clearly a channel of the form V = U |ϕ0)B is atomic,
since the corresponding state RC = U |�(A))AÃ|ϕ0)B is pure.
Conversely, if V is atomic, then RV is a purification of the

state |ω̃)Ã := (e|A|�(A))AÃ. Since RV and �(A) are both pu-
rifications of the same state, by the uniqueness of purification
stated by Lemma 21 we have RV = U |�(A))AÃ|ϕ0)B for some
pure state ϕ0 ∈ S1(B) and some reversible channel U ∈ GAB.
Since �(A) is dynamically faithful for system A, this implies
V = U |ϕ0)B. �

When system B is trivial, we have the more specific result:
Corollary 28. A channel from A to A is atomic if and only

if it is reversible.
Proof. Special case of Corollary 27 with B ≡ I. �

The states-transformations isomorphism also allows one to
prove that the sets of transformations, channels, reversible
channels, and pure states are compact with respect to the
operational norm induced by optimal discrimination:

Corollary 29. The set of physical transformations T(A,B)
is compact in the operational norm.

Proof. By Theorem 17, we have dim(TR(A,B)) �
dim(SR(BÃ)), namely transformations span a finite-
dimensional vector space. Since we are in finite dimensions,
to prove compactness it is enough to prove that the set of
transformations is closed. To see this, suppose that {Cn} is
a Cauchy sequence of transformations. By definition, each
transformation Cn arises in some test, which can be taken to be
binary without loss of generality. Let {Cn,Dn} be such a binary
test, and let {RCn

,RDn
} be the corresponding preparation-test.

Since the set of all states S(BÃ) is compact (by hypothesis
it is finite dimensional and closed), there is a subsequence
{RCnk

,RDnk
} converging to a binary preparation test {R0,R1}.

Now, since each test {RCnk
,RDnk

} satisfies Eq. (156), also
{R0,R1} satisfies it. By the states-transformations isomor-
phism, this implies that there is a binary test {C ,D} such
that R0 = RC and R1 = RD . Finally, using the bound of
Eq. (126) we see that Cnk

(and hence Cn) converges to C
in the operational norm. �

Corollary 30. The set of channels from A to B is compact
in the operational norm.

Proof. Again, since we are in finite dimension, it is
enough to prove that the set of channels is closed. Let
{Cn} be a Cauchy sequence of channels. Since the set of
transformations is closed, the sequence converges to some
transformation C . Moreover, C is a channel. Indeed, since
Cn is a channel we have (e|BCn = (e|A, and, for every state
ρ, (e|BC |ρ)A = limn→∞(e|BCn|ρ)A = (e|ρ)A, which implies
(e|BC = (e|A. �

Corollary 31. The group GA of all reversible transforma-
tions of system A is a compact Lie group.

Proof. Let {Un} be a sequence of reversible channels con-
verging to some channel C . We now show that C is reversible.
Indeed, consider the sequence {U −1

n }. Since the set of channels
is compact, it is possible to choose a subsequence {U −1

nk
}

that converges to some channel D . But now we have C D =
limk→∞ Unk

U −1
nk

= IA, and, DC = limk→∞ U −1
nk

Unk
= IA

[51], that is, C is reversible and D = C −1. This proves that GA
is closed, and, therefore, compact. Finally, since GA is compact
and has a faithful finite-dimensional matrix representation, it
is a Lie group (see, e.g., Theorem 5.13 of Ref. [52]). �
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Corollary 32. The set of pure states of system A is compact.
Proof. Let {ϕn} be a sequence of pure states converging

to some state ρ. We now prove that ρ is pure. To see this,
let us fix a pure state ϕ0. By Lemma 20 for every n there
is a reversible channel Un such that ϕn = Unϕ0. Since the
group GA is compact, we can take a subsequence {Unk

} that
converges to a reversible channel U . Therefore we have ρ =
limn→∞ ϕn = limk→∞ Unk

ϕ0 = U ϕ0. Since ρ is connected to
a pure state by a reversible channel it must be pure. �

We conclude this subsection with two results that will be
useful in the construction of deterministic teleportation:

Corollary 33 (Existence of a twirling test). In a (convex)
theory with purification there always exists a twirling test
{piUi}i∈X (according to Definition 15), where {pi} are proba-
bilities and {Ui} are reversible channels. In particular, one of
the channels {Ui} can be always chosen to be the identity.

Proof. Let dW be the normalized Haar measure over the
compact group GA, and define the channel T := ∫

dW W ,
which is clearly a twirling channel, since by invariance of
the Haar measure one has U T = T for every U ∈ GA.
Since the reversible channels span a finite-dimensional space,
their convex hull is a finite-dimensional convex set. Then
by Caratheodory’s theorem the integral can be written as a
finite convex combination of reversible transformations, i.e.,
T = ∑

i∈X piUi . Since U T = T , we can pick an outcome
i0, and apply U −1

i0
, thus obtaining a new twirling test where

one channel is the identity. �

Corollary 34 (Uniqueness of the invariant state). For every
system A, there is a unique state χA invariant under all
reversible transformations in GA. Moreover, χA is internal.

Proof. Let T be the twirling channel defined in the
previous corollary. Since for two arbitrary pure states ψ,ψ ′
there is a reversible channel U such that ψ ′ = U ψ (Lemma
20), this implies

T (ψ ′) =
∫

dW W U ψ =
∫

dW ′W ′ψ = T (ψ) := χ,

(161)

having used the invariance of the Haar measure. Now, since
the twirling channel is constant on pure states, it is constant
on every state, namely T (ρ) = χ for every ρ. In particular,
if ρ is an invariant state, then we have ρ = T (ρ) = χ . This
proves that the invariant state is unique. Finally, Corollary 33
implies that the integral T (ρ) can be written as the sum of
the transformations of a twirling test containing the identity,
namely

χ = T (ρ) =
∑

j

pjUjρ = pi0ρ +
∑
j �=i0

U −1
0 Ujρ, (162)

whence pi0ρ belongs to the refinement set Dχ of χ for every
state ρ. This proves that χ is internal. �

B. Entanglement breaking channels

An interesting consequence of the states-transformations
isomorphism regards the identification of measure-and-
prepare channels and entanglement breaking channels, the
latter defined as follows.

Definition 48 (Entanglement-breaking channel). A channel
C ∈ T(A,B) is entanglement breaking if the output state
C |σ )AC is separable for every state σ ∈ S1(AC), namely

C |σ )AC =
∑
i∈X

pi |βi)B|ρ̃i)C, (163)

for some separable preparation test {piρi ⊗ ρ̃i}i∈X, βi ∈
S1(B),ρ̃i ∈ S1(Ã).

