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We report how quantum information encoded into the spectral degree of freedom of a single-photon state may
be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the
teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation.
We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-
valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of
these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum
communication systems.
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I. INTRODUCTION

As a fundamental means of quantum communication,
quantum teleportation has been realized in various theoretical
and experimental forms with each form adopting a specific
physical system to encode the underlying quantum information
[1]. Quantum optical systems have proven particularly useful
for realizing many of these different variants. For example,
protocols encoding quantum information into continuous
variables like the field quadratures [2,3] or temporal modes
[4], as well as discrete variables like the polarization [5,6],
have already been demonstrated, while schemes using the
transverse-spatial degrees of freedom, including orbital an-
gular momentum, have been proposed [7]. As a complement
to these prior formulations, we present and analyze a method
for teleporting quantum information encoded into the spectral
state of a single photon.

Spectral teleportation uses entanglement in the joint spec-
tral amplitude of a biphoton state to mediate the transfer
of a single-photon spectral amplitude. Spectral entanglement
arises naturally, for example, in the biphoton states generated
by spontaneous parametric down-conversion (SPDC), where
conservation of energy and phase-matching constraints specify
preparation of the joint spectral amplitude. Indeed, it was
soon after the initial proposal for quantum teleportation that
Molotkov introduced teleportation of a single-photon spectral
state based on the Einstein-Podolsky-Rosen (EPR)-correlated
pairs generated through cw-pumped SPDC [8,9]. In particular,
Molotkov showed that for the case of infinite spectral entan-
glement and bandwidth, biphoton up-conversion would lead
to remote preparation of a single-photon spectral wave packet
in a manner that closely resembles other continuous-variable
(CV)-based protocols [2].

Broader insight into the behavior of spectral teleportation
with respect to the spectral entanglement or the spectral
bandwidths requires the consideration of imperfect EPR
correlations. Such considerations arise naturally with the use
of pulsed SPDC sources, that is, SPDC pumped by broad
bandwidth pulses, where the amount of spectral entanglement
generated varies strongly with source design and, especially,
the underlying phase-matching function [10]. As pulsed
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SPDC sources provide a means of timing the interference or
overlap of photons from different sources, the understanding
of finite entanglement and bandwidth on the fidelity of
spectral teleportation would seem necessary. Motivated by
these considerations, we investigate the role of finite spectral
entanglement and bandwidth on the spectral teleportation
fidelity, and we assess the potential for high-fidelity spectral
teleportation using available down-conversion sources.

We also report that spectral teleportation can be used
to coherently modulate the bandwidth of a teleported wave
form. Specifically, this spread-spectral variant of teleportation
enables the single-photon spectral state to be coherently dilated
with respect to the probability amplitude. While spectral
and spread-spectral teleportation share common elements,
we show that the underlying distinction is the requirement
placed on the marginal bandwidth ratio of the joint spectral
amplitude mediating the process. We subsequently analyze
the fidelity of spread-spectral teleportation with respect to
both finite entanglement and bandwidth. Ultimately, we
expect that spread-spectral teleportation may prove useful
for interfacing broadband photonic qubits with narrowband
quantum receivers, for example, quantum memory devices.
This capability complements efforts to coherently modulate
the single-photon carrier frequency based on up-conversion,
for example, to shift from IR to visible wavelengths in order
to improve detection efficiency [11–14].

The theory for spectral teleportation of a single-photon
state is presented in Sec. II and analyzed in Sec. III using
complex-valued Gaussian amplitudes to derive the spectral
teleportation fidelity. Similarly, spread-spectral teleportation
is described in Sec. IV with the spread-spectral teleportation
fidelity for Gaussian states presented in Sec. V. The potential
implications of spectral and spread-spectral teleportation for
quantum communication are discussed in Sec. VI while final
conclusions are drawn in Sec. VII.

II. SPECTRAL TELEPORTATON

Consider a single, spectrally multimode photon described
by the pure state

|ψ1〉 =
∫

α(ω)|ω1〉dω , (1)
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where α(ω) is the normalized spectral probability amplitude
and |ω1〉 is the spectral eigenstate of photon 1 at frequency ω.
The state (1) may be generated, for example, using either
on-demand single-photon sources or heralding photon-pair
sources. Let the transverse-spatial and polarization degrees of
freedom be prepared in single-mode, pure states, for example,
using spatial filters and polarizing beamsplitters, respectively.

Spectral teleportation transfers the amplitude α(ω) of
photon 1 to a remote photon 3, where the latter is initially
prepared with photon 2 in the normalized biphoton state

|ϕ23〉 =
∫

dω

∫
dω′f (ω,ω′)|ω2,ω

′
3〉 (2)

and the joint spectral probability amplitude f (ω,ω′) deter-
mines the spectral entanglement of the pair. The Schmidt
decomposition of the joint spectral amplitude is [15]

f (ω,ω′) =
∞∑

n=0

λ1/2
n un(ω)vn(ω′), (3)

where λn is the nth Schmidt coefficient and normalization
implies

∞∑
n=0

λn = 1. (4)

The nth pair of Schmidt modes un(ω) and vn(ω′) belongs to
a biorthogonal set that spans the joint spectral Hilbert space.
The biphoton state (2) is spectrally entangled when there exists
more than one term in the summation of Eq. (3). Specifically,
when the joint amplitude is inseparable, that is,

f (ω,ω′) �= u0(ω)v0(ω′), (5)

then the photon pair is spectrally entangled. A convenient
measure for quantifying the spectral entanglement is the
Schmidt number [15]

K ≡
∞∑

n=0

λn

/ ∞∑
n=0

λ2
n, (6)

which grows from unity as the number of nonzero Schmidt
coefficients increases.1 Experimentally, the presence of spec-
tral entanglement may be inferred from the reduced visibility
of the Hong-Ou-Mandel dip when using independent sources
[10,16–18], while measurements of joint spectral amplitudes
generated by current SPDC sources yield spectral Schmidt
numbers as large as ∼600 with the potential to be much
larger [18–21].

