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Entanglement and entangling power of the dynamics in light-harvesting complexes
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We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of
the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps
of photosynthesis in sulfur bacteria. The influence of Markovian as well as spatially and temporally correlated
(non-Markovian) noise on the generation of entanglement across distinct chromophores (site entanglement) and
different excitonic eigenstates (mode entanglement) is studied for different injection mechanisms, including
thermal and coherent laser excitation. Additionally, we study the entangling power of the FMO complex under
natural operating conditions. While quantum information processing tends to favor maximal entanglement, near
unit EET is achieved as the result of an intricate interplay between coherent and noisy processes where the initial
part of the evolution displays intermediate values of both forms of entanglement.
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I. INTRODUCTION

Photosynthesis, at its simplest, is the absorbtion of sunlight
by photosensitive antennae and its subsequent conversion into
chemical energy at a reaction center. The locations for these
processes are physically and physiologically separated, which
forces nature to devise a way to transfer the solar energy
from the antennae to the reaction center (RC). Exciton energy
transfer (EET) is facilitated by certain protein molecules
called light-harvesting complexes, and occurs at efficiencies
of about 99%. EET has been a subject of continual interest
for decades, not only for its phenomenal efficiency but also
for its fundamental role in nature [1]. Recently, ultrafast
optics and nonlinear spectroscopy experiments have provided
new insights into the process of EET in light-harvesting
complexes, like the one found in purple bacteria (LH-I) and
the Fenna-Matthew-Olson (FMO) complex [2,3]. In particular,
evidence of quantum coherence has been presented, with the
idea that nontrivial quantum effects may be at the root of its
remarkable efficiency [4]. Following this, several studies have
attempted to unravel the precise role of quantum coherence
in the EET of light-harvesting complexes [5–11] and have,
perhaps surprisingly, found that environmental decoherence
and noise plays a crucial role [5–8,12].

Light-harvesting complexes consist of several chro-
mophores mutually coupled by dipolar interactions residing
within a protein scaffold. Due to their mutual coupling, light-
induced excitations on individual chromophores (sites) can un-
dergo coherent transfer from site to site, and the typical eigen-
states are therefore delocalized over multiple chromophores. It
is in these eigenstates, henceforth referred to as exciton states,
that one finds evidence of quantum coherence. Here, we will
study the role of quantum coherence in the process of EET
in the FMO complex, as quantified by quantum entanglement,
and investigate the sensitivity of the entanglement dynamics
to variables that have not been directly measured, such as
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the microscopic interaction strength between the complex and
the surrounding environment, and the possible existence of
spatial and temporal correlations in the bath. In this context, the
first analysis of the entanglement behavior in light-harvesting
complexes was presented in Ref. [7], in which we analyzed the
evolution of an entanglement measurement (i.e., logarithmic
negativity [13,14]) in a Markovian model of the FMO complex.
The scope of the present work is two fold; on the one hand
it aims to make the study of coherence and entanglement in
such systems quantitative by considering spatial and temporal
(non-Markovian) noise correlations and, secondly, it uses this
quantitative approach to show that maximal entanglement is
not correlated with optimal transport, a result that may shed
light on the possible functional role of entanglement in EET.

Entanglement is defined between subsystems of a global
system. When considering entanglement in a composite
system whose components are closely spaced and strongly
interacting, as in the FMO complex, this choice of subsystems
is, to some extent, dictated by the way we interrogate the
system. If the sites can be addressed individually, then it is
operationally well justified to speak about site-entanglement,
i.e., quantum correlations across distinguishable locations.
However, if we are limited to accessing the global excita-
tions of the systems, i.e., the excitonic eigenstates of the
Hamiltonian governing the dynamics of the FMO complex,
then we will speak of mode entanglement as we then explore
entanglement between the eigenmodes of the system (for more
details on entanglement theory and its essential foundations
see Ref. [14]). Here, we will explore both types of correlations
but place a perhaps greater emphasis on the aspects of site
entanglement, which is more closely linked to the nonlocal
structure of quantum correlations. In general, the presence of
quantum coherence, signified by the presence of off-diagonal
elements in the density matrix, is necessary but not sufficient
for the presence of quantum entanglement [14]. However,
the two conditions are equivalent if one makes the idealized
assumption that there is a single excitation in the system.
In this work, as explained below, our entanglement analysis
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also goes beyond the single-excitation approximation and
takes into account different experimental and natural operating
conditions for the FMO complex dynamics.