The following theorem extends to arbitrary theories with
purification the characterization of entanglement breaking
channels presented in quantum theory by Horodecki, Shor,
and Ruskai in Ref. [53]:

Corollary 35 (Structure of entanglement-breaking chan-
nels). In a theory with purification, the following are equiva-
lent

1. C is entanglement breaking
2. RC is separable
3. C is measure-and-prepare

Proof. (1) ⇒ (2) If C is entanglement breaking, then
in particular |RC )BÃ = C |�(A))AÃ is separable. (2) ⇒ (3)
Suppose that RC is separable, namely RC = ∑

i∈X piβi ⊗ ρ̃i

for some separable preparation test {piβi ⊗ ρ̃i}i∈X (with
βi ∈ S1(B) and ρ̃i ∈ S1(Ã)). Now, the preparation test
{piρ̃i}i∈X has the property∑

i

pi ρ̃i = (e|B|RC )BÃ = (e|A|�(A)) := |χ̃)Ã, (164)

having used that |RC )BÃ := C |�(A))AÃ, and the fact that C is
a channel. Applying the first item of Theorem 17 with B ≡ I,
we then deduce that piρ̃i = Rai

for some suitable observation
test {ai} on A. Considering the measure-and-prepare channel
D := ∑

i∈X |βi)B(ai |A we then obtain RD = RC , which
implies C = D . Hence, C is measure-and-prepare. (3) ⇒
(1) If C is measure-and-prepare, it is easily seen that it is
entanglement breaking. �

C. Completeness of theories with purification

As a consequence of the states-transformations isomor-
phism, in a theory with purification we cannot enlarge the set
of transformations without enlarging the set of states. Indeed,
we can compare different theories that have the same set of
systems in the following way:

Definition 49 (Inclusion of theories). The theory �′ is larger
than the theory � if for every couple of systems A,B one
has T(A,B) ⊆ T′(A,B), where T′(A,B) denotes the set of all
transformations from A to B allowed by �′.

Then we have the following:
Lemma 26 (Maximality of theories with purification). Let �

be a convex theory with purification and �′ be a convex theory
with the same sets of normalized states of �, i.e., S1(A) =
S′

1(A) for every A. If �′ is larger than �, then �′ = �.
Proof. First, note that the deterministic effect, uniquely

defined by the condition (e|ρ)A = 1,∀ρ ∈ S1(A), is the same
in both theories. Now suppose that {C ′

i }i∈X is one of the
tests from A to B allowed by theory �′. Let {RC ′

i
}i∈X be the

corresponding preparation test for system BÃ, as defined by
the state-transformations isomorphism of Theorem 17. Since
the theories �′ and � have the same states, each RC ′

i
is

also a state in �. Now, convexity of the set of states implies
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that {RC ′
i
}i∈X is a legitimate preparation test in �. Moreover,

we have
∑

i∈X(e|B|RC ′
i
)BÃ = (e|B|
(A))BÃ := |ω̃)Ã. Then, by

Theorem 17 there must be a test {Ci}i∈X from A to B,
allowed by theory �, such that RC ′

i
= RCi

:= Ci |�(A))AÃ.
Since |�(A))AÃ is dynamically faithful for system A, this
implies C ′

i = Ci for every i ∈ X. Therefore, �′ and � have
exactly the same tests. �

The states-transformations isomorphism has also the very
strong consequence that any transformation that is “mathemat-
ically admissible” can be actually realized as a test. To make
this statement precise, let us give the following definitions:

Definition 50 (Positive transformation). A transformation
C ∈ TR(A,B) is positive if for every ρ ∈ S+(A) one has
C |ρ)A ∈ S+(B).

Definition 51 (S-positive transformation). Given a system
S, a transformation C ∈ TR(A,B) is S-positive if C ⊗ IS is
positive.

Definition 52 (Completely positive transformation). A
transformation C ∈ TR(A,B) is completely positive (CP) if
it is S-positive for every system S.

Definition 53 (Admissible instrument). An admissible in-
strument with input A and output B is a collection of CP
transformations {Ci}i∈X such that∑

i∈X

(e|BCi = (e|A. (165)

The following theorem establishes that every admissible in-
strument must be feasible in a convex theory with purification:

Theorem 18 (Completeness of theories with purification). In
a convex theory with purification every admissible instrument
from A to B is a test. In particular, every admissible instrument
from A to I is an observation test.

Proof. Call � the theory under consideration and consider
the set of all admissible instruments that are conceivable in �.
This set is closed under parallel and sequential composition
and under coarse-graining and conditioning. Therefore this
set defines a new theory �′ that is larger than �. Moreover,
by construction �′ and � have the same states. By Lemma
26, this implies �′ = �. �

Corollary 36 (Characterization of physical transforma-
tions). In a convex theory with purification the following are
equivalent

1. C is a physical transformation from A to B.
2. C is a CP transformation from A to B and (e|A − (e|BC

is CP .
Proof. The direction 1 ⇒ 2 is obvious. Conversely,

suppose that condition 2 is satisfied, and define the CP
transformations (a|A := (e|A − (e|BC and D := |β)B(a|A,
where |β)B is some normalized state of system B. Then
the collection of CP transformations {C ,D} is an admissible
instrument. By the completeness of Theorem 18 this implies
that {C ,D} is a test allowed by the theory. Hence, C is a
physical transformation. �

We are now in position to prove a stronger result than
Lemma 26, namely the fact that a theory with purification
is completely specified once we have declared the states for
every system:

Theorem 19 (States specify the theory). Let �,�′ be two
convex theories with purification. If � and �′ have the same
sets of normalized states, then �′ = �.

Proof. Given two theories �,�′ with the same set of states
we can take the new theory � ∪ �′ that is generated by �

and �′ by taking sequential and parallel composition of the
corresponding CP transformations. Since by construction � ∪
�′ contains � and �′ and has the same sets of states by Lemma
26 we have � = � ∪ �′ = �′. �

We conclude this subsection by discussing the implication
of the no-restriction hypothesis of Definition 16 and of Lemma
11, which states that every element in the dual cone of states
is proportional to a possible effect. In this case, we have the
following characterization:

Lemma 27. In theory satisfying the no-restriction hypothe-
sis of Definition 16 the following are equivalent:

1. a ∈ TR(A,I) is CP.
2. a is an element of the dual cone S+(A)∗.
3. a is an element of the cone E+(A).

Proof. 1 ⇒ 2. Any CP transformation C from A to I defines
a unique element a of the dual cone S+(A)∗ via the relation
a(ρ) := C |ρ)A. In fact, C and a are identified: if two CP
transformations C and C ′ define the same effect, then we also
have (C ⊗ IC)|σ )AC = (C ′ ⊗ IC)|σ )AC for every system C
and for every state ρ ∈ S(AC). Therefore C ≡ C ′, and we
can identify C with a. 2 ⇒ 3. By the consequence of the
no-restriction hypothesis stated by Lemma 11, if a is in the
dual S+(A)∗ then a is in E+(A). 3 ⇒ 1 By definition, an
element of E+(A) is proportional to an effect (with a positive
proportionality constant). Now every effect is a physical
transformation from A to I , and physical transformations
are by definition CP. �

Definition 54 (Effect-valued measures). An admissible
instrument from A to I is an effect-valued measure (EVM), that
is, a collection of effects {ai}i∈X such that

∑
i∈X(ai |A = (e|A.

The completeness Theorem 18 now implies:
Corollary 37 (Characterization of observation tests). In a

convex theory with purification every effect-valued measure
is an observation test. If the no-restriction hypothesis of
Definition 16 holds, every probability rule (collection of
positive functionals that sum to the deterministic effect) is an
observation test.

Finally, the characterization of Corollary X C becomes:
Corollary 38. In a convex theory with purification satisfying

the no-restriction hypothesis of Definition 16 the following are
equivalent

1. C is a physical transformation from A to B.
2. C is a CP transformation from A to B and is nor-

malization nonincreasing, i.e., (e|BC |ρ)A � (e|ρ)A for every
ρ ∈ S(A).

XI. ERROR CORRECTION

A. Basic definitions

Here we give some basic definitions that will be used in the
next subsections.

Definition 55 (Correctable channels). A channel C ∈
T(A,B) is correctable upon input of ρ ∈ S1(A) if there is
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a recovery channel R ∈ T(B,A) such that R ◦ C =ρ IA. If ρ

is an internal state, we simply say that C is correctable.
Definition 56 (Deletion channels). A channel C ∈ T(A,B)

is a deletion channel upon input of ρ ∈ S1(A) if there is a
fixed state σ ∈ S1(B) such that C =ρ |σ )B(e|A.