Spectral teleportation is implemented by up-converting
photons 1 and 2 into a higher-frequency photon 4 [8,9].
The latter is subsequently subjected to a spectrally resolved
measurement that effectively transforms the state of photon
3. Specifically, consider the case that photons 1 and 2 un-
dergo sum-frequency generation (SFG) in a nonlinear optical
medium to generate photon 4. This form of up-conversion
requires phase matching of photons 1 and 2 over the relevant

1This definition of K accounts for normalization of the joint spectral
amplitude, which is conventionally unity but may not be the case
[cf. Eq. (11)].

bandwidth, with the overall conversion efficiency determined
by the second-order nonlinear susceptibility tensor χ

(2)
SFG.

Assuming perfect phase matching across the bandwidths of
photons 1 and 2, and taking χ

(2)
SFG as constant, the up-converted

photon 4 has a mean frequency ω̄4 = ω̄1 + ω̄2, where ω̄1 and
ω̄2 are the mean frequencies of photons 1 and 2, respectively.
Following up-conversion, the joint state of photons 3 and 4 is
then given by

|ξ34〉 = c

∫
dω

∫
dω′

∫
dω′′α(ω)

× f (ω′,ω′′)|ω′′
3,(ω + ω′)4〉, (7)

where c is the normalization factor.
As a result of the spectral entanglement in Eq. (7), a spectral

measurement of photon 4 transforms the state of photon 3. This
spectral measurement may be modeled in its simplest form as
a projection onto a frequency eigenstate |�4〉. That projective
measurement prepares photon 3 in the pure state,

|ψ̃3〉 = η

∫
dω

∫
dω′α(ω)f (� − ω,ω′)|ω′

3〉, (8)

where the tilde denotes an intermediate result and the normal-
ization factor η, defined by

|η|−2 =
∞∑

n=0

λn|an(�)|2, (9)

depends on the measurement outcome � via the convolution
integral

an(�) =
∫

α(ω) un(� − ω)dω. (10)

The intermediate spectral state (8) may be well understood
in the limit that photons 2 and 3 are perfectly entangled
in frequency, for example, the case where the joint spectral
amplitude approaches the δ distribution

f (ω,ω′) → δ(2ω̄0 − ω − ω′). (11)

In this limit, the Schmidt coefficients are identical and the
Schmidt number K approaches infinity.2 This form of the
joint spectral amplitude is well-approximated by cw pumping
of the SPDC process, where the quantity 2ω̄0 represents the
pump frequency, and corresponds to the case first considered
by Molotkov [8]. By inserting the approximate joint spectral
amplitude of Eq. (11) into Eq. (8), the state of photon 3 after
normalization is found to be

|ψ̃3〉 =
∫

dω α(ω)|(ω − �)3〉, (12)

where � = � − 2ω̄0 is a spectral offset due to quantum-
mechanical indeterminism inherent to the spectral state of
photon 4. The measurement information � may be used to
locally transform the state of photon 3 defined by Eq. (12) as to

2In the limit (11), the bandwidths of photons 1 and 2 are infinite
and the spectral state is non-normalizable while the Schmidt modes
are represented by any complete set of biorthogonal functions. The
case of infinite entanglement with finite bandwidth is considered in
Sec. III.
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match the state of photon 1 in Eq. (1). For example, using either
difference-frequency generation with a pump pulse having
frequency � [14] or an acousto-optic frequency shifter driven
at frequency � applies the necessary shift to the spectral state.
Thus, in principle, unit spectral teleportation fidelity may be
obtained.

The preceding limiting case suggests a protocol for spectral
teleportation with an arbitrary joint spectral amplitude. By
shifting the spectral state in Eq. (8) an amount �, this spectral
teleportation protocol prepares the state of photon 3 as

|ψ3〉 = η

∫
dω

∫
dω′α(ω)f (� − ω,ω′ − �)|ω′

3〉. (13)

The corresponding spectral teleportation fidelity is the squared
magnitude overlap of Eq. (13) with Eq. (1) and is given by

F =
∣∣∣∣η

∫
dω

∫
dω′α(ω)f (� − ω,ω′ − �)α(ω′)∗

∣∣∣∣
2

. (14)

In general, the fidelity (14) depends on the spectral shift
�, as well as the spectral entanglement carried by the joint
spectral amplitude. Moreover, the value of � that optimizes the
teleportation fidelity depends on the properties of the entangled
photon pair including the relative bandwidths and the amount
of spectral entanglement. As shown previously, unit fidelity
teleportation is achieved in the limit of infinite spectral
entanglement, but for the case of finite entanglement, an
average spectral teleportation fidelity, 〈F〉, must be computed
with respect to the distribution of possible spectral input states.
We return to the averaging procedure after first considering the
specific example of Gaussian spectral teleportation.

