
PHYSICAL REVIEW A 81, 062344 (2010)

Entanglement properties of optical coherent states under amplitude damping
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Through concurrence, we characterize the entanglement properties of optical coherent-state qubits subject
to an amplitude damping channel. We investigate the distillation capabilities of known error-correcting codes
and obtain upper bounds on the entanglement depending on the nonorthogonality of the coherent states and the
channel damping parameter. This work provides a full quantitative analysis of these photon-loss codes which are
naturally reminiscent of the standard qubit codes against Pauli errors.
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I. INTRODUCTION

Entanglement has been established as a necessary resource
for the implementation of many useful quantum primitives—
teleportation of unknown states [1], key distribution [2],
and computational speed-up in classically exponential-time
calculations [3,4], to cite but a few examples. This valued
resource must, however, be protected against undesired inter-
actions with the environment which lead, ultimately, to the
decoherence of the quantum system.

There are two proven ways of safeguarding the fragile
quantum states from decohering: quantum error correction
(QEC) codes protect the information through encoding in a
larger Hilbert space; entanglement purification (EP) protocols
aim to distill entanglement from a number of identically
prepared copies. It is known that QEC codes can be recast as EP
schemes and vice-versa; the connection for discrete-variable
(DV) systems was established in the seminal article by Bennett
et al. [5], whereas the corresponding bridge for continuous-
variables (CV) has been demonstrated in Refs. [6–8].

In the optical context, amplitude damping—the absorption
of transmitted photons—is a dominant source of decoherence.
It can be appropriately modeled by having the signal interact
with a vacuum mode in a beam splitter with the appropriately
chosen transmissivity parameter. Amplitude damping appears
thus as a Gaussian error, and as such it is known that Gaussian
resources—the set of operations which can easily be imple-
mented through Gaussian ancilla, beam splitters, phaseshifters,
and homodyne measurements—are of no use in protecting the
signal state [7–10], and more elaborate (and possibly nonde-
terministic) non-Gaussian operations must be accounted for.

In the present article we review such a QEC scheme as pro-
posed by Glancy et al. [11], which protects arbitrary coherent-
state superpositions (CSS, also known as “cat states” [12])
through the use of non-Gaussian encoding operations. We
provide a quantitative analysis of this code’s performance,
examining its entanglement distillation capabilities through
Wootters’ concurrence [13]. This study is carried both directly
and through the use of entanglement evolution equations [14],
thus demonstrating their prowess over non-Gaussian CV
carriers—even though the logical information may be codified
in discrete qubits.

*ricardo.wickert@mpl.mpg.de

Entangled coherent states subjected to an amplitude damp-
ing channel were also investigated by P. Munhoz et al. [15]
with similar methods, however, employing a different class
of states and aiming toward applications distinct from those
presented in this article.1

A coherent-state |α〉, defined as an eigenvalue of the
annihilation operator (â|α〉 = α|α〉), can be expressed in the
Fock (number) basis as

|α〉 = e−|α|2
∞∑

n=0

αn

√
n!

|n〉. (1)

A detailed introduction to the properties of coherent states
can be found for instance in [16,17].

Following [11], we identify the logical qubits as |0〉L =
| − α〉 and |1〉L = |α〉, in the so-called (−,+) encoding. Qubits
can equally be defined in the (0,α) encoding as |0〉L = |0〉
and |1〉L = |2α〉, but it can be shown that both are equivalent
in their decoherence properties and can easily be translated
via displacement operations, so the first convention will be
adopted here. An arbitrary qubit superposition is therefore
represented as

|Qα〉 = 1√
N (α)

(a| − α〉 + b|α〉), (2)

where |a|2 + |b|2 = 1 and N (α) is a normalization constant,
N (α) = 1 + e−2|α|2 (ab∗ + a∗b). It is argued that, for suffi-
ciently large values of α, | − α〉 and |α〉 are approximately
orthogonal, and N (α) ≈ 1; however, present-day technologies
only achieve limited α sizes (small-amplitude cat states [18]).
Therefore, a significant amount of nonorthogonality must be
considered (Fig. 1).

