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Multiqubit symmetric states with high geometric entanglement
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We propose a detailed study of the geometric entanglement properties of pure symmetric N -qubit states,
focusing more particularly on the identification of symmetric states with a high geometric entanglement and how
their entanglement behaves asymptotically for large N . We show that much higher geometric entanglement with
improved asymptotical behavior can be obtained in comparison with the highly entangled balanced Dicke states
studied previously. We also derive an upper bound for the geometric measure of entanglement of symmetric
states. The connection with the quantumness of a state is discussed.
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I. INTRODUCTION

Entanglement of compound systems is known to be a key
resource in quantum information allowing nonlocal correla-
tions [1]. In many practical applications it is of fundamental
importance to know whether or not a state is entangled. Very
often, however, this information is not sufficient and it is also
required to know how much a state is entangled. A useful tool
to quantify the amount of entanglement of a state is given by
the so-called entanglement measures [2]. One such measure
that is widely used is the geometric measure of entanglement
that is defined for a pure state |ψ〉 by [3]

EG(|ψ〉) = 1 − max
|�〉=|φ1,φ2,φ3,...〉

|〈ψ |�〉|2, (1)

where the maximum is taken over all separable pure states. The
extension to mixed states is done via the usual convex-roof
construction [2]. The geometric measure fulfills all the
requirements of an entanglement monotone [3] and ranges
from 0 to 1. While the lower value is realized for separable
states, the upper value is never reached because that would
imply having a state orthogonal to all separable states and this
is simply impossible. The geometric measure of entanglement
has been shown to have several operational interpretations,
on one side in terms of the utility of a state as an initial state
for the Grover algorithm [4] and on the other side in terms
of the difficulty of state discrimination under local operations
and classical communications (LOCC) [5]. It is also related to
optimal entanglement witnesses [3,6] and has nice applications
in many-body physics and condensed matter systems [7–10].

Despite its usefulness, the explicit value of the geometric
measure of entanglement has only been derived, so far,
for a limited number of entangled states, such as N -qubit
Greenberger-Horne-Zeilinger (GHZ) states [3], Dicke states
[3], generalized W states [11], graph states [12], and other
typical states with given symmetry properties [6,13–16]. The
geometric measure remains unknown for most of the multi-
partite states simply because of the definition that involves an
optimization procedure over the class of separable states and
this represents a formidable task in the general case even with

numerical approaches. A very recent study showed, however,
that this task is drastically simplified in the case of states
that are symmetric under any permutation of the parties [17].
In that case the optimization can be done on the restricted
set of symmetric separable states |φ, . . . ,φ〉. This represents a
huge simplification in the calculation of the geometric measure
since the number of parameters involved in the optimization
procedure does not depend on the number of parties anymore.
For qubit systems, only two real parameters are required. In
this article we exploit this great simplification to propose a
detailed study of the geometric entanglement properties of
symmetric N -qubit states. We focus more particularly on
the identification of symmetric states with a high geometric
entanglement measure and how their entanglement behaves
asymptotically for large N . We show that much higher
geometric entanglement with improved asymptotical behavior
can be obtained in comparison with the highly entangled
balanced Dicke states [3]. We also derive an upper bound for
the geometric measure of entanglement of symmetric states,
which is significantly tighter than the one known to hold for
any state [18]. We finally make a connection between the most
geometrically entangled states and states having the highest
quantumness as defined in Ref. [19].

The article is organized as follows. In Sec. II the useful
representations of N -qubit symmetric states are given to
get a simplified expression of the geometric measure of
entanglement for that class of states. In Sec. III we derive
the announced upper bound. In Sec. IV we investigate various
configurations of highly geometrically entangled symmetric
states. Their asymptotic behavior with respect to the number
N of qubits is analyzed. The connection of the geometric
entanglement with the quantumness of a state is given in
Sec. V. Finally, we draw conclusions in Sec. VI.