This article is organized as follows: In Sec. II we introduce
the theoretical model for the FMO dynamics and discuss
the entanglement measure used here. Then, we analyze the
logarithmic negativity and the so-called entangling power in
some non-Markovian FMO models in Sec. III and generalize
these results for different injection schemes (i.e., thermal
injection and laser excitation of the FMO complex) in
Sec. IV. Finally, the entanglement between excitons (mode
entanglement) is investigated in Sec. V and the conclusions
and final remarks are presented in Sec. VI.

II. SITE ENTANGLEMENT

Each chromophore (site) in the FMO complex can be
represented by a two-state system (qubit). As in Ref. [7], the
effective dynamics is modelled by an N = 7 qubit Hamiltonian
which describes the coherent exchange of excitations between
sites, that is,

H =
7∑

j=1

h̄ωjσ
+
j σ−

j +
∑
j �=l

h̄vj,l(σ
−
j σ+

l + σ+
j σ−

l ), (1)

and local Lindblad terms that take into account the dissipa-
tion and dephasing caused by the surrounding environment,
namely,

Ldiss(ρ) =
7∑

j=1

�j [−{σ+
j σ−

j ,ρ} + 2σ−
j ρσ+

j ] (2)

and

Ldeph(ρ) =
7∑

j=1

γj [−{σ+
j σ−

j ,ρ} + 2σ+
j σ−

j ρσ+
j σ−

j ]. (3)

This Markovian form of the evolution preserves complete
positivity, an essential feature when evaluating entanglement,
as discussed below. Here σ+

j (σ−
j ) are the raising and lowering

operators for site j , h̄ωj is the local site excitation energy, vk,l

denotes the hopping rate of an excitation between the sites k

and l, and �j and γj are the dissipative and dephasing rates at
site j , respectively. Finally, the transfer efficiency is measured
in terms of an irreversible transfer of excitations (with rate
�sink = 6.283 ps−1) from site 3 to an extra site 8 modeling the
RC, as described by the Lindblad operator

Lsink(ρ) = �sink[2σ+
8 σ−

3 ρσ+
3 σ−

8 − {σ+
3 σ−

8 σ+
8 σ−

3 ,ρ}]. (4)

In particular, the transport efficiency is described by the
population transferred to the sink psink(t), which is given by

psink(t) = 2�sink

∫ t

0
p3(t ′) dt ′, (5)

where p3(t ′) is the population of site 3 at time t ′. Moreover,
we choose �j = 5 × 10−4 ps−1 for any site j , as in Ref. [7].
Notice that decoherence appears in the model above via the
action of a pure-dephasing Lindblad superoperator in the
master equation for the exciton dynamics, which is equivalent
to having stochastic fluctuations of the exciton site energies

induced by the environment. This model is known as the
Haken-Strobl model and has been used extensively in the
chemical physics literature to describe exciton dynamics over
several decades [15]. In the next section, we will investigate the
entanglement behavior in some non-Markovian models of the
FMO complex dynamics with different types of environmental
interactions.

Let us stress that, in order to obtain sensible and reliable
results for the entanglement analysis, it is crucial that the
exciton dynamics be represented by a completely positive map.
Indeed, we numerically find that small deviations from the
complete positivity conditions are enough to cause significant
changes to the entanglement. The Lindblad formalism abso-
lutely guarantees the positivity of the evolving state, whereas
the majority of nonperturbative and non-Markovian treatments
do not. Hence, in the following, we deem it prudent to choose
and to analyze only non-Markovian models that give both
reliable entanglement predictions and which are consistent
with the essential experimental transport data. Actually, very
little is known about the microscopic details of the environment
in FMO complex, and it is very hard to distinguish between
the various noise models proposed in literature—see for
instance Refs. [3,10,16,17]—using the available experimental
data. One may conclude that the additional complexity of
all of these models results from the introduction of a range
of new variables which can be all independently tuned to
match the key experimental results, even though the detailed
dynamics of these models may be quite different. It should
be noted in this respect that the simple Lindbladian model
we use here can in fact account for the key features of the
experimentally observed dynamics (i.e., long-lived coherence
times and transport times)—see Ref. [7].