II. AMPLITUDE DAMPING

Photon loss is considered to be the predominant source of
errors that affect qubits in the optical context [19]. We model
such loss by interacting the signal with a vacuum mode |0〉l in

1In fact, the cluster-type entangled states of [15] employ a bit-flip
redundancy, whereas the amplitude damping channel manifests itself
in the coherent-state basis as a phase flip. The code employed here is
designed with this particular error model in mind.
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FIG. 1. (Color online) Overlap between two coherent states,
〈α| − α〉 as a function of the size of the coherent state |α|. Inset
shows range accessible with current technology.

a beam splitter of transmissivity η, resulting in

|Q〉T = 1√
N (α)

(a| − α
√

η〉| − α
√

1 − η〉l

+ b|α√
η〉|α

√
1 − η〉l). (3)

The final state after transmission is obtained by integrating
over the loss mode (denoted here by |β〉l):

ρ = 1

π

∫
d2β l〈β|Q〉T T 〈Q|β〉l . (4)

For a single coherent state, this integration is trivial and
amounts to an amplitude contraction, remaining in a pure state.
For a superposition, though, the resulting state after tracing out
the loss mode is now mixed. One obtains

ρ = (1 − pe)
1√

N (α)
(a| − α

√
η〉 + b|α√

η〉) × H.c.

+pe

1√
N ′(α)

(a| − α
√

η〉 − b|α√
η〉) × H.c., (5)

where H.c. is the Hermitian conjugate of the previous term
and N ′(α) = 1 − e−2|α|2 (ab∗ + a∗b). In order to simplify the
analysis of the decohered state, Eq. (5) can be cast into a more
convenient form [11], namely,

ρ = (1 − pe)|Qα
√

η〉〈Qα
√

η| + peZ|Qα
√

η〉〈Qα
√

η|Z, (6)

where pe = 1
2 (1 − e−2(1−η)|α|2 ) is the probability that the Pauli

Z operator (Z(a|0〉L + b|1〉L) = a|0〉L − b|1〉L) was applied
(Fig. 2). With this expression, photon loss can be seen as

FIG. 2. (Color online) Phase-flip probability pe as a function of
the coherent state size |α|, for channel transmissivities η = 2/3 (blue
line, top line) and η = 0.9 (red line, bottom line).

having a twofold effect: first, the amplitude of the states
is unconditionally reduced from α to α

√
η; second, with

probability pe, the qubit suffers a phase flip.

III. ERROR CORRECTION

Having identified the effect of amplitude damping as a
phase flip, a traditional three-mode error-correcting code [20]
can be used to protect the qubit. Such a code can be
implemented [11] in the optical setting by sending the input
state through a sequence of three beam-splitters followed
by Hadamard gates—a highly non-Gaussian operation which
implements, up to a normalization constant, |0〉L → |0〉L +
|1〉L and |1〉L → |0〉L − |1〉L. The (unnormalized) encoded
state which results is

a(| − α〉 + |α〉)⊗3 + b(| − α〉 − |α〉)⊗3. (7)

After transmission through the loss channels, another
Hadamard gate is applied to each of the modes, which are then
recombined through an inverted sequence of beam splitters.
The two ancilla modes are measured to provide syndrome
information, from which the appropriate correcting operation
can be applied to return the signal to its “unflipped” state.
Finally, by teleporting the state into an appropriately prepared
Bell state |− α

√
η〉| − α〉 + |α√

η〉|α〉, the amplitude can be
restored to its original value.