II. GEOMETRIC ENTANGLEMENT FOR
SYMMETRIC STATES

In an N -qubit system, an arbitrary symmetric state is con-
veniently represented in either the Majorana [20] or the Dicke
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state [21] representation. In the Majorana representation, any
symmetric state |ψS〉 is univocally specified by N single-qubit
states |φi〉 ≡ αi |0〉 + βi |1〉 (i = 1, . . . ,N) through a sum over
all permutations σ of the qubits:

|ψS〉 = N
∑

σ

|φσ (1), . . . ,φσ (N)〉, (2)

where |φσ (1), . . . ,φσ (N)〉 denotes the product state |φσ (1)〉 ⊗
. . . ⊗ |φσ (N)〉 and N is a normalization prefactor. In the
Bloch sphere picture [22], the single-qubit states |φi〉 can
be represented as points on the unit sphere labeled by two
angles (θi,ϕi) with αi = cos (θi/2) and βi = eiϕi sin (θi/2).
Any arrangement of N points on the unit sphere thus defines
univocally a symmetric state in the Majorana representation.
This visualization has been proven to be extremely useful in
many related studies dealing with symmetric states [23–26].

A particularly simple yet important example is given by the
symmetric Dicke states with k excitations,

|DN (k)〉 = 1√
Ck

N

∑
σ

| 0 · · · 0︸ ︷︷ ︸
N−k

1 · · · 1︸ ︷︷ ︸
k

〉, (3)

with Ck
N being the binomial coefficient of N and k. In the

Majorana representation, the Dicke states correspond to N − k

points at the North pole (θ = 0) and k points at the South pole
of the Bloch sphere.

In the Dicke state representation, any symmetric state |ψS〉
is merely expanded in the orthonormal basis formed by the
N + 1 Dicke states in the symmetric subspace:

|ψS〉 = N
N∑

k=0

dk|DN (k)〉, (4)

with dk (k = 0, . . . ,N) being the complex expansion
coefficients.

The Dicke state representation of a symmetric state written
in the form of Eq. (2) is obtained through the relation [23]

dk =
√

Ck
N

∑
σ

βσ (1) . . . βσ (k)ασ (k+1) . . . ασ (N). (5)

Inversely, the Majorana representation of a symmetric state
expressed in the Dicke state basis is obtained with N single-
qubit |φi〉 states defined by αi/βi equal to the K roots of
the polynomial P (z) = ∑N

k (−1)k(Ck
N )1/2dkz

k , K being the
polynomial degree, and the remaining αi equal to 1 [24].

The Majorana representation is particularly useful to get a
simplified expression of the geometric measure of entangle-
ment for any symmetric N -qubit state |ψS〉. Inserting Eq. (2)
into Eq. (1) and considering that the maximization is only
required over the set of symmetric separable states |φ, . . . ,φ〉
[17] yields immediately

EG(|ψS〉) = 1 − N 2N !2 max
|φ〉

N∏
i=1

|〈φi |φ〉|2. (6)

The geometric measure of entanglement of the N -qubit
GHZ states |GHZN 〉 = (|0 · · · 0〉 + |1 · · · 1〉)/√2 is equal to

1/2 regardless of the number of qubits [3]. For the symmetric
Dicke states, it reads [3]

EG(|DN (k)〉) = 1 − Ck
N

(
k

N

)k (
N − k

N

)N−k

. (7)

It is maximal for a balanced number of excitations, that is,
for k = kN with kN closest to N/2. In that case we get the
asymptotic behavior for large N :

EG(|DN (kN )〉) = 1 −
√

2

πN
+ O(N−3/2). (8)

If the right-hand side of Eq. (8) converges to 1 with the number
of qubits, this convergence can be qualified as quite slow
since the difference with 1 only decreases as the inverse of
the square root of N . In the next section, we derive an upper
bound of the geometric measure of entanglement that allows
one to expect symmetric states with a geometric entanglement
converging much faster to 1 with the number of qubits. Various
configurations of symmetric states are identified with that
behavior.