III. GAUSSIAN SPECTRAL TELEPORTATION

We investigate the behavior of the spectral teleportation
fidelity (14) for the case of finite spectral entanglement
and finite bandwidths. We consider the case of a spectrally
entangled photon pair generated by broad-bandwidth pumping
of SPDC. It has been shown previously that the joint spectral
amplitude generated by broad-bandwidth SPDC may be
expressed as

f (ω,ω′) = A(ω + ω′)�(ω,ω′), (15)

where A(ω) is the pump-pulse spectrum and �(ω,ω′) is the
spectral phase-matching function [10]. The phase-matching
function �(ω,ω′) depends on the birefringence of the crystal
and the pump properties. For type-II SPDC in the short-pulse
limit, the phase-matching function may be reduced to a one-
dimensional Gaussian (cf. the Appendix). When the pump
spectrum A(ω) is also Gaussian, an analytic approximation for
the joint spectral amplitude parametrized by three independent
quantities is obtained, that is,

f (ω,ω′) = N exp

{
−1

2

[
(ω − ω̄2)2

γ 2
2

+ (ω′ − ω̄3)2

γ 2
3

−2ρ (ω − ω̄2)(ω′ − ω̄3)

γ2γ3

]}
, (16)

where ω̄2 and ω̄3 are the mean frequencies of photons 2 and 3,
respectively, σ 2 and σ 3 are the corresponding bandwidths, ρ ∈
[−1,1] is the linear correlation between photon frequencies,

γ 2
j = σ 2

j (1 − ρ2) is for convenience, and N is a normalization

constant defined by N−2 = πσ2σ3

√
1 − ρ2. For completeness,

these parameters are expressed in terms of experimental
conditions in the Appendix.

The Schmidt coefficients of the Gaussian joint amplitude
in Eq. (16) are [17]

λn= sech2ζ tanh2n ζ, (17)

where the angle ζ is defined solely in terms of the linear
correlation ρ by

ρ = tanh 2ζ. (18)

Using Eq. (6), the corresponding Schmidt number is found by
substitution to be

K = cosh 2ζ, (19)

from which it is apparent that the spectral entanglement
measured by K approaches infinity as |ρ| approaches unity.
The Schmidt modes for the joint amplitude (16) are Hermite
functions over the appropriate bandwidth scales, that is,
un(ω) = h

γ2
n (ω − ω̄2) and vn(ω) = h

γ3
n (ω − ω̄3) with the nth

normalized Hermite function

h
γj

n (x) = e−x2/2γ 2
j Hn(x/γj )/

√
γjπ1/22nn! (20)

expressed in terms of the nth Hermite polynomial Hn(x) [22].
The intermediate spectral state of photon 3 defined by

Eq. (8) may be calculated analytically for the case of the
Gaussian joint spectral amplitude in Eq. (16) and an initial
spectral state for photon 1 defined by the complex-valued
Gaussian amplitude

α(ω) = (
πσ 2

1

)−1/4
exp

[
− (ω − ω̄1)2

2σ 2
1

+ iφ1(ω − ω̄1) + i
φ2

2
(ω − ω̄1)2

]
. (21)

In Eq. (21), the real-valued parameters φ1 and φ2 represent
the temporal delay and linear chirp rate, respectively, while σ 1

determines the spectral bandwidth. States of the form (21) may
be generated experimentally, for example, using the techniques
of Ref. [23]. Substituting Eqs. (16) and (21) into Eq. (8) yields
an intermediate spectral state with the Gaussian form

|ψ̃3〉 = η

∫
dω exp [−Q(ω − ω̄3)2 + L(ω − ω̄3)]|ω3〉, (22)

expressed in terms of the normalization constant

η = (2QR/π )1/4 exp
[−L2

R/4QR − i�I

]
, (23)

the constant phase

�I = 1

2
tan−1[q/p] + pw − qs

2(p2 + q2)
, (24)

the complex-valued quadratic coefficient

Q = QR − iQI , (25)

with real component

QR = pr + q2

2γ 2
3 (p2 + q2)

(26)
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and imaginary component

QI = ρ2σ 2
1 q

2γ 2
3 (p2 + q2)

, (27)

and the complex-valued linear coefficient

L = LR − iLI , (28)

with real component

LR = ρ
σ2(δp + qt)

σ3(p2 + q2)
(29)

and an imaginary component

LI = L′
I + L′′

I , (30)

composed of a term proportional to φ1,

L′
I = ρσ 2

1 σ2p

σ3(p2 + q2)
φ1, (31)

and a term proportional to φ2,

L′′
I = δρσ 4

1 σ2

σ3(p2 + q2)
φ2. (32)

These latter quantities are expressed in terms of the definitions

γ 2
j = σ 2

j (1 − ρ2), (33)

δ = � − ω̄1 − ω̄2, (34)

p = σ 2
1 + γ 2

2 , (35)

q = γ 2
2 σ 2

1 φ2, (36)

r = γ 2
1 + γ 2

2 , (37)

s = δ2 + σ 2
1 γ 2

2 φ1, (38)

t = σ 2
1 (δφ2 + φ1), (39)

and

w = δ2σ 2
1 (φ2 + 2φ1), (40)

with � the observed frequency of photon 4.
As an example, consider the case of a real-valued,

transform-limited amplitude obtained by setting φ1 = 0 and
φ2 = 0 in Eq. (21), for which Eq. (22) yields

|ψ̃3〉 =
(

r

πγ 2
3 p

)1/4 ∫
dω exp [−QR(ω − ε)2]|ω3〉, (41)

where the spectral mean

ε = ω̄3 − δρ
σ2σ3(

σ 2
1 + σ 2

2

) (42)

depends on the spectral entanglement via ρ, the marginal
bandwidths of all three photons, and the measurement outcome
� via δ [cf. Eq. (34)]. When the bandwidths of photons 2 and
3 are identical, Eq. (42) may also be written as

ε = ω̄3 − δρ

(a2 + 1)
, (43)

where a = σ1/σ2 is the bandwidth ratio of photon 1 to photon
2. Similarly, the quadratic coefficient in the exponent of (41)
becomes

QR = a2(a2 + 1)

2σ 2
1 (a2 + 1 − ρ2)

. (44)

Hence, in the limit |ρ| approaches unity and a approaches zero,
the form of the spectral amplitude α(ω) is recovered exactly,
and the corresponding spectral shift � = ω̄1 − ε reduces to
the idealized result following Eq. (12). As discussed in detail
later, unit fidelity is recovered whenever a4 = 1 – ρ2 (cf. the
analysis of Fig. 3).