We will quantify the entanglement across a bipartition A|B
of a composite system by using the logarithmic negativity [14],
which is

E(A|B) = log2 ||ρ�A ||1, (6)

where �A is the partial transpose operation of the density
operator ρ with respect to the subsystem A and || · ||1 denotes
the trace norm. It quantifies how negative the spectrum of
the partial transpose of the density matrix is; consequently
it is only meaningful if the evolution is completely posi-
tive. Furthermore, we would like to stress that in addition
to its computational simplicity, the logarithmic negativity
also possesses an operational interpretation in terms of the
entanglement cost for the exact preparation of the state [18].
When confined to the one excitation subspace, if A = 1, . . . ,k

is a set of k chromophores within a global system of N

sites, then the logarithmic negativity across the bipartition
(1, . . . ,k)|(k + 1, . . . ,N) is given by the compact expression

E(1, . . . ,k|k + 1, . . . ,N) = log2

(
1 − a00 +

√
a2

00 + 4X
)
,

(7)

where X = ∑k
i=1

∑N
j=k+1 |aij |2, and aij denotes the off-

diagonal element between states with excitations in qubits
i and j . Here a00 is the matrix element corresponding to
the zero-excitation subspace. If all coherences are vanishing
(i.e., aij = 0), there is no entanglement across any partition
in the one-excitation sector. Note that the restriction to at
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most a single excitation is nonproblematic in the case of the
logarithmic negativity as it does not affect its definition and the
fact that it is an entanglement monotone, that is nonincreasing,
for general local operations and classical communication
(LOCC). This is not the case if the constraint to at most a single
excitation is applied in a way that amends the definition of the
functional. In Ref. [19], for example, the global entanglement
EG, which is defined as the relative entropy of entanglement
with respect to the set S of totally separable states [20], was
amended to yield EG1 by replacing the setS of totally separable
states by the set S1 of totally separable state with at most one
excitation. This new function EG1 is nonincreasing only when
we restrict attention to the set of LOCC operationsO1 that map
S1 onto itself. The set O1 excludes a wide range of important
physical processes such as nondiagonal local unitaries and
hence fundamental processes such as laser excitation because
the raising operator a† /∈ O1 does not map S1 onto itself.
Hence, although it is computable, EG1 is not an entanglement
monotone under natural, physically realizable and important
operations that are routinely applied. In fact, the operations
permitted in O1 do not create coherence between the zero
and the single excitation sector and hence a more natural
interpretation of EG1 is one of quantifying coherence rather
than entanglement.

Therefore, we will restrict attention to the logarithmic
negativity, which is an accepted and at the same time
computable entanglement monotone [14] for arbitrary LOCC
and arbitrary excitation levels.

III. NON-MARKOVIAN MODELS

To estimate the impact of non-Markovian effects on the
entanglement in the FMO complex, we will consider two
non-Markovian models of the FMO complex dynamics, each
corresponding to a different type of interaction with the
surrounding environment. In particular, we assume the FMO
complex to be linearly coupled to a bath of damped harmonic
oscillators. In all cases, the harmonic oscillators will be
damped into a zero temperature bath at rate κ . By using
these non-Markovian models, which manifestly preserve the
complete positivity of the corresponding quantum evolution,
we can study the behavior of the entanglement as measured by
the logarithmic negativity and by the entangling power of the
quantum evolution itself.

A. Local bath model

While the phenomenon of EET is clearly noise assisted, the
exact dynamics within the observed exciton transmission time
are strongly model dependent. To further emphasize this aspect
and therefore invoke the need for further experimental results,
we will present in this section a tunable noise model which
reproduces the Markovian results presented in [7] in a certain
parameter regime but, interestingly enough, can also provide
longer coherence times while preserving and even enhancing
EET in a parameter regime where the model exhibits a
degree of non-Markovianity. In particular, we consider an
environment model motivated by the approach presented by
Adolphs and Renger in Ref. [3], where sites interact locally
with a quasiresonant localized mode. Their spectral density
contains a contribution from a low-energy continuous density

of states and a discrete high-energy mode, and its effects on
the dynamics of a dimer molecule were recently simulated
using a new application of the time-adaptive renormalization
group method [21]. Here, for simplicity, we will consider a
model in which each FMO chromophore is linearly coupled
to a resonant harmonic mode with strength g while each mode
is damped into a zero-temperature bosonic reservoir with
strength κ . In order to describe these couplings, we add to the
previous Hamiltonian in Eq. (1) the following two terms:

HB =
7∑

j=1

h̄ω
j

ha
†
j aj , (8)