III. GEOMETRIC ENTANGLEMENT UPPER BOUND

The geometric measure of entanglement of an N -qubit
symmetric state |ψS〉 necessarily verifies

EG(|ψS〉) < 1 − 1

N + 1
. (9)

Equation (9) is immediately obtained from the represen-
tation of the identity in the (N + 1)-dimensional subspace of
symmetric states as a combination of all projectors onto the
symmetric separable states |�〉 = |φ, . . . ,φ〉 [27]:

1N+1 = N + 1

4π

∫ π

0
sin θdθ

∫ 2π

0
dϕ |�〉〈�|, (10)

where the single-qubit state |φ〉 is parametrized by the two an-
gles (θ ,ϕ) according to |φ〉 = cos (θ/2) |0〉 + eiϕ sin (θ/2) |1〉.
Since obviously the maximal overlap of |ψS〉 with a symmetric
separable state is always larger than the average overlap over
all symmetric separable states |�〉, we have

max
|�〉

|〈ψS |�〉|2 >
1

4π

∫ π

0
sin θdθ

∫ 2π

0
dϕ |〈ψS |�〉|2

> 〈ψS | 1N+1

N + 1
|ψS〉 >

1

N + 1
, (11)

which proves the upper bound (9). It is interesting to note that
this upper bound is significantly tighter than the one known to
hold for any state |ψ〉 beyond the symmetric subspace given
by [18]

EG(|ψ〉) � 1 − 1

2N−1
. (12)

IV. HIGH GEOMETRIC ENTANGLEMENT
CONFIGURATIONS

A. Highest geometric entanglement configurations

Although the calculation of the geometric measure of
entanglement is greatly simplified for the particular case of
N -qubit symmetric states, the quest for the states in the
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TABLE I. Most entangled symmetric states defined by their set of angles (θi,ϕi). For N = 5, cos θ0 ≡ x is given by the largest real root of
the polynomial 101 + 362x + 308x2 + 894x3 + 670x4 + 894x5 + 308x6 + 362x7 + 101x8, and the corresponding geometric entanglement
EG ≡ y is given by the smallest real root of the polynomial 25 − 475y + 7630y2 − 18980y3 + 12824y4.

N (θi,ϕi) EG

4 (0,0), (θ0,0), (θ0,2π/3), (θ0,4π/3), with θ0 = arccos(−1/3) 2/3 = 0.6666 . . .

5 (0,0), (θ0,0), (θ0,π/2), (θ0,π ), (θ0,3π/2), with θ0 = 1.8737 . . . 0.7011 . . .

6 (0,0), (π,0), (π/2,0), (π/2,π/2), (π/2,π ), (π/2,3π/2) 7/9 = 0.7777 . . .

symmetric subspace having the highest geometric entangle-
ment remains a task that cannot be solved analytically in the
general N case. Even numerically the task gets very quickly
extremely involved for increasing N values. Here we report
results up to N = 6 [28]. For N = 2, the geometric measure
of entanglement of a state is equal to the minimal Schmidt
coefficient [3] and the most entangled symmetric state is thus
given by the Bell state (|00〉 + |11〉)/√2 with EG = 1/2. For
N = 3, it is given by the W state |D3(1)〉 with EG = 5/9 [16].
For N = 4 to 6, the Bloch sphere Majorana representation
points of the most entangled symmetric states we identified
numerically are reported in Table I and further illustrated in
Fig 1. It can be noticed from the figure that these states are
characterized by N distinct points on the Bloch sphere with
a large spread, similar to how N equal electrical charges tend
to be placed as far as possible from each other when they
are constrained to a conducting sphere (Thomson problem).
For N = 4 and 6, the points are vertices of two platonic
regular polyhedra, namely, the tetrahedron and the octahedron,
respectively. For N = 5, the point configuration is a square
pyramid. The Dicke state representations of these most entan-
gled symmetric states read

√
1/3[|D4(0)〉 + √

2 |D4(3)〉] for
N = 4;

√
1 − ξ 2|D5(0)〉 − ξ |D5(4)〉, with ξ = 0.8373 . . . ,

for N = 5; and
√

1/2 [|D6(1)〉 + |D6(5)〉] for N = 6.