The spectral teleportation fidelity for the Gaussian input
state of Eq. (21) is calculated using the definition of Eq. (14),
with the teleported state given by Eq. (13). The latter is derived
from the intermediate state given by Eq. (22) and the soon-
to-be-determined spectral shift �. From this calculation, the
spectral fidelity for a generic Gaussian amplitude is presented
as

F =
(

2QR

σ 2
1 |Q + C|2

)1/2

exp [�(�̃)], (45)

where the complex constant C = (1 + iφ2σ
2
1 )/2σ 2

1 , the inter-
mediate spectral shift �̃ = � + ω̄3 − ω̄1, and the exponent

�(�̃) = Re

{
(2Q�̃ + L − iφ1)2

2(Q + C)
− (2QR�̃ + LR)2

2QR

}
(46)

are introduced for notational convenience. The spectral shift
that maximizes the teleportation fidelity is determined by
differentiating Eq. (46) with respect to �̃ and solving for the
root to identify the optimal spectral shift �opt. For example,
when φ1 = 0 and φ2 = 0, maximization of the fidelity leads to
the condition

�opt = ω̄1 − ω̄3 − LR/2QR, (47)

which agrees with the result of Eq. (42). More generally, the
spectral shift that maximizes the fidelity is given by

�opt = ω̄1 − ω̄3 − (LRCR + LIQI + φ1QI )

2
(
Q2

I + QRCR

) , (48)

with CR the real component of C. A plot of �opt with respect
to a and ρ is shown in Fig. 1 for ω̄1 = ω̄3, φ1 = 0, φ2 = 2/σ 2

1 ,
and δ = σ1. These results suggest that in the regime of large
spectral entanglement (large |ρ|) the shift �opt varies slowly
with respect to a.

FIG. 1. A contour plot of the optimal spectral shift �opt defined
by Eq. (48) for a chirped input state. Contours are plotted with respect
to the bandwidth ratio a and the linear correlation ρ with ω̄1 = ω̄3,
φ1 = 0, φ2 = 2/σ 2

1 , δ = σ1, and σ2 = σ3. Contours range from −σ1

to σ1 in intervals of 0.1σ1 with the line at ρ = 0 corresponding to
�opt = 0.
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FIG. 2. A contour plot of exp[�(�̃opt)] from Eq. (45) for a chirped
input state. Contours are plotted with respect to the bandwidth ratio
a and the linear correlation ρ with ω̄1 = ω̄3, φ1 = 0, φ2 = 2/σ 2

1 ,
δ = σ1, and σ2 = σ3. Contours are unitless and range from 0.9 to 1
in intervals of 0.01 with the large centered region representing values
equal to and above 0.99.

Application of the optimal spectral shift �opt does not
guarantee the exponent defined by Eq. (46) vanishes, only
that it reaches the smallest possible value. The behavior for
the exponential term on the right-hand side (RHS) of Eq. (45)
evaluated at �opt is shown with respect to a and ρ in Fig. 2 for
the same parameters as in Fig. 1. Notably, this factor is near
unity over a broad region of the a-ρ parameter space.

For a transform-limited input amplitude with φ1 = 0 and
φ2 = 0, the exponent �(�opt) vanishes for all measurement
outcomes and the fidelity in Eq. (45) is conveniently expressed
in terms of the dimensionless quantities a and ρ as

F =
√

4κ2a2(a2 + 1)(a2 + 1 − ρ2)

[(a2 + κ2)(a2 + 1) − κ2ρ2]2
, (49)

where the bandwidth ratio κ = σ3/σ2 need not be unity.
The behavior of the spectral fidelity for κ = 1 is plotted in

Fig. 3 with respect to the bandwidth ratio a and the spectral
correlation ρ. The four corners in this contour plot exhibit
four limiting behaviors of spectral teleportation. In the lower
right-hand corner, where a = 1 and ρ = 0, the bandwidths of
all three photons are identical and there is necessarily perfect

FIG. 3. A contour plot of the spectral teleportation fidelity F in
Eq. (49) for an unchirped input state. Contours are plotted with respect
to the bandwidth ratio a and the linear correlation ρ with ω̄1 = ω̄3,
φ1 = 0, φ2 = 0, δ = σ1, and σ2 = σ3. Contours are unitless and range
from 0 to 0.99 with a spacing of 1/50.

overlap between the initial state of photon 1 and the final state
of photon 3. In the lower left-hand corner, where a = 0 and
ρ = 0, the fidelity vanishes as this point corresponds to infinite
bandwidths for photons 2 and 3 but no spectral entanglement
and, consequently, an absence of teleportation. The upper left-
hand corner, where a = 0 and ρ = 1, corresponds to the case
of infinite spectral entanglement and infinite bandwidth for
photons 2 and 3, the fidelity at this point is unity [cf. the
example of Eq. (11)].

The upper right-hand corner of Fig. 3, where a = 1 and
ρ = 1, represents a counterintuitive case for the spectral
fidelity. Naively, unit fidelity is expected whenever a = 1, as
the initial state of photon 1 matches the initial state of photon 3.
However, the spectral measurement following up-conversion
undermines this assumption because the measurement of
photon 4 yields some information about the spectral states
of photons 1 and 2. This is similar to the situation that
occurs when the bandwidth of photon 2 is much less than the
bandwidth of photon 1, that is, for a > 1, as then up-conversion
acts as spectral gating of photon 1 with the measured frequency
� providing information about the spectral state. In general,
for a = 1 the measurement provides more information as |ρ|
approaches unity, that is, when photons 2 and 3 are perfectly
entangled. In particular, the fidelity at the upper left-hand
corner is

√
8/9, a value for the fidelity that corresponds

to a state of photon 3 with half the initial bandwidth of
photon 1 [cf. Eq. (44)]. The contour defined by a4 = 1 − ρ2

identifies maximization of the fidelity and represents the
optimal compromise between spectral bandwidth and spectral
entanglement.