HSB =
7∑

j=1

gj (aj + a
†
j )σ+

j σ−
j , (9)

where HB is the free Hamiltonian for the two-level bath with
creation and annihilation operators a† and a, respectively,
and mode frequency ω

j

h = ωj , and HSB is the system-bath
interaction Hamiltonian with interaction strength g. The
damping is introduced by considering a Lindblad term
Ll−bath

rad (ρ) of the form

Ll−bath
rad (ρ) =

7∑
j=1

κj [−{a†
j aj ,ρ} + 2ajρa

†
j ], (10)

with kj being the rate at which the local harmonic mode,
coupled to the site j , is damped into a zero-temperature bath.
Within the considered parameter regimes, the local modes can
be reasonably considered within a two-level approximation.
In fact, we numerically monitor the populations in each local
mode and find that no local modes are strongly excited or
saturated over the whole time interval investigated here. The
damping rate κi determines the width of the spectrum and
hence the correlation time of the local environment associated
to site i. For weak coupling and strong mode losses, this
approach leads to a Markovian environment with Lorentzian
line shape (similar to the models studied by different methods
in [21,22]) while, for low losses and strong coupling, the high
degree of excitation of the environment leads to deviations
from the Lorentzian line shape. To isolate the impact of the
non-Markovianity, we keep the ratio g2/κ (i.e., the effective
coupling strength between the site and its mode) fixed while
varying the ratio g/κ . To this end, we employ a parameter f to
parametrize the system-mode coupling rates g = √

f g0 and
energy loss rates of the modes with κ = f κ0. Then, for f � 1
(g � κ), which is the Markovian limit, we reproduce the opti-
mized dephasing rates found in [7], while for f � 1 (g � κ)
we find non-Markovian behavior. We initiate the system with
one excitation in site 1. For a single site, these dynamics were
tested to reproduce both the correct Markovian limit and to be
capable of exhibiting strongly non-Markovian behavior, as il-
lustrated in Fig. 1. Here, we choose the system-mode coupling
rates to be equal to g0 = κ0 = {1,50,41,50,41,5,50}/5.3 ps−1

to match closely the effective dephasing rates
{0.157,9.432,7.797,9.432,7.797,0.922,9.433} ps−1 in
the Markovian limit, as in Ref. [7]. In Fig. 1, we show the
entanglement behavior for two different bipartitions of the
FMO complex and for two values of f far from the strict
Markovian case as well as the time dependence for psink when
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FIG. 1. (Color online) Entanglement of different bi-partitions of
the FMO complex dynamics subject to a local form of noise where
each FMO site couples to a damped resonant mode. The effective
dephasing rates are taken to be equal to the optimal values derived
for a fully Markovian model, as in Ref. [7], but the degree of
Markovianity of the model can be tuned by varying the parameter
f , as described in the text. The entanglement curves are for the
6 splits of the form (1, . . . ,i)|(i + 1, . . . ,7), i ∈ {1, . . . ,6}, where i

corresponds to FMO site i. The behavior of psink for different values
of f is also shown. Large values of f render the dynamics fully
Markovian and we recover the results of Ref. [7], whereas one can
observe longer coherence times while at the same time enhancing
psink in the low-f domain, as the one exemplified by the value f = 1.
Note the nonmonotonic behavior of the transfer rate as a function of
f , as emphasized by the arrows.

f varies from f = 0.1 to 100. The behavior obtained in the
fully Markovian case of Ref. [7] is also represented and is
indeed already reached for f = 100. Interestingly, we obtain
that by taking f as our measure of deviation from Markovian
behavior, psink varies nonmonotonically with f so that, in
contrast to the nonlocal bath non-Markovian model below
or the model described in [22], here the presence of a degree
of temporal correlations may even assist the transport of
electronic excitations from the antenna to the RC, as seen for
values of f in the range 1 to 10. On the other hand, very low
values of f (strong non-Markovian case) lead to decreased
transport while preserving large values of the coherence
across site bipartitions. Note that different noise models, such
as the one presented in [23], yield different conclusions. This
also shows the great uncertainty about the nature of transport
dynamics that arises from our ignorance of the microscopic
details of the environment. In this respect, experimental
entanglement measurements could be important for removing
some of this uncertainty, as it can be very sensitive to the
structure of the noise to which the system is subjected [24].