B. Coulomb and related arrangements

Although similar, the Thomson problem mentioned
previously remains distinct from the quest for maximal
entanglement configurations since it requires one to find N

charge positions ri on a sphere with the different constraint of
minimizing the total electrostatic energy

E =
N∑

i=1

N∑
j>i

1

|ri − rj | . (13)

FIG. 1. (Color online) Majorana representation of the maximally
entangled symmetric states for N = 4–6 (from left to right). The
polyhedron vertices are the Majorana representation points of the
maximally entangled symmetric states. The red dots correspond to
all closest separable states. There are as many of them as the number
of polyhedron faces.

These configurations of points, which we call the Coulomb
arrangements, are given in Ref. [29] for N up to 130. For N = 4
to 6, they coincide with the Majorana representation points of
the most geometrically entangled symmetric states, except for
N = 5 where the Coulomb arrangement is a triangular dipyra-
mid corresponding to a geometric entanglement of 0.6875. The
Coulomb arrangement is thus proven not to provide the best
point configuration for the highest geometric entanglement of
symmetric states. It is nevertheless expected to provide high
entanglement configurations in view of the large spread it
leads to. We illustrate in Fig. 2 the geometric entanglement
of the symmetric states with Majorana representation points
distributed according to the Coulomb arrangements. These
states are denoted by |ψCoul(N )〉. We find numerically that the
entanglement of these states scales up to small fluctuations like

EG(|ψCoul(N )〉) � 1 − C

N + 1
, (14)

with C ≈ 1.71 a numerical constant. It is very interesting
to note that the Coulomb arrangements, though they do
not necessarily provide the most geometrically entangled
symmetric states, define nevertheless states with a very high
geometric entanglement close to the upper bound (9) and
behaving asymptotically with the number of qubits in a
similar fashion. They can therefore define a good alternative
strategy to obtain highly entangled symmetric states.

We have investigated other configurations of Majorana
representation points by considering other ways of distributing
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FIG. 2. (Color online) Geometric entanglement of symmetric
states for the Coulomb arrangement for N up to 110 (blue circles; in
the inset, middle curve). Equation (14) is displayed in red (solid
line through the blue circles). Green triangles correspond to the
entanglement of balanced symmetric Dicke states given by Eq. (8)
(in the inset, bottom curve). The grey shaded area shows the domain
ruled out by the upper bound (9).
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FIG. 3. (Color online) Geometric entanglement of symmetric
states for different arrangements: Coulomb (blue circles), Tammes
(orange triangles), and covering (red squares). The entanglement of
Dicke states with a balanced number of excitations is displayed in
green (reversed triangles). The grey shaded area shows the domain
ruled out by the upper bound (9).

as evenly as possible N points on a unit sphere. The Tammes
and covering problems define such alternative ways. In
the Tammes problem, one seeks to maximize the minimal
distance mini �=j |ri − rj | among the N points on the sphere.
In the covering problem, one rather seeks to minimize
maxr∈S mini |r − ri | that represents the greatest distance be-
tween a point r on the surface of a unit sphere S and the
nearest of the N points. Tammes and covering arrangements
are also given in Ref. [29] for N up to 130. For N = 2–6
and N = 12, Coulomb, Tammes, and covering arrangements
are identical [30]. Figure 3 shows the entanglement relative to
these different arrangements together with the entanglement of
symmetric Dicke states with a balanced number of excitations.
The Coulomb and covering arrangements give very similar
results. In contrast, the Tammes arrangement shows large
fluctuations. The least fluctuating curve corresponds to the
Coulomb arrangement.