The three-way redundant encoding achieved by the pro-
cedure outlined can correct up to one error; therefore, the
probability of achieving an error-free transmission is given
by

psuccess,3 = 1 − 3p2
e + 2p3

e . (8)

This can be increased by encoding the input state with a
higher number of repetitions. We will thus also analyze
codes with 5, 11, and 51 repetitions. Five-way redundancy
increases the success probability to 1 − 10p3

e + 15p4
e − 6p5

e ;
an n-repetition achieves

psuccess,n =
n−1

2∑
k=0

(
n

n − k

)
(1 − pe)n−kpk

e . (9)

IV. ENTANGLEMENT

The main focus on the QEC literature cited lies on the
achievement of the encodings—for instance, the implemen-
tation of the Hadamard gates or the teleportation strategy.
The scheme’s overall performance, though, is not quantified
except for certain success probabilities or the fidelities of the
involved operations. However, it has been noted that “fidelity is
insufficient to quantify quantum processes and protocols” [21].
As such, we will explore the known fact that QEC codes can be
recast as EP protocols [5,22] and, employing the entanglement
as a figure of merit, provide quantitative benchmarks for this
codification.

062344-2



ENTANGLEMENT PROPERTIES OF OPTICAL COHERENT . . . PHYSICAL REVIEW A 81, 062344 (2010)

A. Direct calculation

We will consider initial cat states of the form

|χα1,α2〉 = 1√
Ñ (α1,α2)

(
√

w|α1,α2〉 + eiθ
√

1 − w

|−α1,−α2〉), (10)

with Ñ (α1,α2) = 2 + 2 cos θ
√

w(1 − w)e−2|α1|2−2|α2|2 and
|α1,α2〉 being a shorthand notation for |α1〉|α2〉.

In the case of direct transmission, the first mode is kept,
while the second is sent through the photon-loss channel,
resulting in

ρdirect = (1 − Pe)|χα,α
√

η〉〈χα,α
√

η| + PeZ|χα,α
√

η〉〈χα,α
√

η|Z,

(11)

with Pe being the phase-flip probability for a two-mode state,
adjusted to preserve the normalization of each component,
defined as

Pe = 1 − e4|α|2 − e2|α|2(1−η) + e2|α|2(1+η)

2(1 − e4|α|2 )
. (12)

If the sender and receiver make use of the three-mode
repetition, the entangled pair they will share after encoding,
transmission, and decoding is given by

ρfinal,3 = (
1 − 3P 2

e + 2P 3
e

) |χα,α
√

η〉〈χα,α
√

η|
+ (

3P 2
e − 2P 3

e

)
Z|χα,α

√
η〉〈χα,α

√
η|Z, (13)

with the Z operator taken to act, in both (11) and (13), on the
transmitted mode. The use of higher order n-repetitions results
in

ρfinal,n = Psuccess,n|χα,α
√

η〉〈χα,α
√

η|
+ (1 − Psuccess,n)Z|χα,α

√
η〉〈χα,α

√
η|Z, (14)

with Psuccess,n defined as in (9), but depending on Pe instead
of pe.

We adopt Wootters’ [13] concurrence to quantify the
entanglement; in the case of a bipartite qubit system, the
concurrence is given by

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (15)

where λi are the eigenvalues, listed in decreasing order, of ρρ̃.
ρ̃ is the time-reversed density operator,

ρ̃ = (σy,1 ⊗ σy,2)ρ∗(σy,1 ⊗ σy,2), (16)

where σy,i is the Pauli Y operator in the ith mode. In order to
cast the density matrix in the appropriate form, we make use
of an orthogonal basis {|uα〉,|vα〉} (see for instance [23]) such
that

|α〉 = µα|uα〉 + να|vα〉,
|− α〉 = µα|uα〉 − να|vα〉, (17)

with µα =
(

1 + e−2|α|2

2

) 1
2

and να =
(

1 − e−2|α|2

2

) 1
2

.