A contour plot of the spectral teleportation fidelity for a
linearly chirped input state is shown in Fig. 4 with φ2 = 2/σ 2

1 .
In contrast to the unchirped case, chirp in the input amplitude
causes the fidelity at the point a = 1 and ρ = 0 to be less
than unity as the unmodified state of photon 3 is unchirped.
However, for a < 1 and ρ close to unity the fidelity approaches
unity.

The behavior of the spectral teleportation fidelity with
respect to the Schmidt number K is shown in Fig. 5. Using
Eqs. (18) and (19), the fidelity from Eq. (45) is plotted against

FIG. 4. A contour plot of the spectral teleportation fidelity F in
Eq. (45) for a chirped input state. Contours are plotted with respect
to the bandwidth ratio a and the linear correlation ρ with ω̄1 = ω̄3,
φ1 = 0, φ2 = 2/σ 2

1 , δ = σ1, and σ2 = σ3. Contours are unitless and
range from 0 to 0.99 with a spacing of 1/50.
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FIG. 5. A plot of the spectral teleportation fidelity in Eq. (45) for
a chirped input state. Lines are plotted with respect to the spectral
Schmidt number K with ω̄1 = ω̄3, φ1 = 0, φ2 = 2/σ 2

1 , δ = σ1, and
σ2 = σ3. Curves are labeled by the bandwidth ratio a: 1/10, 1/100,
and 1/500. The point K = 600 corresponds to a spectral correlation
of ρ ∼= 0.999999.

K for σ2 = σ3 with each curve parametrized by the bandwidth
ratio a. In addition, parameters for these curves are ω̄1 = ω̄3,
φ1 = 0, φ2 = 2/σ 2

1 , δ = σ1, and � = �opt. As expected from
the results presented by Figs. 3 and 4, the spectral entanglement
needed for constant fidelity teleportation increases in Fig. 5
as the bandwidth ratio a decreases. We note that current
SPDC sources of spectrally entangled photons are capable of
generating spectral Schmidt numbers on the order of 600 [18]
and potentially much higher [19,20]. As the value of K = 600
corresponds to a spectral correlation ρ ∼= 0.999999, it is
apparent from Figs. 4 and 5 that current sources of spectrally
entangled photon pairs provide sufficient entanglement for
high-fidelity spectral teleportation.

These examples have been with respect to specific input
states, for which the parameters σ 1 and φ2 describing
the Gaussian spectral amplitude are fixed. By fixing these
parameters we have shown there exists an optimal value
of the spectral shift �. However, in order to assess the
fidelity of teleporting states selected from an ensemble of
nonorthogonal spectral amplitudes (an important distinction
of quantum teleportation from classical communication), we
must evaluate the spectral teleportation fidelity with respect to
the distribution of presumedly unknown input states.

For example, consider the spectral bandwidth of photon 1
to be uniformly sampled from a spectral range [σ min, σ max],
where σ min and σ max represent minimal and maximal values,
respectively. The distinction from our previous examples is
the applied spectral shift � is chosen without explicit knowl-
edge of the value of σ 1. In the current example, we assume the
range of σ 1 is known and choose a spectral shift corresponding
to the average bandwidth, that is, � = �opt when σ1,avg =
(σmax + σmin)/2. As shown in Fig. 6, spectral teleportation
fidelity for the distribution of input states characterized by
σmin = σ1/2 and σmax = 2σ1 remains high provided the spec-
tral entanglement is large (|ρ| = 0.9999, thick black line). This
particular distribution of input states has a minimal overlap of
∼0.47 between states with bandwidths σ min and σ max, and
an average fidelity of 〈F 〉 = 0.996 ± 0.003. Lesser values of
entanglement fail to produce the same high fidelity across the
distribution of input states, for example, 〈F 〉 = 0.882 ± 0.101

FIG. 6. A plot of the spectral teleportation fidelity with respect the
bandwidth of the input Gaussian spectral state. The curves correspond
to ρ = 0.9999 (thick) and ρ = 0.99 (thin) and are plotted against the
bandwidth of photon 1 with respect to the average spectral bandwidth
σ1,avg. The applied spectral shift is referenced to σ1,avg and other
parameters are σ2 = σ3 = 10σ1,avg, φ1 = 0, φ2 = 0, and δ = σ1,avg

for degenerate mean frequencies.

for |ρ| = 0.99 (thin black line in Fig. 6). This decline in fidelity
continues with decreasing entanglement until an average of
〈F 〉 = 0.244 ± 0.082 is reached at ρ = 0.

A second example of different input states is given for the
case of varying linear chirp rates φ2, where the linear chirp rate
is sampled from a uniform distribution over the range [φ2,min,
φ2,max] and has an average rate of φ2,avg = (φ2,max + φ2,min)/2.
The spectral teleportation fidelity is evaluated using the
optimal spectral shift for the case of zero chirp and plotted
in Fig. 7 as a function of the input chirp rate. For large
spectral entanglement (|ρ| = 0.9999, thick black line) the
average fidelity is 〈F〉 = 0.975 ± 0.022, while the average
is 〈F〉 = 0.580 ± 0.177 for less spectral entanglement (|ρ| =
0.99, thin black line) and 〈F〉 = 0.104 ± 0.047 for no spectral
entanglement (|ρ| = 0).