Definition 57 (Purification-preserving channels). A channel
C ∈ T(A,B) is purification preserving for ρ ∈ S(A) if there
is a recovery channel R ∈ T(B,A) such that RC |�ρ)AR =
|�ρ)AR, with �ρ ∈ S1(AR) arbitrary purification of ρ.

In the context of error correction, the purifying system R
will be referred to as the reference.

Definition 58 (Correlation-erasing channels). A channel
C ∈ T(A,B) is correlation erasing for ρ ∈ S(A) if there
is a state σ ∈ S(B) such that C |�ρ)AR = |σ )B|ρ̃)R, where
�ρ ∈ S1(AR) is an arbitrary purification of ρ and ρ̃ is the
complementary state |ρ̃)R := (e|A|�ρ)AR.

In a theory with purification, the interplay between these
four definitions is the basic underlying structure of error cor-
rection. The simplest relations can be immediately recovered
from Theorem 7, which related the equality upon input of ρ to
the equality on a purification of ρ.

Corollary 39. A channel is correctable upon input of ρ if
and only if it is purification preserving for ρ.

Corollary 40. If a channel is correlation erasing for ρ, then
it is a deletion channel upon input of ρ. If local discriminability
holds, the converse is also true.

Another simple fact about error correction, which holds in
all theories with purification, is the following

Lemma 28. If a channel C ∈ T(A,B) is correctable upon
input of ρ ∈ S1(A) with recovery channel R, and D ∈ DC

is a transformation in the refinement set of C (Definition 21),
then D is correctable upon input of ρ, with recovery channel
R, i.e., RD =ρ pIA for some probability p > 0.

Proof. By definition, since D is in the refinement set of C ,
there is a test {Di}i∈X such that D ≡ Di0 and C = ∑

i∈X Di .
Since C is correctable with recovery channel R, one has
IA =ρ RC = ∑

i∈X RDi . This means that the test {RDi}i∈X

is nondisturbing upon input of ρ. By the “no information
without disturbance” Theorem 10 one then has RDi =ρ piIA

for every i ∈ X. �

B. Error correction and the complementarity between
correctable and deletion channels

We now discuss some necessary and sufficient conditions
for the correctability of channels. The simplest case is that of
channels from a system to itself:

Theorem 20. A channel C from A to A is correctable if and
only if it is reversible.

Proof. Clearly, if C = U ∈ GA one can correct C by
applying U −1. Conversely, suppose that C is correctable with
some recovery channel R. Let C = ∑

i∈X Ci be a refinement
of C where each Ci is an atomic transformation. Then, the
composition {RCi}i∈X is a nondisturbing test, and Theorem
10 implies RCi = piIA. Since R is a channel, applying the
deterministic effect we obtain (e|ARCi = (e|ACi = pi(e|A,
that is, Ci is proportional to an atomic channel Ui . By Corollary
28, an atomic channel from A to A is reversible. Therefore,
we have RUi = IA, which implies R = U −1

i for every i.

Hence, all channels Ui must be equal, and one has C = U for
some reversible channel U ∈ GA. �

We now give necessary and sufficient conditions for error
correction in the general case of channels from A to B. The
following condition was presented in the quantum case in
Refs. [54–56].

Theorem 21 (Factorization of reference and environment).
A channel C ∈ T(A,B) is correctable upon input of ρ if and
only if there are a reversible dilation V ∈ T(A,BE) of C and
a purification |�ρ)AR of ρ such that systems E and R remain
uncorrelated. Diagrammatically,

(166)

where σ is some state of E and ρ̃ is the complementary state
of ρ on system R.

Proof. Suppose that C is correctable upon input of ρ with
some recovery channel R. Then, by Theorem 7 we have

(167)

and, inserting two reversible dilations for C and R,

. (168)

This means that W V |�ρ)AR is a purification of |�ρ)AR. Then,
Lemma 19 ensures that W V |�ρ)AR is of the form

, (169)

where �̃ is some pure state on EF. Applying the deterministic
effect on FA and using the fact that W is a channel, we then
obtain Eq. (166). Conversely, suppose that Eq. (166) holds
for some dilation V and some purification |�ρ)AR. Then take
a purification of σ , say �σ ∈ S1(EF). Since V |�ρ)AR and
|�ρ)AR|�σ )EF are both purifications of |σ )E|ρ̃)R, by Lemma 21
we have

(170)

for some channel D ∈ T(B,FA). Applying the deterministic
effect on E and F and defining R := (e|FD we then obtain

. (171)

By Theorem 7, this implies R ◦ C =ρ IA, namely C is
correctable upon input of ρ. �
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An immediate consequence of the factorization Theorem
21 is:

Corollary 41 (Complementarity of purification-preserving
and correlation-erasing channels). A channel C ∈ T(A,B) is
purification preserving for ρ ∈ S1(A) (according to Definition
57) if and only if its complementary channel C̃ ∈ T(A,E) is
correlation erasing for ρ (according to Definition 58).

Proof. By Corollary 39, C is purification preserving for ρ

if and only if it is correctable upon input of ρ and, by the
previous theorem, if and only if Eq. (166) holds. But Eq. (166)
is the definition of C̃ being a correlation-erasing channel
for ρ. �

In a theory with purification, since the global evolution of
system and environment is reversible, it would be natural to
expect that if no information goes to the environment, then
the whole information about the input state is contained in
the system. While this intuition is correct in theories with
local discriminability (see Ref. [57] for the quantum case), in
general theories this situation is trickier. Indeed, as we will
see in the following, in a theory without local discriminability
some information can remain “locked” in the global state, in a
way that makes it inaccessible both from the system and from
the environment separately.

Corollary 42 (Complementarity of correctable and deletion
channels). If a channel C ∈ T(A,B) is correctable upon input
of ρ ∈ S1(A) (according to Definition 55), then its comple-
mentary channel C̃ ∈ T(A,E) is a deletion channel upon input
of ρ (according to Definition 56). If local discriminability
holds, the converse is also true.

Proof. Direct consequence of corollaries 39, 41, and 40. �

Counterexample. We show that in a theory without local
discriminability the complementarity between correctable and
deletion channels does not hold. Consider the case of quantum
mechanics on real Hilbert spaces, and consider the isometry
V from a real qubit to two real qubits defined by

V = |
+〉〈0| + |�−〉〈1| (172)

with |
+〉 := |0〉|0〉+|1〉|1〉√
2

, and |�−〉 := |0〉|1〉−|1〉|0〉√
2

. In this
case the complementary channels C (ρ) := Tr1[VρV τ ] and
C̃ (ρ) := Tr2[VρV τ ] are both deletion channels: indeed, one
has

C (ρ) = I1

2
C̃ (ρ) = I2

2
, (173)

for any real density matrix ρ.

C. Error correction with one-way classical communication
from the environment

Here we briefly discuss a more general kind of correction,
in which the environment is not completely inaccessible,
but rather some operations on it are allowed. Particularly
interesting is the case of LOCC operations, which do not
require the exchange of systems from the environment but
only communication of outcomes and conditioned operations.
In particular, we will focus here on the case of a single round
of forward classical communication from the environment to

the output system. With the term “classical” we mean that only
outcomes are communicated.

Definition 59 (One-way correctable channels). A channel
C ∈ T(A,B) is one-way correctable upon input of ρ if for
every dilation V ∈ T(A,BE) there is an observation test
{ai}i∈X on E and a collection of recovery channels {Ri}i∈X ⊂
T(B,A) such that

. (174)

If ρ is an internal state, we simply say that C is one-way
correctable.