C. Arrangements with equally weighted superpositions
of Dicke states

The Coulomb arrangements with their even distribution
of Majorana points have proven in the previous section to
provide states with a very high geometric entanglement.
These arrangements are characterized in the Dicke state
representation by a large number of components showing
no obvious phase relation to each other. Equally weighted
superpositions of Dicke states may exhibit similar properties.
For instance,

|ψγ (N )〉 =
N∑

k=0

eiγ k2

√
N + 1

|DN (k)〉, (15)

where γ is a real parameter, yields this kind of state with
pseudorandom phases provided by the quadratic term γ k2 mod
2π . Numerical computations show that the Majorana points of
these states spread in a kind of spiral on the Bloch sphere, with
angles (θk,ϕk) given by

θk ≈ π − arccos

(
1 − 2k − 1

N

)
, (16)

ϕk ≈ γ (2k − 1) mod 2π, (17)

FIG. 4. (Color online) Majorana representation of the state (15)
for γ = 2/3 and N = 400.

as illustrated in Fig. 4 for N = 400 and γ = 2/3. According
to this large spread, these states exhibit a very high geometric
entanglement, as shown in Fig. 5 for two values of γ (2/3 and
1). Though the states (15) are slightly less entangled than for
Coulomb arrangements, the curves show interestingly almost
no fluctuations in contrast to the latter and the entanglement
behaves in a similar fashion for large N : at least, for N up to
100, we have

EG(|ψγ (N )〉) � 1 − Dγ

N + 1
, (18)

with Dγ being a constant depending on γ (D2/3 ≈ 2.22, D1 ≈
2.81). Still, no entanglement as high as that for the Coulomb
arrangement has been observed.

The phases in equally weighted superpositions of Dicke
states play a key role in the amount of geometric entanglement
that can be achieved. This is particularly exemplified when
considering linearly increasing phases rather than pseudoran-
dom quadratic phases, namely, states of the form

∣∣ψ lin
γ (N )

〉 =
N∑

k=0

eiγ k

√
N + 1

|DN (k)〉. (19)

The geometric entanglement of these states is much lower as
can be seen from Fig. 5. Their Majorana points are also much
less uniformly distributed than those of the highly entangled
states (15) illustrated in Fig. 4. This strengthens the observation
that large geometric entanglement goes hand in hand with high
degrees of uniformity in the distribution of the Majorana points
on the sphere.
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FIG. 5. (Color online) Geometric entanglement for different
sequences of symmetric states as a function of the number N of
qubits. Blue circles, EG(|ψCoul(N )〉); red triangles, EG(|ψ2/3(N )〉);
green squares, EG(|ψ1(N )〉); orange reverse triangles, EG(|ψ lin

2/3(N )〉)
in excellent agreement with Eq. (22) (black curve). The grey shaded
area shows the domain ruled out by the upper bound (9).
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The geometric entanglement of the states (19) can be
analytically derived for large N . Their overlap with the
symmetric separable state |�〉 ≡ |φ, . . . ,φ〉 reads explicitly

∣∣〈ψ lin
γ (N )

∣∣�〉∣∣2 = 1

N + 1

∣∣∣∣∣
N∑

k=0

√
Ck

N pN−k(1 − p)kei(kϕ−γ k)

∣∣∣∣∣
2

,

(20)

with (θ,ϕ) being the two angles of the single-qubit state
|φ〉 and p = cos2 (θ/2). The maximization over ϕ yields
straightforwardly ϕ = γ . The remaining sum is well approxi-
mated by replacing the binomial distribution with a Gaussian
distribution and the sum by an integral. The maximum of the
Gaussian distribution is situated at N (1 − p), and its variance
is Np(1 − p), so that for sufficiently large N the integration
range can be extended to ±∞. We then get

∣∣〈ψ lin
γ (N )

∣∣�〉∣∣2 ≈
√

8πp(1 − p)N

N + 1
. (21)

The overlap (21) is maximum for θ = π/2 and yields the
geometric entanglement

EG

(∣∣ψ lin
γ (N )

〉) ≈ 1 −
√

2πN

N + 1
, (22)

which is independent of γ . Figure 5 shows that Eq. (22)
reproduces the exact numerical data very well, as soon as
N is of the order of 10.