Last, we present in Fig. 8 the spectral teleportation fidelity
for an ensemble of input states parametrized by both the
bandwidth and the linear chirp rate, that is, (σ1,φ2). In this

FIG. 7. A plot of the spectral teleportation fidelity with respect
the linear chirp rate of the input Gaussian spectral state. The curves
correspond to ρ = 0.9999 (thick) and ρ = 0.99 (thin) and are plotted
against the chirp rate of photon 1 with respect to the average linear
chirp rate φ2,avg. The applied spectral shift is referenced to φ2,avg = 0
and other parameters are σ2 = σ3 = 10σ1, φ1 = 0, and δ = σ1 for
degenerate mean frequencies.
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FIG. 8. A contour plot of the spectral teleportation fidelity with
respect to the spectral bandwidth and linear chirp rate of the input
Gaussian spectral state. Contours are plotted with respect to spectral
bandwidth in terms of σ1,avg and the linear chirp rate in terms of
φ2,avg (cf. Figs. 6 and 7). The applied spectral shift is referenced to an
unchirped state of bandwidth of σ 1,avg and other parameters are ρ =
0.9999, σ2 = σ3 = 10σ1,avg, φ1 = 0, and δ = 0.1σ1 for degenerate
mean frequencies. Contours are unitless and range from 0.99 to
0.9999 in steps of 0.0001.

example, the applied spectral shift is optimal for the unchirped,
nominal input state found at (σ1,φ2) = (σ1,avg,0) and a mea-
sured frequency corresponding to δ = 0.1σ1,avg. The average
fidelity over the parameter space shown in Fig. 8 is 〈F 〉 =
0.992 ± 0.0127 for |ρ| = 0.9999. As noted previously, current
down-conversion sources can reach |ρ| = 0.999999, in which
case the same ensemble of two-dimensional parametrized
input states yields an average fidelity 〈F 〉 = 0.9999 ± 0.0001.
By comparison, the average fidelity is 〈F 〉 = 0.097 ± 0.060
without entanglement (|ρ| = 0).

IV. SPREAD-SPECTRAL TELEPORTATION

In Secs. II and III, we described spectral teleportation for
the faithful reproduction of a single-photon spectral amplitude.
In this section, we describe how similar methods can be used
to coherently dilate the spectral amplitude during the tele-
portation process. We refer to this process as spread-spectral
teleportation because of the change in spectral bandwidth. As
a clarifying example, consider the limit that the joint spectral
amplitude takes the form

f (ω,ω′) → δ(2ω̄0 − κω − ω′), (50)

where κ represents the orientation of the joint spectrum in the
frequency space of photons 2 and 3; for example, recall κ =
σ3/σ2 for the finite bandwidth Gaussian amplitude in Eq. (16).
Joint amplitudes approximating the RHS of Eq. (50) with κ

�= 1 arise from broad-bandwidth pumping of type-II SPDC in
long nonlinear crystals [24].3 Inserting Eq. (50) into Eq. (8),
the normalized intermediate state becomes

|ψ̃3〉 = κ−1/2
∫

α(ω/κ)|(ω − �)3〉dω. (51)

3This behavior arises from the orientation of the phase-matching
function �(ω,ω′) in the birefringent medium relative to the pump
pulse A(ω + ω′).

The result (51) represents a spectral state of photon 3 for which
the spectral amplitude α(ω) has been dilated by the factor κ

and spectrally shifted by � = κ� − 2ω̄0. The shift is defined
in terms of the measured frequency �, as well as the properties
of the entangled photon pair, that is, 2ω̄0 and κ , and can be
applied as described previously (cf. Sec. II). Broadening (κ
> 1) or narrowing (κ < 1) the spectral amplitude, however,
requires coherently modulating the phase and amplitude of
photon 3.

Dilation of the spectral amplitude in Eq. (51) transforms the
quantum information in a photonic carrier of one bandwidth
(photon 1) to a carrier of another bandwidth (photon 3). As
spread-spectral teleportation preserves the amplitude-level in-
formation encoded in α(ω), the dilation process complements
existing proposals to spectrally shift quantum information
from one frequency band to another, for example, from IR
to visible. For example, dilation of the spectral amplitude en-
ables quantum information transmitted by a broad-bandwidth
photon to be transformed into a narrow-bandwidth photon
that better resonates with (solid-state) transitions having
narrow linewidths. Conversely, narrow-bandwidth quantum
readout operations from solid-state devices can be coherently
transformed into broad-bandwidth photons by spread-spectral
teleportation, for example, to improve resolution in the time
of arrival.

Assessment of the spread-spectral teleportation fidelity
differs slightly from the fidelity for conventional teleportation,
where the initial spectral state of photon 1 is overlapped
with the state prepared by teleportation. For spread-spectral
teleportation, a reference spread spectral state is defined,

|ψ1(µ)〉 = µ−1/2
∫

α(ω/µ)|(ω − εµ)1〉dω, (52)

where the constant µ represents the dilation factor and the
spectral offset εµ = (1 − µ)ω̄1 maintains the spectral mean of
α(ω) as ω̄1. Overlapping the state (52) with the state prepared
by spread-spectral teleportation yields the spread-spectral
teleportation fidelity defined with respect to µ as

Fµ = |〈ψ1(µ) | ψ3〉|2. (53)

In Eq. (53), the spread-spectral state |ψ3〉 is given by
Eq. (13) and, based on prior arguments, the spread-spectral
teleportation fidelity is expected to be maximal when the
bandwidth ratio κ of the mediating photon pair matches the
dilation factor µ. Note that for µ = 1 the conventional spectral
teleportation fidelity is recovered.