B. Nonlocal bath model

In this subsection, we would like to go further and explore
more sophisticated entanglement properties of the entangle-
ment dynamics including its entangling power. Toward this
end, we need to further simplify the decoherence model to
permit its numerical analysis in the context of the entangling
power. This model will also include nonlocal correlations in the
environment, and we will start by considering again the entan-
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FIG. 2. (Color online) Entanglement of different bipartitions of
the FMO complex vs. time (ps), in the presence of a tunable source
of noise correlations described by a nonlocal bosonic bath and for
different values of the ratio f . For small f , the environmental
correlations yield a non-Markovian form of noise and the time scale
for entanglement persistence increases while, within this model, the
efficiency for transport psink decreases.

glement of states in the FMO dynamics under this model and
then apply it to the study of the concept of entangling power.

Formally, we consider a model in which we couple each
site linearly, with strength gj , to a single, common harmonic
mode damped into a zero-temperature bath at rate κj that
depends on the location of the excitation [25]. In particular,
the following bath-system interaction Hamiltonian term HSB

is added to previous Hamiltonian in Eq. (1):

HSB =
7∑

j=1

gj (a + a†)σ+
j σ−

j , (11)

and the damping is described by the following Lindbladian
superoperator:

Lg−bath
rad (ρ) =

7∑
j=1

κj [−{Pj a
†aPj ,ρ} + 2Pj aρa†Pj ], (12)

where a and a† are, respectively, the annihilation and creation
operators of the harmonic mode andPj is the projector onto site
j in the FMO complex. Hence the linewidth of the harmonic
oscillator will depend on the location of the excitation. This
model mimics closely the model of the previous section in that
sites see harmonic oscillators with site-dependent damping
rates. At the same time, the Hilbert space of this model is much
smaller as the dynamics are restricted to the single excitation
sector only. In effect, we can describe the dynamics in the
basis {|i〉|0〉, . . . ,|i〉|d〉}i=1,...,7, where the first index refers to
the excitation in the FMO complex and the second refers to the
environment oscillators. The damping rate of the environment
oscillator can be made to depend on the site at which the
excitation resides, as would be the case in the local model.
Thus, this model represents a mix between the local model in
the previous subsection and that of an FMO complex coupled
to a single mode; the former allowing for different coupling
rates and linewidths for different sites and the latter allowing
for a significant reduction in the Hilbert-space dimension of the
simulation. In Fig. 2, we consider the entanglement between
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FIG. 3. (Color online) Contour plot for the transfer efficiency in
the FMO complex as a function of time (in ps) and of the parameter
f for a non-Markovian model with a nonlocal bosonic bath linearly
interacting with the FMO.

site 1 and the remainder of the FMO complex as well as sites
1 and 2 versus the remainder of the FMO complex. Here,
we choose the system-mode coupling rates as in the local
non-Markovian model above, and we find that non-Markovian
effects (decreasing f ) reduce the transport efficiency while
prolonging the lifetime of entanglement. These observations
are explained by the fact that the non-Markovian dephasing
leads to a reduction of the effective noise level in the system
(a phase flip by the environment may be followed by another
correlated phase flip at a later time, hence canceling out), upset-
ting the optimal balance of quantum and incoherent dynamics
required for efficient EET [7,8] whilst also increasing and
preserving the entanglement that is present in the system. The
fact that the presence of a non-Markovian environment may
enhance entanglement content beyond the values predicted for
an evolution subject to memoryless environments was also
predicted when analyzing strictly bipartite systems [26,27],
including biological scenarios [28]. Moreover, rather than
exploring the entanglement content of states that are generated
during the evolution, one may also study quantitatively the
entanglement content of the quantum evolution itself. Just
as for quantum states, such a quantification is, however, not
unique. Here, we consider the capacity of an evolution to
create entanglement between two subsystems, each of which
may be composed of several components. This automatically
provides a lower bound for the amount of entanglement that
is required to reproduce the dynamics of the system purely
from local operations and classical communication [29,30].
In Figs. 3 and 4, we show a contour plot for the transfer
efficiency and the entangling power of the noisy evolution of
the FMO complex in the first picoseconds of the EET process,
respectively. In particular, we consider the entangling power
for the evolution between different bipartitions of the system,
quantified by the logarithmic negativity, in the FMO when
initially prepared in a maximally entangled state with 7 ancilla
qubits. We consider the split {qubits 1FMO–1ancilla}–{the rest},
as a function of time (in ps) and of the parameter above f .
Large quantum correlations are not associated with optimal
transport. In the absence of any dephasing, entanglement lasts
for times limited only by the excitation loss rate. On the other
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FIG. 4. (Color online) Contour plot for the entangling power in
the FMO complex, as a function of time (in ps) and of the parameter
f , for the nonlocal-bath non-Markovian model. For low-noise levels,
the entangling power of the evolution can be nonmonotonic in time,
indicating coherent oscillations in the system. The entangling power
decreases monotonically with increasing noise level. In comparison,
the entangling power of a CNOT gate is 1, and a SWAP gate is 2.
This means that the FMO complex has nontrivial entangling power
for a large parameter range.