The following theorem states that one-way correctable
channels are nothing but randomizations of correctable chan-
nels. The quantum version of it was given by Gregoratti and
Werner in Ref. [58].

Theorem 22 (Characterization of one-way correctable
channels). A channel C ∈ T(A,B) is one-way correctable on
input of ρ ∈ S1(A) if and only if C is a the coarse-graining
of a test {Ci}i∈X where each transformation Ci is correctable
on input of ρ. In particular, if ρ is internal, then C is a
randomization of correctable channels.

Proof. Suppose that C is one-way correctable upon input
of ρ. Then, for any purification |�ρ)AR of ρ we have

. (175)

Since �ρ is pure, each term in the sum must be proportional
to it. Defining the test {Ci}i∈X by Ci := (ai |EV , and using
Theorem 10, we then obtain RiCi =ρ piIA. Therefore, C
is the coarse-graining of a test where each transformation is
correctable upon input of ρ. Moreover, if ρ is internal, using
the fact that each Ri is a channel, we obtain

(e|ARiCi = (e|BCi = pi(e|A, (176)

namely each Ci must be proportional to a channel, say
Ci = piDi , with channel Di correctable upon input of ρ.
Conversely, suppose that C = ∑

i∈X Ci for some test {Ci}
where each transformation Ci is correctable upon input of ρ.
Dilating such a test, we then obtain a channel V ∈ T(A,BE)
and an observation test {ai}i∈X on E such that

(177)

for every outcome i ∈ X. Since each Ci is correctable upon
input of ρ, knowing the outcome i ∈ X, we can perform the
recovery channel for Ci , thus correcting channel C . �

In the case of channels from A to itself, the above theorem
takes the simple form

Corollary 43. A channel C ∈ T(A) is one-way correctable
if and only if it is a randomization of reversible channels.

Proof. Just combine Theorem 22 with the characterization
of correctable channels from A to A (Theorem 20). �
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XII. CAUSALLY ORDERED CHANNELS AND CHANNELS
WITH MEMORY

In Ref. [59] Beckman, Gottesmann, Nielsen, and Preskill
introduced the notions of semicausal and semilocalizable
quantum channel for the purpose of studying the constraints
on quantum dynamics of bipartite systems imposed by rela-
tivistic causality. Subsequently, Eggeling, Schlingemann, and
Werner [60] proved the equivalence between semicausality
and semilocalizability (see also Ref. [61] for an extensive
discussion on the topic). The same notions were generalized to
the case of multipartite channels by Kretschmann and Werner
in Ref. [62]. From different points of view Refs. [33,62,63]
studied the structure of multipartite causal channels, showing
that they can always be realized as sequences of channels
with memory. In this section we show that all these results,
originally obtained in quantum mechanics, actually hold in
any causal theory with purification.

Unfortunately, the nomenclature used in the literature is
not fully consistent if we go from bipartite to multipartite
channels [64]. In order to have a consistent nomenclature,
instead of “semicausal” and “semilocalizable channel” we use
here the plain expressions causally ordered bipartite channel
and sequence of two channels with memory, respectively.

Definition 60 (Causally ordered bipartite channel). A
bipartite channel C from A1A2 to B1B2 is causally ordered if
there is a channel D from A1 to B1 such that

(e|B2C = D ⊗ (e|A2 . (178)

Diagrammatically,

.
(179)

Equation (179) means that the channel C does not allow
for signaling from the input system A2 to the output system
B1. In a relativistic context, this can be interpreted as B1 being
outside the causal future of A2.

Definition 61 (Sequence of two channels with memory).
A bipartite channel C from A1A2 to B1B2 can be realized
as a sequence of two channels with memory if there exist
two systems E1,E2, called memory systems, and two channels
C1 ∈ T(A1,B1E1) and C2 ∈ T(A2E1,B2E2) such that

C = (e|E2 (C2 ⊗ IB1 )(IA2 ⊗ C1). (180)

Diagrammatically,

.
(181)

A. Dilation of causally ordered channels

For causally ordered bipartite channels the dilation theorem
implies the following result:

Theorem 23 (Causal ordering is memory). A bipartite
channel C from A1A2 to B1B2 is causally ordered if and only if
it can be realized as a sequence of two channels with memory.
Moreover, the channels C1,C2 in Eq. (181) can be always
chosen such that C2C1 is a reversible dilation of C .

Proof. If Eq. (181) holds, the channel C is clearly causally
ordered, with the channel D given by D := (e|E1C1. Con-

versely, suppose that C is causally ordered. Take a reversible
dilation of C , say V ∈ T(A1A2,B1B2E), and a reversible
dilation of D , say V1 ∈ T(A1,B1E1). Now, by definition of
causally ordered channel [Eq. (179)] we have

.

(182)

This means that V and V1 ⊗ IA2 are two reversible dilations of
the same channel. By the uniqueness of the reversible dilation
expressed by Lemma 24 we then obtain

.

(183)

Once we have defined E2 := EE1A2 it only remains to
observe that the above diagram is nothing but the thesis, with
C1 = V1 and C2 = Z . By construction, C2C1 is a reversible
dilation of C . �

The definition of causally ordered bipartite channel is easily
extended to the multipartite case as follows.

Definition 62 (Causally ordered channel). An N -partite
channel C (N) from A1 . . . AN to B1 . . . BN is causally ordered
if for every k � N there is a channel C (k) from A1 . . . Ak to
B1 . . . Bk such that

.

(184)

The definition means that the output systems B1 . . . Bk are
outside the causal future of any input system Al with l > k.

Causally ordered channels can be characterized as follows.
Theorem 24 (Causal ordering is memory for general N ). An

N -partite channel C (N) from A1 . . . AN to B1 . . . BN is causally
ordered if and only if there exists a sequence of memory
systems {Ek}Nk=0 with E0 = I and a sequence of channels
{Vk}Nk=1, with Vk ∈ T(AkEk−1,BkEk) such that

.

(185)

Moreover, VN . . . V1 is a reversible dilation of C .
Proof. It is trivial to see that if C (N) is a sequence of

channels with memory, it is a causally ordered channel. Here
we prove the converse. For N = 1 the thesis is just the dilation
theorem for channels. We now show that if the thesis holds for
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N , then it has to hold also for N + 1. Since C (N+1) is a causal
channel, we have in particular

(e|BN+1C
(N+1) = C (N) ⊗ (e|AN+1 . (186)

This means that C (N+1) can be viewed as a bipartite causally
ordered channel from C1C2 to D1D2, where C1 := A1 . . . AN ,
C2 := AN+1, D1 := B1 . . . BN , and D2 := BN+1. Then The-
orem 23 yields two channels W1 ∈ T(C1,D1F1) and W2 ∈
T(C2F1,D2F2) such that

.
(187)

Now, applying the deterministic effect on D2, and using
Eq. (186) the above diagram implies also that W1 is a dilation
of C (N). On the other hand, by the induction hypothesis C (N)

has a reversible dilation V (N) of the form of Eq. (185), namely

V (N) = TN . . . T1, (188)

for some sequence of channels (Tk)Nk=1 ∈ T(AkGk−1,BkGk)
and some sequence of memory systems (Gk)Nk=0, with G0 = I.
Since W1 and V (N) are reversible dilations of the same channel,
the uniqueness of the reversible dilation of Lemma 24 implies
W1 = (e|GN

Z V (N), with Z ∈ T(GN,GN F1) of the form of

Eq. (149). Then, the thesis follows by defining the memory
systems as

Ek :=
⎧⎨⎩ Gk k < N

GNF1 k = N

GNF2 k = N + 1
(189)

and by defining the channels as

Vk :=
⎧⎨⎩Tk k < N

Z TN k = N

IGN
⊗ W2 k = N + 1.