V. GEOMETRIC ENTANGLEMENT AND QUANTUMNESS

In [19] a quantumness measure was introduced in order to
quantify how quantum an arbitrary mixed spin-j quantum state
ρ is. The measure was defined as the Hilbert-Schmidt distance
from the state ρ to the set of classical states (which is the
convex hull of spin coherent states). A spin-j state can be seen
as a symmetrized state of 2j spins 1

2 , and thus it can be written
under the form Eq. (2) with N = 2j . A spin-j coherent state is
the tensor product of 2j identical spin- 1

2 coherent states. Since
any spin- 1

2 pure state is a coherent state, spin-j coherent states
are by definition the symmetric separable pure states.

Let ρ be a generic spin-j density matrix. We define the
Bures quantumness QB(ρ) as the distance from ρ to the set C
in the vector space of (N + 1) × (N + 1) matrices equipped
with the Bures metric. Namely,

QB(ρ) = min
ρC∈C

DB(ρ,ρC), (23)

where DB is the Bures distance [31] defined by

DB(ρA,ρB) =
√

2 − 2 tr
√√

ρAρB

√
ρA. (24)

In other words, we consider a problem analogous to the one
in [19] but replace the Hilbert-Schmidt distance by the Bures
distance. If ρ = |ψS〉〈ψS | is a pure state density matrix, with
|ψS〉 being a generic spin-j state defined as in Eq. (2), the
expression for the Bures distance simplifies drastically to

DB(|ψS〉〈ψS |,ρC) =
√

2 − 2
√

〈ψS |ρC |ψS〉. (25)

Any element ρ ∈ C can be decomposed as a mixture of a
certain number n of coherent states |�i〉, that is,

ρC =
n∑

i=1

λi |�i〉〈�i |, (26)

with the λi positive weights summing up to 1. The scalar
product appearing in Eq. (25) then reads

〈ψS |ρC |ψS〉 =
n∑

i=1

λi |〈�i |ψS〉|2. (27)

the Bures quantumness is obtained by minimizing the quantity
(25) over C, which is equivalent to maximizing the scalar
product in (27). The maximum with respect to variation of the
non-negative λi occurs when all but one are equal to zero. The
problem thus reduces to finding the largest overlap of the fixed
|ψS〉 with a coherent state, and Eq. (23) becomes

QB(|ψS〉〈ψS |) = √
2 − 2 max

|�〉
|〈�|ψS〉|. (28)

Thus the Bures quantumness and geometric entanglement (6)
are essentially the same quantity. The maximally entangled
symmetric states obtained in Sec. IV are thus the pure states
with the largest Bures quantumness (LBQ). As was mentioned
in [19] for Hilbert-Schmidt quantumness, one can easily
deduce from the fact that QB is a convex function that Bures
quantumness reaches its maximum for pure states, thus LBQ
states can be looked for among pure states. It is interesting to
compare these LBQ to the most quantum states (MQ states)
obtained in [19]. For the lowest values of N , the LBQ states
differ from the MQ states only for N = 3 and 5.

In the case of two qubits, entropy of entanglement is known
to be the unique entanglement measure for pure states [32].
Therefore the LBQ state for N = 2 coincides with the Dicke
state |D2(1)〉 which is also the MQ state (see Sec. IV and
Ref. [19]). For more than two qubits there is no unique measure
of entanglement. Thus one should not expect to find a unique
measure of quantumness, and the discrepancy between the
LBQ and the MQ states should come as no surprise.

VI. CONCLUSION

In summary, we have realized a detailed study of the
geometrical entanglement properties of symmetric N -qubit
states. We have focused on the identification of symmetric
states with a high geometric entanglement and how their
entanglement behaves asymptotically for large N . We have
shown that much higher geometric entanglement with im-
proved asymptotical behavior can be obtained in comparison
with the highly entangled balanced Dicke states [3]. We have
also derived the upper bound 1 − 1/(N + 1) for the geometric
entanglement in the restricted set of the symmetric states. This
value is significantly tighter than the one holding for any state.
The connection with the quantumness of the states has been
established.
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