hand, non-Markovian dephasing (decreasing f ) increases the
entanglement, which persists for about the initial 20% of the
total transmission time, but decreases transport efficiency.

IV. BEYOND SINGLE EXCITONS

So far we have assumed that the system is initialized
with a single excitation at site 1. This may not be realized
precisely under experimental or natural operating conditions
and, furthermore, neglecting higher excitations (though only
existing for a really short time) may influence the entanglement
content of the system considerably. Hence, a study of quantum
entanglement in the FMO complex under realistic conditions
should consider a model which allows the freedom to control
the number of excitations in the complex at any time. Toward
this end, we generalize the theoretical noise model proposed
in [6,7] by first modeling (i) the baseplate feeding excitations
into the FMO complex as a thermal reservoir of excitations at
an effective temperature T and then (ii) a system under laser
pulse irradiation.

A. FMO thermal injection

The complex starts in the ground state, without any
excitations, which are then introduced into the network via site
i with a rate �i . This process is modelled by a thermal bath
of harmonic oscillators at a temperature given by the thermal
average boson number nth. Within the Markov approximation,
the Lindblad superoperator for the injection of excitations
takes the form

Linj(ρ) = nth
�i

2
[−{σ−

i σ+
i ,ρ} + 2σ+

i ρσ−
i ]

+ (nth + 1)
�i

2
[−{σ+

i σ−
i ,ρ} + 2σ−

i ρσ+
i ], (13)
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FIG. 5. (Color online) Entanglement, quantified by the logarith-
mic negativity, in the FMO complex for local (dashed lines) and
spatially correlated (continuous lines) dephasing noise, in presence
of the thermal injection bath (nth = 100, �1 = 1), within the Markov
approximation. The inset shows the site population behavior as a
function of time.

which can now be used to study the evolution of quantum
entanglement in the FMO complex (or any light-harvesting
complex) under various possible natural settings. In particular,
motivated by the experimental observations, we choose site 1
as the one at which the excitations are introduced in the FMO
complex. In Fig. 5, we show the entanglement time evolution
for various subsystems of the qubit network modeling the
FMO complex. As can be seen, the amount of entanglement is
considerably smaller compared with when the FMO complex
starts with exactly one excitation, say on site 1, although
it persists on the same timescale [7]. This is because the
second term in the injection Liouvillian, which allows for an
irreversible loss of excitations from the complex (comparable
to spontaneous decay), always accompanies the first one which
introduces excitations into the complex. Besides, given the
dimensions and structure of the FMO complex (closest site-site
distance is ∼11 Å), dephasing may not be local, but correlated
in space and time [6,7,31,32]. For this reason, we consider
also the case of spatially correlated dephasing by using the
following Lindblad term:

Lc
deph(ρ) = −

∑
m,n

γmn[Am,[An,ρ]], (14)

where γ is a positive semidefinite matrix (to preserve the
complete positivity of the quantum evolution), but with the
diagonal elements equal to the optimal local dephasing rates
as in Ref. [7], and Am = σ+

m σ−
m . Here, the amount and duration

of entanglement are both slightly enhanced (solid lines in
Fig. 5).

B. FMO laser excitation

In the laboratory [2,4], the complex is typically irra-
diated with a short laser pulse centered on the typical
transition frequencies of the sites. The coupling between
the FMO complex and the external radiation field can be
described by the semiclassical time-dependent Hamiltonian
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FIG. 6. (Color online) Entanglement in an FMO complex (evolv-
ing by a Markovian dynamics) when irradiated with a laser pulse (see
the text for more details). Dephasing noise is either local (dashed
lines) or spatially correlated (continuous lines). Strong entanglement
between sites 1 and 2 is clearly illustrated by the behavior of
the top curve [bipartition 1 − (2 − 7)] as opposed to the bottom
one [bipartition (1 − 2) − (3 − 7)]. Similarly, strong entanglement
between sites 5 and 6 is best exemplified by the central plot where we
compute the entanglement across bipartition (1 − 5) − (6 − 7). The
inset shows the site population distribution in the FMO complex for
t = 75 fs.