(190)

By construction, the channel VN+1VN . . . V1 is a reversible
dilation of the channel C (N+1). �

Moreover, since the realization of the previous theorem is
just the reversible dilation of C (N), we have the uniqueness
result:

Corollary 44 (Uniqueness of the reversible dilation). Let
{Vk}Nk=1, Vk ∈ T(AkEk−1,BkEk) be a reversible realization of
the causally ordered channel C (N) as a sequence of channels
with memory, as in Theorem 24. Suppose that {V ′

k }Nk=1, V ′
k ∈

T(AkE′
k−1,BkE′

k) is another reversible realization of C (N) as a
sequence of channels with memory. Then there exists a channel
R from EN to E′

N such that

. (191)

Proof. The channels V := VN . . . V1 ∈ T(A1 . . . AN,

B1 . . . BNEN ) and V ′ := V ′
N . . . V ′

1 ∈ T(A1 . . . AN,

B1 . . . BNE′
N ) are two reversible dilations of the channel C (N).

The statement is the direct application of the uniqueness of
the dilation stated by Lemma 24. �

B. No bit commitment

Sequences of channels with memory can be used to describe
sequences of moves of a given party in a cryptographic protocol
or in a multiparty game (see Ref. [63] for the case of quantum
games). In this scenario, the memory systems are the private
systems available to a party, while the other input-output
systems are the systems exchanged in the communication with
other parties. In this context, the uniqueness of the realization
of a causal channel directly implies the impossibility of tasks
like unconditionally secure bit commitment (see Refs. [65,66]
and references therein for the definition of the problem). A
proof in the general case is given by the following:

Corollary 45 (No perfectly secure bit commitment). In a
theory with purification, if an N -round protocol is perfectly
concealing, then there is a perfect cheating.

Proof. We first prove the impossibility for protocols that do
not involve the exchange of classical information. Let A0,A1 ∈
T(A1 . . . ,AN,B1 . . . BN−1BNFN ) be two causally ordered N -
partite channels (here the last output system of the causally
ordered channels is the bipartite system BNFN ), representing

Alice’s moves to encode the bit value b = 0,1, respectively.
The system FN is the system sent from Alice to Bob at the final
phase of the protocol (called the opening) in order to unveil the
value of the bit. If the protocol is perfectly concealing, then
the reduced channels before the opening phase must be in-
distinguishable, namely (e|FN

A0 = (e|FN
A1 := C . Now, take

two reversible dilations V0 ∈ T(A1 . . . ,AN,B1 . . . BNFNG0)
and V1 ∈ T(A1 . . . ,AN,B1 . . . BNFNG1) for A0 and A1, re-
spectively. Since V0 and V1 are also two dilations of the
channel C , there is a channel R from FNG0 to FNG1 such
that V1 = RV0. Applying this channel to her private systems,
Alice can switch from V0 to V1 just before the opening.
Discarding the auxiliary system G1, this yields channel A1.
The cheating is perfect, since Alice can play the strategy
V0 until the end of the commitment and decide the bit value
before the opening without being detected by Bob. The above
reasoning can be extended to N -round protocols involving the
exchange of classical information. Indeed, classical messages
can be modelled by perfectly distinguishable states, while
classical channels can be modelled by measure-and-prepare
channels where the observation test is discriminating, and
the prepared states are perfectly distinguishable. The fact that
some systems can only be prepared in perfectly distinguishable
states will be referred to as the “communication interface” of
the protocol [65,66]. In this case, to construct Alice’s cheating
strategy we can first take the reversible dilations V0,V1 and
the channel R such that V1 = RV0. In order to comply with
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the communication interface of the protocol, one can compose
V0 and V1 with classical channels on all systems that must be
“classical” before the opening, thus obtaining two channels D0

and D1 that are no longer reversible but still satisfy D1 = RD0.
Discarding the auxiliary system G1 and, if required by the
communication interface, applying a classical channel on FN ,
Alice then obtains channel A1. Again, this strategy allows
Alice to decide the value of the bit just before the opening
without being detected. �

XIII. DETERMINISTIC PROGRAMMING OF
REVERSIBLE TRANSFORMATIONS

In Sec. VIII we saw that transformations can be stored into
states in such a way that they can be retrieved at later time with
nonzero probability of success. This provides an instance of
probabilistic programming, in which a state plays the role of
program for a transformation, and a suitable machine is able
to read the program and to reproduce (with some probability)
the correct transformation. Of course, one would like also to
have deterministic programmable machines, which correctly
retrieve the transformations with unit probability. We now
show that such machines are much more demanding in terms
of resources: indeed to program a certain number of reversible
transformations one needs to have an equal number of perfectly
distinguishable program states. This theorem is the general
version of the quantum no-programming theorem by Nielsen
and Chuang [67].

Theorem 25 (No perfect deterministic programming of
reversible channels without distinguishable program states).
Let {Ui}i∈X be a set of reversible channels on A and {ηi}i∈X be

a set of pure states of B. If there exists a channel R ∈ T(AB,A)
such that

, (192)

then the states {ηi}i∈X are perfectly distinguishable.
Proof. Take a dilation of R, with pure state ϕ0 ∈ S1(C)

and reversible channel U ∈ T(ABC). Defining the pure states
ϕi := ηi ⊗ ϕ0 we have

. (193)

Since this is a dilation of the reversible transformation Ui , by
the uniqueness of the reversible dilation stated by Theorem 15
there must be a pure state ψi ∈ S1(BC) such that

. (194)

By applying U −1
i on both sides of Eq. (194), one has

(195)

and, applying U −1,

. (196)

Composing Eqs. (194) and (196) we then obtain

.
(197)

This means that we can obtain an unbounded number of copies
of Ui and U −1

i by iterating the application of U and U −1.
Now, if Ui and Uj are different, the probability of error in
discriminating between them using N copies should go to zero
as N goes to infinity (this can be seen by repeating N times
the optimal test and using majority voting, as in the proof of
Theorem 12). Since programming the transformations {(Ui ⊗
U −1

i )⊗N } and discriminating among them is a particular way
of discriminating between the program states {ϕi}, the latter
must be perfectly distinguishable. Finally, since the states ϕi =
ηi ⊗ ϕ0 are perfectly distinguishable, also the program states
ηi must be so. �

Note that trying to use mixed program states {ρi} cannot
help in reducing the number of perfectly distinguishable states
needed in the program system B. Indeed, suppose that ρi

is the following mixture ρi = ∑
j p

(i)
j ψ

(i)
j . Since reversible

transformations are atomic, this means that each pure state ψ
(i)
j

must work as a program for Ui . But the above theorem implies

that, whichever choice we make, the pure states {ϕ(i)
ji

}i∈X must
be perfectly distinguishable.

XIV. PURIFICATION WITH CONJUGATE SYSTEMS

A. Conjugate purifying systems

All the results derived so far were consequence of the sole
fact that every state has a purification, unique up to reversible
transformations of the purifying system. We now add more
structure, by introducing the notion of conjugate purifying
systems:

Postulate 2 (Conjugate purifying systems). For every system
A there exists a conjugate purifying system Ã such that

1. for every state ρ ∈ S1(A) there is a purification �ρ in
S1(AÃ) (completeness for purification)

2. ˜̃A = A (symmetry)
3. ÃB = ÃB̃ (regularity under composition)
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The above postulate could be derived from more basic
assumptions. However, we will not discuss this issue here,
and, for the moment, the existence of conjugate systems will
be taken as a postulate.