This way, the entangled pair can be written, up to a normal-
ization factor of 1/

√
Ñ (α,α) (omitted below for clarity), as

|χα,α〉 = √
w|α〉|α〉 + eiθ

√
1 − w|−α〉|−α〉

= (
√

w + eiθ
√

1 − w)
(
µ2

α|uα〉|uα〉 + ν2
α|vα〉|vα〉)

+ (
√

w − eiθ
√

1 − w)µανα(|uα〉|vα〉 + |vα〉|uα〉),
(18)

and thus

|χα,α〉〈χα,α| =

⎛
⎜⎜⎜⎝

|a|2 ab∗ ac∗ ad∗

ba∗ |b|2 bc∗ bd∗

ca∗ cb∗ |c|2 cd∗

da∗ db∗ dc∗ |d|2

⎞
⎟⎟⎟⎠ , (19)

where

a = (
√

w + eiθ
√

1 − w)µ2
α,

b = c = (
√

w − eiθ
√

1 − w)µανα,

d = (
√

w + eiθ
√

1 − w)ν2
α.

After transmission, a similar matrix is also obtained for
the unflipped state (|χα,α

√
η〉); the phase-flipped states after

transmission are described by

Z|χα,α
√

η〉〈χα,α
√

η|Z =

⎛
⎜⎜⎜⎜⎝

|ã|2 ãb̃∗ ãc̃∗ ãd̃∗

b̃ã∗ |b̃|2 b̃c̃∗ b̃d̃∗

c̃ã∗ c̃b̃∗ |c̃|2 c̃d̃∗

d̃ã∗ d̃b̃∗ d̃ c̃∗ |d̃|2

⎞
⎟⎟⎟⎟⎠ , (20)

with Z taken to act on mode 2, and

ã = (
√

w − eiθ
√

1 − w)µαµα
√

η,

b̃ = (
√

w + eiθ
√

1 − w)µανα
√

η,

c̃ = (
√

w + eiθ
√

1 − w)µα
√

ηνα,

d̃ = (
√

w − eiθ
√

1 − w)νανα
√

η.

With (19) and (20), one can construct the matrices (11),
(13), or (14) and, through the use of (16), calculate the

FIG. 3. (Color online) Concurrence for the initial state as a
function of the size of the coherent state |α| and the phase parameter θ .
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concurrence as defined in (15). Figure 3 plots the entanglement
of the initial state with w = 1/2, corresponding to “genuine”
Bell states. It is seen that θ = 0 and θ = π (respectively,
“even” and “odd” due to the parity of the number states in
the corresponding superposition) result in maximum entangle-
ment, the former asymptotically for large superpositions, the
latter independently of the superposition size. For any value
of α, the concurrence is zero when θ = π/2 or θ = 3π/2, as
noted in [24].

The aforementioned method, however, is not convenient for
calculating the entanglement of different levels of encoding, as
it requires the eigenvalues to be computed for each variation,
which can be a time-consuming task if done analytically. Thus
we present, in the following section, an alternative way to
obtain the state’s concurrence.

B. Entanglement evolution

The effect of an arbitrary quantum channel $ to a state
can also be described in the dual picture [6], interchanging
the roles of the channel and the initial state. An evolution
equation is obtained [14], which equates the entanglement (and
in particular the concurrence) of the final state to the product of
the concurrence of a maximally entangled state |φ+〉 subjected
to the same channel times the concurrence of the initial state
|χ〉. The problem is thus reduced to the calculation of two,
possibly simpler, concurrences:

C[(1 ⊗ $)|χ〉〈χ |] = C[(1 ⊗ $)|φ+〉〈φ+|]C[|χ〉]. (21)

As in the previous section, the states will be written in
the orthogonal basis {|uα〉,|vα〉}. One possible maximally
entangled Bell state in this basis is given as |φ+

α,α〉 =
(|uα〉|uα〉 + |vα〉|vα〉)/√2, but any state carrying exactly one
ebit will have its entanglement affected in the same way.
The resulting state after transmission through the amplitude
damping channel can be described by an X matrix

(1 ⊗ $)|φ+
α,α〉〈φ+

α,α| =

⎛
⎜⎜⎜⎝

a 0 0 f

0 b z 0

0 z∗ c 0

f ∗ 0 0 d

⎞
⎟⎟⎟⎠ , (22)

where

a =
(
1 + e−2|α|2(1−η)