V. GAUSSIAN SPREAD-SPECTRAL TELEPORTATION

We investigate the spread-spectral teleportation fidelity Fµ

defined by Eq. (53) for the dilation of a complex-valued Gaus-
sian spectral amplitude. We calculate the spectral amplitude
of Eq. (21) with the joint spectral amplitude of Eq. (16),
whose bandwidth ratio is κ = σ3/σ2. The spread-spectral
teleportation fidelity defined in Eq. (53) is then given by

Fµ =
(

2µ2QR

σ 2
1 |µ2Q + C|2

)1/2

exp [�µ(�̃)], (54)
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where �̃ = � + ω̄3 − ω̄1 and

�µ(�̃) = Re

{
(2Qµ�̃ + µL − iφ1)2

2(µ2Q + C)
− (2QR�̃ + LR)2

2QR

}
,

(55)

while other quantities remain as defined in Eqs. (22)–(40). The
optimal spectral shift of photon 3 is found by differentiating
Eq. (55) and finding the root that maximizes the exponential
term on the RHS of Eq. (54). This approach yields

�opt = ω̄1 − ω̄3 − (µ2QILI + LRCR + µφ1QR)

2
(
µ2Q2

I + QRCR

) , (56)

which reduces to Eq. (48) when µ = 1.
When φ1 = 0 and φ2 = 0, the exponent �µ(�opt) vanishes

for all values of δ and µ, and the spread-spectral teleportation
fidelity (54) reduces to

Fµ =
√

4κ2µ2a2(a2 + 1)(a2 + 1 − ρ2)

[(a2 + 1)(µ2a2 + κ2) − κ2ρ2]2
, (57)

which differs slightly from the spectral teleportation presented
in Eq. (49) due to the inclusion of the dilation factor µ.
However, the behaviors of the spectral and spread-spectral
teleportation fidelities are identical when µ = κ , and Figs. 3
and 4 thus represent the spread-spectral teleportation fidelity
for all values of κ = µ. This result implies that there is no
inherent loss in fidelity due to dilation of the spectral state.

A comparison of the spread-spectral teleportation fidelity
for various values of κ is presented in Fig. 9. The dilation
factor µ = 2 is fixed and the fidelity is plotted with respect
to the Schmidt number K for κ = 2, 4, and 8. Results for
chirped (solid lines) and unchirped (dashed lines) input states
are presented. For these curves, the values a = 0.1, δ = σ1,
φ1 = 0, and φ2 = 2/σ 2

1 are fixed. For κ �= µ, the fidelity is
low even for large K and, while unseen in Fig. 9, those inferior
fidelities do not approach unity in the limit K approaches
infinity.

The state prepared by spread-spectral teleportation is
defined by Eq. (13), and, for the case of Gaussian inputs,
is derived from the intermediate state of Eq. (22) by applying

FIG. 9. A plot of the spread-spectral teleportation fidelity Fµ for
different bandwidth ratios κ . Lines are plotted with respect to the
spectral Schmidt number K with µ = 2, a = 0.1, ω̄1 = ω̄3, φ1 = 0,
φ2 = 2/σ 2

1 , and δ = σ1. Curves are labeled by the bandwidth ratio κ

relative to the dilation factor µ.

the optimal spectral shift defined by Eq. (56). In Fig. 10, the
teleported spectral amplitude 〈ω | ψ3〉 is plotted with respect
to ω for fixed values of the spectral correlation ρ. The panels
in Fig. 10 show the change in form of the teleported state
as the degree of spectral entanglement (indicated by either
K or |ρ|) increases. In Fig. 10, the values a = 0.1, φ1 = 0,
φ2 = 2/σ 2

1 , δ = σ1, and µ = κ = 2 are fixed. In panel (a),
the amplitude (thick solid line) and phase (thick dashed line)
of photon 3 is significantly different from the amplitude and
phase of photon 1 (thin lines). As ρ approaches unity, indicated
by the progression of panels (a) through (d), the amplitude and
phase of the teleported state approach that of the intended
spread-spectral state.

As with spectral teleportation, the spread-spectral telepor-
tation fidelity is averaged with respect to the distribution of
possible input states. As noted earlier, there is no inherent loss
to the fidelity of teleportation from spreading the spectrum
when the bandwidth ratio κ matches the spreading factor
µ. Consequently, the averages computed in Sec. III with
respect to distributions of the input spectral state are also
representative of the average fidelities expected from spread-
spectral teleportation.

VI. DISCUSSION

As with previous variants of quantum teleportation, spectral
teleportation suggests an opportunity to extend the transmis-
sion range of spectrally encoded quantum information; for
example, by enabling a quantum repeater or quantum relay
for long-distance, spectrally encoded quantum communication
over noisy channels. In addition, spectral teleportation comple-
ments existing schemes to teleport the polarization [5,6] and
transverse-spatial [7] degrees of freedom. When combined,
these protocols enable a single platform for teleporting the
multiple photonic degrees freedom, including the complete
single-photon state [25–27], and, thus, greatly expand the size
of the photonic Hilbert space accessible for encoding and
processing quantum information.

Spread-spectral teleportation shows a similar promise
supplemented by the ability to modulate broad-bandwidth
photonic carriers for interacting with narrowband quantum
receivers. For example, whereas broad bandwidths are favor-
able for ensuring timely transmission, absorption by atomic
vapor atoms, neutral atoms, or trapped ions favors photons
of narrower bandwidths. This capability may prove useful in
long-distance quantum networks, where nodes composed from
solid-state quantum memories require a teleportation-based
protocol for communication. In addition, the capability to
spread the spectral state of the photon enables a quantum vari-
ant of classical spread spectrum communication techniques.
The analogy arises from both the broadening of the spectral
bandwidth and the randomized spectral shifting induced by
the measurement process [28].