Conjugate purifying systems have particularly nice proper-
ties, some of which are given in the following:

Lemma 29. Let Ã be the conjugate system of A. Then,
dim SR(Ã) = dim SR(A).

Proof. Trivial consequence of the bound on dimensions
given in Eq. (93) and of the symmetry condition ˜̃A = A. �

In a theory with conjugate purifying systems, the dynami-
cally faithful pure states considered in subsection VII C enjoy
the following symmetry property:

Lemma 30. If the pure state � ∈ S1(AÃ) is dynamically
faithful for system A, then it is dynamically faithful for system
Ã.

Proof. Let ω̃ be the marginal of � on system Ã,
namely |ω̃)Ã = (e|A|�)AÃ. Since � is dynamically faithful
for system A, the map τ : ER(A) → Span(Dω̃) defined by
(a|A 	→ |τa)Ã = (a|A|�)AÃ is injective (and surjective, by
definition). This implies dim Span(Dω̃) = dim ER(A). On the
other hand, using the previous lemma one has dim ER(A) ≡
dim SR(A) = dim SR(Ã). This proves that ω̃ is internal in
S(Ã). Since � is the purification of an internal state, by
Theorem 8 it is faithful for system Ã. �

Using the previous lemma it is quite simple to show that
conjugate systems are unique up to operational equivalence:

Lemma 31 (Uniqueness of the conjugate system). For any
system A the conjugate system Ã is unique up to operational
equivalence (see Definition 5).

Proof. Suppose that Ã′ is another conjugate system of
A. Then take an internal state ω ∈ S1(A) and consider
its purifications � ∈ S1(AÃ) and � ′ ∈ S1(AÃ′). By the
uniqueness of purification expressed by Lemma 21, since
� and � ′ are purifications of the same state, there are two
channels C ∈ T(Ã,Ã′) and D ∈ T(Ã′,Ã) such that

|� ′)AÃ′ = C |�)AÃ (198)

|�)AÃ = D |� ′)AÃ′ . (199)

Clearly, this implies that

|�)AÃ = DC |�)AÃ (200)

|� ′)AÃ′ = C D |� ′)AÃ′ . (201)

On the other hand, by the previous lemma the states � and � ′
are dynamically faithful for systems Ã and Ã′, respectively.
Hence, one has DC = IÃ and C D = IÃ′ , namely the
channels C and D are reversible. By Definition 5, this means
that A and A′ are operationally equivalent. �

B. States-transformations isomorphism for conjugate
purifying systems

If we use conjugate purifying systems to build up dynami-
cally faithful states some of the results derived so far become
simpler and more elegant. First, according to Lemma 30, if a
pure state �AÃ is dynamically faithful for system A, then it
is also dynamically faithful for system Ã. This means that we

can simply use the expression “dynamically faithful pure state
|�)AÃ” without further specifications. Accordingly, we will
drop the superscript A in the state |�(A)). We now show that
we can also drop the condition Eq. (157) in the isomorphism
between transformations and bipartite states:

Theorem 26 (Strong version of the states-transformations
isomorphism). The storing map C 	→ |RC )BÃ := C |�)AÃ,
with � dynamically faithful pure state, has the following
properties:

1. It defines a bijective correspondence between tests
{Ci}i∈X from A to B and preparation tests {Ri}i∈X for BÃ
satisfying ∑

i∈X

(e|B|Ri)BÃ = (e|A|�)AÃ. (202)

2. A transformation C is atomic (according to Definition
22) if and only if the corresponding state RC is pure.

3. In convex theory the map C 	→ RC defines a bijective
correspondence between transformations C ∈ T+(A,B) and
bipartite states R ∈ S+(BÃ).

As a consequence, we have the following remarkable fact:
Theorem 27. For every effect a ∈ E(A) there is an atomic

transformation Ca ∈ T(A) such that

(203)

Moreover, the transformation Ca is unique up to reversible
channels on the output.

Proof. Let p0 and p1 be the probabilities defined by p0 :=
(a|A(e|Ã|�)AÃ and p1 := (e − a|A(e|Ã|�)AÃ. Let |�0)AÃ and
|�1)AÃ be purifications of the normalized states |ρ0)Ã :=
(a|A|�)AÃ/p0 and |ρ1)Ã := (e − a|A|�)AÃ/p1, respectively.
Now, the collection of states {p0�0,p1�1} is a preparation
test (it can be prepared via randomization). Moreover, such a
preparation test has the property

p0(e|A|�0)AÃ + p1(e|A|�1)AÃ = (e|A|�)AÃ, (204)

namely it satisfies Eq. (202). By the states-transformations
isomorphism, it must correspond to a test {C0,C1} from A to
A; in particular we must have

. (205)

Applying the deterministic effect on A we then obtain

. (206)

Since � is dynamically faithful, this implies Eq. (203) with
Ca := C0. Moreover, the states-transformations isomorphism
states that C0 is atomic since p0|�0)AÃ = C0|�)AÃ is pure.
Finally, suppose that C ′

0 ∈ T(A) is another atomic transfor-
mation such that Eq. (203) holds, and define the pure state
|� ′

0) := C ′
0|�)AÃ/p0. Since �0 and � ′

0 are purifications of
the same state |ρ0)Ã, then they are connected by a reversible
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channel U on A. Using the fact that � is dynamically faithful,
this implies C ′

0 = U C0. �

Moreover, having conjugate purifying systems allows for a
more elegant description of the composition of transformations
in terms of composition of states. We recall that to treat the
composition of states we need a system of purifications, as
defined in subsection VIII C. The nice thing now is that we
can take the system of purifications to be symmetric:

Definition 63 (Symmetric system of purifications). A sym-
metric system of purification is a choice of dynamically faithful
pure states |�)AÃ and teleportation effects (e|ÃA that satisfies
the properties

|�)ABÃB̃ = |�)AÃ|�)BB̃ (207)
(e|ÃB̃AB = (e|ÃA(e|B̃B.

Regarding the probabilities of conclusive teleportation, we
now have pA = pÃ [compare Eqs. (113) and (114) in the
teleportation protocol of Corollary 19].

In the next subsection we will see that there is a canonical
choice of internal states, namely choosing |ω)A = |χ )A,
where |χ )A is the unique invariant state of system A (for
the uniqueness, see Lemma 34). We will choose a fixed
purification of |χ )A and refer to it as to the canonical faithful
state, denoted by |
)AÃ. In Corollary 46 we will show that this
notation is consistent, since |
)AÃ is also a purification of the
unique invariant state of Ã.

C. Conjugated transformations

The most important consequence of the existence of
conjugate purifying systems is the possibility of defining a
one-to-one correspondence between the reversible transfor-
mations of one system A and the reversible transformations
of its conjugate system Ã. As we will see, this implies in
particular the possibility of deterministic teleportation. The
correspondence is set by the following lemma:

Lemma 32 (Transposition of reversible channels). Let

 ∈ S1(AÃ) be a purification of the unique invariant state
χ ∈ S1(A). Then, for every reversible channel U ∈ GA there
exists a unique reversible channel U τ ∈ GÃ, here called the
transpose of U with respect to 
, such that

. (208)

Transposition is an injective map satisfying the properties

I τ
A = IÃ (209)

(U1U2)τ = U τ
2 U τ

1 . (210)

Proof. Since |χ )A is invariant, the states |
)AÃ and
U |
)AÃ are both purifications of it. Then, there must be
a reversible transformation U τ ∈ GÃ such that Eq. (208)
holds. Moreover, since the invariant state |χ )A is internal, its
purification 
 is dynamically faithful, both for system A and
for system Ã. Dynamical faithfulness on system Ã implies that
the transformation U τ is uniquely defined, while dynamical
faithfulness on system A implies that transposition is injective.