)
µ2

α
√

η

4µ2
α

,

b = −
( − 1 + e−2|α|2(1−η)

)
ν2

α
√

η

4µ2
α

,

c =
−( − 1 + e−2|α|2(1−η)

)
µ2

α
√

η

4µ2
α

,

d =
( − 1 + e−2|α|2(1−η)

)
µα

√
ηνα

√
η

4µανα

,

f = −
(
1 + e−2|α|2(1−η)

)
µα

√
ηνα

√
η

4µανα

,

z =
( − 1 + e−2|α|2(1−η)

)
µα

√
ηνα

√
η

4µανα

.

The outer and inner elements of (22) represent, respectively,
“unflipped” and “flipped” Bell states of reduced, α

√
η,

amplitude. Just as in (5), this allows one to rewrite the resulting
state as

(1 ⊗ $)|φ+
α,α〉〈φ+

α,α|
= (1 − Pe)|φ+

α,α
√

η
〉〈φ+

α,α
√

η
| + PeZ|φ+

α,α
√

η
〉〈φ+

α,α
√

η
|Z.

(23)

Equation (21) can also be extended to encoded states, such
as those obtained by the QEC repetition codes described in
Sec. III. In this case, the channel $ will include not only
the lossy transmission channel itself but also the encoding,
syndrome measurement, error correction, and decoding oper-
ations. Nevertheless, the resulting density matrix for the Bell
state is still an X matrix,

(1 ⊗ $enc)|φ+
α,α〉〈φ+

α,α|=Psuccess,n|φ+
α,α

√
η
〉〈φ+

α,α
√

η
|

+ (1 − Psuccess,n)Z|φ+
α,α

√
η
〉〈φ+

α,α
√

η
|Z,

(24)

where Psuccess,n, as in Sec. III, is the probability of achieving
error-free transmission.

The concurrence of a state described by an X matrix can
easily be found by [25]

C(ρ) = 2 max [0,|z| −
√

ad,|w| −
√

bc]. (25)

The only remaining step is the calculation of the second
term of the right-hand side of (21). Through the methods
outlined in the previous subsection, one finds

C[|χ〉] =
√(

1 − e4|α|2)2
(1 + e2iθ )2(w − 1)w

e4|α|2+iθ + √
w(1 − w)(1 + e2iθ )

. (26)

This method matches the results found in the previous sub-
section, but allows for a computationally significant speed-up
in calculation times. The concurrences for different encodings
are compared in Fig. 4.

Two distinct observations can be made from Fig. 4. First, for
the even cat states (a) and (b), the nonorthogonality of the basis
states prevents the pair from achieving high entanglement for
low values of α; higher encodings are of little advantage in this
regime. The choice of the phase θ is of paramount importance
when one compares to the odd states (c) and (d), where even
for very small α there is still a significant amount of shared
entanglement, and encoding in more qubits still improves on
this amount. Second, for sufficiently large sizes of α, the phase-
flip probability approaches 0.5 and thus it dephases the qubit
entirely, independently of the phase or encoding. However,
for a certain range, the different codifications are seen to help
achieve and sustain higher entanglement between the shared
pairs.

Finally, in Fig. 5 one can observe that, all the way to
zero transmissivity, the pair has some residual entanglement.
Higher redundancy improves this figure; we also note that, in
the context of [21], the encoding does not induce entanglement
sudden death [25].
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(a) η = 2/3, θ = 0

(b) η = 0.9, θ = 0

(c) η = 2/3, θ = π

(d) η = 0.9, θ = π

FIG. 4. (Color online) Concurrence after transmission as a func-
tion of the coherent-state size |α|, for different values of transmissivity
η and the phase parameter θ . Direct transmission (blue, thick line) is
compared to encoding with 3 (red, thin line), 5 (green, dashed line),
11 (black, dotted line), and 51 (grey, dash-dotted line) qubits.