HFMO−laser(t), which reads in rotating wave approximation as
follows:

HFMO−laser(t) = −
7∑

i=1

	µi · 	e E(t) e−iω1t σ+
i + H.c., (15)

with 	µi being the molecular transition dipole moment of the
individual site i (taken from the published crystal structure
in Ref. [33]), 	e being the polarization of the field, and
E(t) the time-dependent electric field. In particular, following
Ref. [3], we consider a Gaussian electric field pulse of
width 60 fs, centered at 120 fs, with an electric field strength
E0 = 4.97968 D−1 · cm−1, polarized parallel to the dipole
moment of site 1 and with a frequency on resonance with the
optical transition of site 1 (ω1). The electric field amplitude
was chosen to excite one excitation on site 1 (i.e., to give a
π pulse on site 1). However, as the molecular transition dipole
moments are of the order of the intersite energy difference, the
laser pulse leads to excitation of all sites. We have studied this
scenario as well, both for local and correlated spatial dephasing
noise, and the results are presented in Fig. 6. This scenario
generates a considerable amount of entanglement (although for
a shorter amount of time compared with the previous scenario),
and it might be concluded that, although an FMO complex
operating in nature may not possess substantial amounts of
entanglement, it is possible in the laboratory to generate large
amounts of it. This could open up new vistas for explorating
quantum effects in biological systems, albeit under laboratory
conditions, and also allow for a demonstration of entanglement
enhancement for the non-Markovian case.

V. MODE ENTANGLEMENT

When local addressing is unfeasible, site entanglement is
directly immeasurable, even when the evolution is confined
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FIG. 7. (Color online) The logarithmic negativity in the FMO
complex (evolving by Markovian dynamics) for local dephasing noise
in the exciton basis. Initially, one excitation is in site 1. The curves
are for the 6 splits of the form (1, . . . ,i)|(i + 1, . . . ,7), i ∈ {1, . . . ,6},
where now i corresponds to exciton i and they are ordered with
increasing exciton energies. Inset shows exciton population vs.
time (ps).

to the single-excitation sector. However, the evaluation of
mode entanglement via the experimental determination of
coherences in the exciton basis can provide information
about the existence of quantum correlations in the system.
The temporal behavior of mode entanglement within our
Markovian model [7] and for different bipartitions is shown in
Fig. 7, together with the exciton populations along the first ps
of the EET. Initially all modes are populated, with the largest
fraction in excitons 3 and 6, which leads to high values of
mode entanglement across bipartitions, each containing one
of those high-energy excitons. As time elapses, entanglement
degrades monotonically as the transfer efficiency increases.

VI. CONCLUSIONS AND OUTLOOK

Efficient EET in light-harvesting complexes can be
traced back to an interplay between coherent and incoherent

processes where the quantum correlations characteristic of
the coherent evolution are partially suppressed by noise,
yet not entirely destroyed. We have placed the analysis of
entanglement in such systems on a quantitative footing and
have shown that for optimal transport the entanglement,
while present, is neither maximal nor long lived. Actually,
long-lived entanglement exists in the absence of dephasing,
which is known to be highly inefficient. However, despite
the fact that observed transfer times do require noise-assisted
transport dynamics, it turns out that the time dependence of
both coherences and population transfer over the full transfer
time are strongly model dependent.

In summary, an interplay between creation of entanglement
for short distances and times (through coherent interaction) fol-
lowed by the destruction of entanglement for longer distance
and times (through dephasing noise) seems to be necessary for
optimal transport. Moreover, our entanglement results could
actually be seen as providing a potential experimental test
for the form of the system-environment coupling. Unlike the
coherence and transport times, the entanglement is sensitive to
the precise evolution of the system, and an experiment that
could measure entanglement (such experiments are indeed
planned), could differentiate between models. In order to do
so, the entanglement predictions for various noise models must
be available for comparison, and in this respect the nature of
the environment is central to the problem of energy transport
in photosynthetic complexes. Further studies are, however,
required before any result can be accepted as conclusive on
the functional and possibly beneficial role of coherence and
entanglement in EET.
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