The most significant technical challenge associated with the
current formulation of spectral and spread-spectral teleporta-
tion is the use of biphoton up-conversion as the operation to
entangle photons 1 and 2. Because the second-order nonlinear-
ity associated with SFG is generally on the order of 10−12 m/V,
the conversion efficiency for the proposed entangling operation
is small. However, we note that parametric single-photon
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FIG. 10. Plots of the initial and teleported spectral amplitude at four values of ρ. Curves represent the magnitude (thin solid line) and phase
(thin dashed line) of the initial wave form and the magnitude (thick solid line) and phase (thick dashed line) of the spread-spectral state. Plots
are made with ω̄1 = ω̄3, a = 0.1, φ1 = 0, φ2 = 2/σ 2

1 , δ = σ1, and µ = κ = 2. The spectral shift �opt from Eq. (56) has been applied and the
difference frequency �ω = ω − ω̄1 is presented in units of σ 1. Panels correspond to values of the spectral correlation ρ: (a) 0, (b) 0.99, (c)
0.999, and (d) 0.9999; and yield the corresponding spread-spectral fidelities Fµ: (a) 0.1980, (b) 0.8688, (c) 0.9963, and (d) 0.9999.

frequency up-conversion has been successfully implemented,
that is, assisted by a strong, coherent beam [11–14]. It may,
therefore, be possible to implement the frequency-entangling
operation required here using a similar form of parametric
biphoton up-conversion, for example, four-wave mixing,
assisted by a coherent beam, that could have a potential to
occur with unit efficiency [29]. In that case, an open question
is whether the spectral amplitude of the coherent field will
affect the resulting teleported spectral state.

VII. CONCLUSIONS

We have presented a method for teleporting a single-photon
spectral state using a spectrally entangled biphoton state.
We have investigated the fidelity of spectral teleportation
for the case of Gaussian spectral amplitudes, and we have
described the behavior of the fidelity with respect to the relative
bandwidths of the photons and the finite entanglement of
the biphoton state. We have also shown how control over the
marginal bandwidth ratio of the biphoton spectral amplitude
permits arbitrary spreading of the spectral state prepared
by teleportation. By investigating the spreading of complex
Gaussian input states, we have shown that spread-spectral tele-
portation performs the same as spectral teleportation provided
the appropriate definition of fidelity with respect to dilation is
used. Based on estimates of spectral entanglement available
from current SPDC-based photon pair sources, we conclude
that spectral and spread-spectral teleportation fidelities as high
as 0.9999 are obtainable with existing entanglement resources.
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APPENDIX

For completeness, we present the relationships between
the Gaussian parameters used in Eq. (16) and the experimental
conditions determining the joint spectral amplitude of Eq. (15).
Specifically, consider the SPDC phase-matching function of a
bulk nonlinear crystal of length L to be

�(ω,ω′) = sinc[�k(ω,ω′) · ẑL/2], (A1)

where sinc[x] = sin[x]/x and ẑ is perpendicular with the
crystal face. The wave-vector phase mismatch �k is

�k(ω,ω′) = kp(ω + ω′) − ko(ω) − ke(ω′), (A2)

where indices o and e denote the ordinary and extraordinary
down-converted rays, p denotes the pump pulse, and ks is
the wave vector for s = p, o, and e. By expanding the phase
mismatch to first order in the difference frequencies ω − ω0

and ω′ − ω0, and assuming down-conversion is matched at
zeroth order, the phase matching function can be expressed as

�(ω,ω′) ∼= exp {−γ [τo(ω − ω0) + τe(ω′ − ω0)]2} (A3)

with the constant γ ∼= 0.04823 chosen to match the full
width at half maximum (FWHM) of the Gaussian envelope
to the FWHM of the phase-matching function. Under these
conditions, the overlap between Eqs. (A1) and (A3) is ∼0.94,

062339-9



TRAVIS S. HUMBLE PHYSICAL REVIEW A 81, 062339 (2010)

while within ±1 FWHM the overlap is ∼0.9999. Since spectral
teleportation works best in a regime where the marginal
bandwidths of the joint spectrum are much greater than the
input spectral state, we anticipate the Gaussian approxima-
tion to be sufficient for modeling the teleported spectral
state.

Using primes to denote derivatives, the time constants in
Eq. (A3) are

τo = L[k′
p(2ω0) − k′

o(ω0)] (A4)

and

τe = L[k′
p(2ω0) − k′

e(ω0)], (A5)

which represent the differences in transit times through the
crystal between the pump and o and e rays, respectively. Then,
assuming the pump spectrum is a normalized Gaussian with
the 1/e width σp, and using Eqs. (15) and (A3), we identify the
Gaussian parameters in Eq. (16) as

σ 2
2 = 1 + γ τ 2

e σ 2
p

γ |τo − τe|2 , (A6)

σ 2
3 = 1 + γ τ 2

o σ 2
p

γ |τo − τe|2 , (A7)

and

ρ = −(
1 + γ τeτoσ

2
p

)
√(

1 + γ τ 2
o σ 2

p

)(
1 + γ τ 2

e σ 2
p

) . (A8)

The linear correlation ρ can also be expressed simply in terms
of the pump-pulse bandwidth σp and the marginal bandwidths
σ 2 and σ 3 as [30]

ρ = 2σ 2
p − (

σ 2
2 + σ 2

3

)
2σ2σ3

. (A9)

From the latter, it is obvious that there is no spectral
entanglement when the signal and idler marginal bandwidths
are equal to the pump bandwidth and that the maximal value
for ρ occurs when σ 2

2 = σ 2
3 = σ 2

p/2. The minimal value of
ρ occurs whenever σp is much smaller than the bandwidth
of the down-converted photons; this condition implies phase-
matching over a broad range of frequencies.
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