Finally, Eq. (209) is obvious, while Eq. (210) is easily proved
by repeated application of Eq. (208):

(IA ⊗ (U1U2)τ )|
)AÃ = (U1U2 ⊗ IÃ)|
)AÃ

= (
U1 ⊗ U τ

2

)|
)AÃ

= (
IA ⊗ U τ

2 U τ
1

) |
)AÃ, (211)

using the fact that 
 is dynamically faithful for system Ã. �

Lemma 33 (Continuity of transposition). Transposition is
continuous with respect to the operational norm. Moreover, if
C ⊆ GA is closed, then τ (C) ⊆ GÃ is closed.

Proof. Let pA be the probability of teleportation for
the canonical faithful state |
)AÃ. Define |RU )AÃ := (U ⊗
IÃ)|
)AÃ. For every ε > 0, if U ,V ∈ GA are such that ‖U −
V ‖A,A < ε, then using Eq. (126) one has ‖U τ − V τ‖Ã,Ã �
‖RU − RV ‖AÃ/pA < ε/pA. This proves continuity. Now,
suppose that C ⊆ GA is a closed set, and suppose that {U τ

n } is a
sequence in τ (C) converging to some reversible transformation
V ∈ GÃ. It is easy to see that V must be in τ (C). Indeed,
consider the sequence {Un} ⊂ GA. Since GA is compact,
there must be a subsequence Unk

such that Unk
→ U for

some U ∈ GA. Moreover, since C is closed, one has U ∈ C.
Now, using continuity we obtain U τ

nk
→ U τ . This implies that

V = limn→∞ U τ
n = U τ , that is, the limit point is in τ (C).

Hence, τ (C) is closed. �

Lemma 34. The transposition map τ : U 	→ U τ defined in
Eq. (208) is surjective on GÃ.

Proof. Take the invariant state |χ )Ã, a purification of it,
say |
(Ã))AÃ, and define the transpose τ̃ with respect to 
(Ã).
Since τ and τ̃ are both injective transformations, their com-
position ι := τ τ̃ : GÃ → GÃ is injective too. Moreover, ι is a
homomorphism, since ι(IÃ) = IÃ and ι(V W ) = ι(V )ι(W )
for every V ,W in GÃ. We now claim that ι is surjective. Of
course, since ι := τ τ̃ , this will also prove that τ is surjective.
Consider the sequence {Hn} defined by Hn := ιn(GÃ). By the
previous Lemma 33, each Hn is a closed subgroup of GÃ, and
one has

GA := H0 ⊇ H1 ⊇ · · · ⊇ Hn ⊇ Hn+1, (212)

namely {Hn} is a descending chain of subgroups of GÃ. Since
GÃ is a compact Lie group, every descending chain of closed
subgroups must be eventually constant (see, e.g., p. 136 of
Ref. [68]), i.e., there exists a finite n̄ such that

Hn = Hn+1 n � n̄. (213)

Applying ι−n on both sides, this implies H0 = H1, namely
GÃ = ι(GÃ). Therefore, ι is surjective. �

The first consequences of the properties of transposition are
given by the following corollary.

Corollary 46. Let 
 ∈ S1(AÃ) be a purification of the
unique invariant state χA ∈ S1(A). Then the complementary
state |χ̃)Ã := (e|A|
)AÃ is the unique invariant state of Ã.
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Proof. For every U ∈ GA we have

. (214)

Since τ is surjective, U τ is an arbitrary element of GÃ, hence
χ̃ is invariant. �

Definition 64 (Conjugate of a reversible channel). The
conjugate of the reversible channel U ∈ T(A) with respect
to the state 
 ∈ S(AÃ) is the reversible channel U ∗ ∈ T(Ã)
defined by U ∗ := (U τ )−1, where the transpose is defined with
respect to 
.

Note that with this definition the canonical faithful state
|
)AÃ is isotropic, i.e., it is invariant under combined reversible
channels on the conjugate systems A and Ã:

(215)

Moreover, we have also the converse:
Corollary 47 (Isotropic states). A pure state � ∈ S1(AÃ)

is isotropic if and only if |�)AÃ = (V ⊗ IÃ)|
)AÃ for some
reversible V ∈ GA such that

U V = V U ∀U ∈ GA. (216)

Proof. Clearly, a state of the above form is isotropic.
Conversely, if � is isotropic, it satisfies Eq. (215), and,
therefore, its marginal state on system Ã is the invariant
state |χ )Ã. Since � and 
 are purifications of the same
state, there must exist a reversible channel V ∈ GA such that
|�)AÃ = V |
)AÃ. The isotropy condition then gives

(V ⊗ IÃ)|
)AÃ = |�)AÃ

= (U ⊗ U ∗)|�)AÃ

= (U V ⊗ U ∗)|
)AÃ

= (U V U −1 ⊗ IÃ)|
)AÃ. (217)

Dynamical faithfulness of 
 then implies V = U V U −1,
namely Eq. (216). �

Recalling that the center of the group GA is the set of all
elements V ∈ GA such that U V = V U for every U ∈ GA,
it is immediate to state the following

Corollary 48. The canonical faithful state |
)AÃ is the
unique isotropic state of system AÃ if and only if the compact
Lie group GA has trivial center.

The conclusion of this subsection is summarized by the
following theorem:

Theorem 28 (Isomorphism of groups). The reversible
channels on A and Ã form two isomorphic Lie groups, with
the isomorphism given by the conjugation map ∗ : GA →
GÃ,U 	→ U ∗.

Proof. Clearly, ∗ is a homomorphism, namely I ∗
A = IÃ

and (U1U2)∗ = ((U1U2)τ )−1 = U ∗
1 U ∗

2 . Moreover, ∗ is injec-
tive and surjective, since it is the composition of two injective
and surjective maps, namely transposition and inversion. �

D. Deterministic teleportation

Lemma 35. Let TA and TÃ be the twirling channels on
A and Ã, respectively, and let 
 ∈ S1(AÃ) be the canonical
faithful state. Then, one has

(218)

and

. (219)

Proof. We have

TA|
)AÃ =
∫

GA

dU U |
)AÃ

=
∫

GA

dU (U ∗)−1|
)AÃ

= TÃ|
)AÃ, (220)

having used the fact that GA and GÃ are isomorphic, and,
therefore, have the same Haar measure. Moreover, since the
output of the twirling channel is an invariant state, we have
that |σ )AÃ := TA|
)AÃ is invariant under local reversible
transformations, i.e.,

|σ )AÃ = (U ⊗ V )|σ )AÃ ∀U ∈ GA,∀V ∈ GÃ. (221)

Finally, we invoke Theorem 4, which states that the unique
state invariant under local reversible transformations is χA ⊗
χÃ. �

Theorem 29 (Deterministic teleportation). Let A and A′ be
two operationally equivalent systems, and let {piUi}i∈X be a
twirling test, where each Ui is a reversible channel on A. Then
there exists an observation test {Bi}i∈X on ÃA′ such that for
every outcome i one has

. (222)

Moreover, each effect Bi must be atomic.
Proof. Define the preparation test {pi
i}i∈X with |
i)AÃ :=

Ui |
)AÃ. By the previous lemma, we have
∑

i pi
i = χA ⊗
χÃ, namely coarse-graining of the preparation test {pi
i}
yields the invariant state of AÃ. By the states-transformations
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isomorphism of Theorem 26, there exists an observation test
on Ã′A′, say {Bi}i∈X, such that

. (223)

Clearly, the states-transformations isomorphism implies that
each effect Bi must be atomic (indeed, the corresponding state
is pure). Applying U −1

i on system A we obtain

. (224)

The thesis follows from the fact that 
 is dynamically
faithful. �

In theories with local discriminability we have the addi-
tional result:

Corollary 49. Let {piUi}i∈X be a twirling test where
each Ui is a reversible channel. In a theory with local
discriminability the number of outcomes |X| cannot be smaller
than dim SR(A).