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied the decoherence process
of entangled coherent-state superpositions in the amplitude
damping channel, exploring QEC codes originated from the

FIG. 5. (Color online) Concurrence after transmission as a func-
tion of the channel transmissivity η, shown without encoding (blue,
thick line) and encoded with 3 (red, thin line), 5 (green, dashed line),
11 (black, dotted line), and 51 (grey, dash-dotted line) qubits. Here
α = 1.3 and θ = 0. The behavior for θ = π follows qualitatively the
same form.

discrete-variable regime in an optical, continuous-variable
setting. The quantitative analysis was reminiscent of EP
protocols; however, this translation must be carried out
carefully: a true distillation would, in addition to the non-
Gaussian Hadamard gates necessary for the encoding, require
teleportations to be performed via non-Gaussian two-mode
Bell measurements [5,24]. In this picture, multiple copies of
the entangled resource |φ+〉 are shared across the amplitude
damping channel. The use of the encoding and decoding
circuits of the original error-correcting code then results in
one pair with higher entanglement (see Fig. 6), which effec-
tively characterizes this scheme as a one-way, deterministic
entanglement distillation for noisy, non-Gaussian CV states.

Alternatively, in the context of [22], the translation to an en-
tanglement purification protocol could be performed through
an elaborate non-Gaussian multimode projective measurement

FIG. 6. (Color online) The QEC code as presented in [11] (top)
and a possible interpretation as an EPP (bottom).
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in the encoding basis. The non-Gaussian elements are, in
any case, a required condition, enabling the circumvention
of known no-go theorems [7–10].

The protection granted against phase-flip (or Z) errors
by different repetition codes was investigated and quantified
through concurrence; however, possible physical limitations in
the implementation of the gates necessary for these encodings
have not been been taken into account, therefore establishing
the previous results as an upper bound. In particular, we note
that both Hadamard and teleportation operations in [11] only
approach unit fidelity and/or high success probabilities for
large superposition sizes. However, as we have shown here, in
this regime these codes would cease to work. We conclude that,
in order to incorporate the actual encoding operations into the
aforementioned protocol, gates that succeed with high fidelity
on not too large α cat states will be needed. One possibility
to achieve this could be the scheme of [12], where α ≈ 1.2 is
enough for performing fault-tolerant quantum computing.

We have observed a trade-off between the orthogonality
of the coherent-state basis and the probability of a phase-flip
error. The former imposes a necessity for a maximum size of
coherent-state superposition, while the latter prevents the use
of arbitrarily large superpositions, thus hinting at an optimal
regime depending on channel parameters.

The generation of optical cat states remains an experimental
challenge, though much progress has been recently achieved.
Arbitrarily large squeezed cat states can be obtained through
photon number states and homodyne detection [26]; however

such technique is highly probabilistic and presents only
moderate output fidelities. A different approach involves
tapping squeezed vacuum in a beam splitter (BS), with one
output mode directed to a number-resolving photon counter.
Conditional on the number of photons detected, the other
mode is projected into an odd or even cat state [18,27]; an
n-photon subtraction is described as ânŜ(ε0)|0〉, where â is
the annihilation operator, Ŝ is the squeezing operator, and ε0

amounts to the degree of squeezing applied. Superpositions
with α ≈ 1.2–1.3 can be created through this technique; it is
also worth noting that the more “valuable,” one-ebit odd CSS
resource is obtained more readily than its less entangled even
state counterpart.

The choice of “odd” cat states (with θ = π/2) could
be seen as a viable alternative to employ small-amplitude
superpositions to distribute entanglement while minimizing
the amplitude damping effects. Still, α may not be chosen
too small so that the resulting qubits become impractical for
information transfer or computational purposes. Nonetheless,
in the context of optical, realistic quantum communication,
a combination of odd CSS resources, linear optics, and
nonlinear measurements for encoding may lead to efficient
error correction and entanglement distillation strategies.
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