Proof. By Eq. (222) the state �i := (U −1
i ⊗ IA)
 and

the effect Bi achieve teleportation with probability pi . In
a theory with local discriminability the bound of Eq. (116)
gives pi � 1/ dim SR(A). We then have 1 = ∑

i∈X pi �
|X|/ dim SR(A). �

If two parties share the pure state |
)AÃ, then by the
teleportation protocol they can convert it in an arbitrary state
� ∈ S1(AÃ) using only local operations and one round of
classical communication (one-way LOCC). We now show
that the state |
)AÃ is the maximally entangled state of
S1(AÃ), that is, if we can convert another state � to 


by one-way LOCC, then � = (U ⊗ IA)
 for some local
reversible channel U ∈ GA. To see that, we show that if �

allows for deterministic teleportation, then � = (U ⊗ IA)
.
Theorem 30 (Unique structure of deterministic teleporta-

tion). Let � ∈ S1(AÃ) be a pure state, {Ri}i∈X be a collection
of channels on A, {pi}i∈X a set of probabilities, and {Mi}i∈X

be an observation test on ÃA′, with A′ and A operationally
equivalent systems. If for every outcome i one has

, (225)

then
1. Each channel Ri is reversible, namely Ri = U −1

i for
some Ui ∈ GA.

2. There is a reversible channel U ∈ GA such that � =
U 
.

3. Each effect Mi is atomic and has the property
(Mi |ÃA′ |χ )Ã = pi(e|A′ .

4.
∑

i∈X piUi = T , where T is the twirling channel.
Proof. Define the transformation Ai as

. (226)

With this definition we have RiAi = piIA for every outcome
i. Moreover, applying the deterministic effect on both sides of
the equality we obtain

(e|AAi = (e|ARiAi = pi(e|A, (227)

that is, each Ai is proportional to a channel Ci , i.e., Ai = piCi .
We now have Ri ◦ Ci = IA, that means that the channel Ci is
correctable. By Theorem 20, this implies that Ci is reversible,
namely Ci = Ui for some Ui ∈ GA. Clearly, this requires
Ri = U −1

i . Now consider the marginal of � on system A:
one has

(228)

having used the invariance of χ . But this means that � and 


have the same marginal on system A, and, therefore, |�)AÃ =
(IA ⊗ U )|
)AÃ for some suitable U ∈ GÃ. Using Lemma
32, we can also transfer U on system A, getting |�)AÃ =
(U τ ⊗ IÃ)|
)AÃ. Using Ai = piUi we then get

. (229)

By the states-transformations isomorphism, this means that
each Mi is atomic (indeed, the corresponding state is pure).
Applying the deterministic effect on system A, the above
equation also implies

,
(230)

which amounts to saying (Mi |ÃA|χ )Ã = pi(e|A, because 


is dynamically faithful. Moreover, summing over the out-
comes in Eq. (229) we obtain (

∑
i piUi)|
)AÃ = |χ )A|χ )Ã =

T |
)AÃ. Again, since 
 is dynamically faithful, this implies∑
i piUi = T . �
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In a theory with local discriminability one has also the
following result:

Corollary 50. Let |�)AÃ, {Ri}i∈X, {pi}i∈X, and {Mi}i∈X

be the state, the recovery channels, the probabilities, and the
observation test in a deterministic teleportation protocol, as
in Theorem 30. In a theory with local discriminability the
number of outcomes satisfies the bound |X| � dim SR(A).
The bound is achieved if and only if pi = 1/ dim SR(A) for
every i, and the states |�i)AÃ := (Ri ⊗ IÃ)|�)AÃ, i ∈ X are
perfectly distinguishable with the observation test {Mi}, i.e.,

(Mi |�j )AÃ = δij . (231)

Proof. From Eq. (115) we have pi � 1/ dim SR(A) for
every i, and, therefore 1 � |X|/ dim SR(A). Clearly, the
bound is achieved if and only if pi = 1/ dim SR(A) for every
i. In this case, it can be seen from the proof of Eq. (115) that
one has (Mi |�i)AÃ = 1. Since {Mi}i∈X is an observation test,
and the probabilities of all outcomes must sum up to unit, this
implies (Mj |�i)AÃ = δji . �

The above corollary shows that if teleportation has the
minimum possible number of outcomes |X| = dim SR(A),
then dense coding is possible: By acting locally on one
side of the state � one can produce dim SR(A) perfectly
distinguishable states. This number exceeds the maximum
number of perfectly distinguishable states available in system
A, which must be strictly smaller than dim SR(A) due to
Corollary 15. However, we did not prove here the existence
of such a teleportation scheme with |X| = dim SR(A). This
issue, which is closely related to the topic of discrimination in
theories with purification, will be addressed in a future work.

XV. CONCLUSIONS AND PERSPECTIVES
ON FUTURE WORK

In this article we investigated causal probabilistic theories
with purification and derived a surprising wealth of features
that are characteristic of quantum theory without resorting
to the framework of Hilbert spaces or C* algebras. Among
theories with local discriminability, quantum theory appears
as the only known one that satisfies the purification principle.
The absence of a counterexample and the amount of quantum
features derived suggest that quantum theory could be the
only causal theory with purification and local discriminability.
However, at the moment we do not have a derivation of
quantum theory from the purification principle, and the
question whether there are other theories satisfying the above
postulates remains open. Any answer to this question would

lead to an interesting scenario: If quantum theory is the only
causal theory with purification and local discriminability, then
the machinery of Hilbert spaces is a quite redundant way
to prove theorems that in fact can be derived directly from
basic physical notions. What is more, the general proofs
of most theorems are simpler and more intuitive than the
original quantum proofs. On the other hand, if quantum
theory is not the only theory satisfying our postulates, the
existence of more general theories, that share with quantum
mechanics the basic structure highlighted in this article, is
also a very fascinating perspective. Moreover, abandoning the
standard quantum formalism would be interesting especially
in view of a possible reconciliation with general relativity.
In this direction, particularly appealing is the possibility of
dropping causality from our requirements, and of working
with nonunique deterministic effects. The study of noncausal
theories with purification is expected to provide new insights
toward a formulation of quantum gravity. Such an approach
would be related to the informational approaches of Hardy [31]
and Lloyd [69]. The study of theories with purification in
the noncausal setting will be addressed in a forthcoming
article.

Another direction of further research is the generalization
of the notion of subsystem. On the one hand, introducing
classical systems in the theory and clarifying how they can be
viewed as subsystems of the nonclassical ones is expected to
provide an additional structure that will eventually contribute
to the full derivation of quantum mecanics. On the other hand,
under suitable assumptions, a face of the convex set of states
of a system can be considered as the set of states of some
subsystem. Following this observation, we plan to consider
information-theoretic tasks like state compression in theories
with purification, by analyzing the mechanism that leads the
state ρ⊗N to approach a face corresponding to the state space
of M < N systems.
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