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Impossibility of faithfully storing single photons with the three-pulse photon echo
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(Received 26 February 2010; published 24 June 2010)

The three-pulse photon echo is a well-known technique to store intense light pulses in an inhomogeneously
broadened atomic ensemble. This protocol is attractive because it is relatively simple and it is well suited for
the storage of multiple temporal modes. Furthermore, it offers very long storage times, greater than the phase
relaxation time. Here, we consider the three-pulse photon echo in both two- and three-level systems as a potential
technique for the storage of light at the single-photon level. By explicit calculations, we show that the ratio
between the echo signal corresponding to a single-photon input and the noise is smaller than one. This severely
limits the achievable fidelity of the quantum state storage, making the three-pulse photon echo unsuitable for
single-photon quantum memory.
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I. INTRODUCTION

The distribution of entanglement over long distances is
at the heart of future quantum networks. It may rely on
quantum repeaters, which require photonic quantum memories
enabling the storage of a large number of temporal modes
for very long times [1]. Light storage based on photon-echo
techniques in inhomogeneously broadened atomic ensem-
bles has been widely studied in the classical regime [2].
These techniques are naturally suited to store intense light
pulses in multiple temporal modes. Storage and retrieval
of up to 1760-pulse sequences has been demonstrated [3].
Furthermore, when the photon echo is generated with a specific
sequence of three pulses, the so-called three-pulse photon
echo, it further offers very long storage times, greater than
the phase relaxation time, limited by the population relaxation
time only [4]. This technique could thus be very attractive, a
priori, in the context of quantum repeaters, and it is natural
to wonder whether it can be extended to the storage of single
photons.

It has been shown already that the simplest form of the
photon echo, namely the two-pulse photon echo, is not suited
for quantum storage [5]. However, a recent paper [6] might
let us believe, at first sight, that the photon echo in its
three-pulse version could be used for the storage of light at
the single-photon level. We thus analyze this last technique in
detail and we show in this paper that it does not preserve the
fidelity of the stored quantum state. The main reason is that
the rephasing process, induced by intense pulses and leading
to the collective emission of an echo, transfers a large number
of atoms to an excited state. The excitation of the medium
is followed by spontaneous emission of many photons in
random spectral, temporal, spatial, and polarization modes,
including those in which the stored photon may originally have
been prepared. This makes complete filtering of fluorescence
impossible, and it strongly degrades the fidelity of the echo
signal associated with a few-photon input. Furthermore, the
rephasing process is only partial, which intrinsically limits
the storage efficiency. These fundamental limitations, which

also apply to the protocol of Ref. [6], make it impossible
to implement a high-fidelity and high-efficiency quantum
memory based on the three-pulse photon echo in the few-
photon regime.

To evaluate the response of an inhomogeneously broadened
atomic ensemble to a sequence of many resonant pulses, we
follow the semiclassical approach that originated in Refs. [7,8].
First, we focus on the temporal evolution of a single atom.
Then, we sum over all individual responses to get (i) the
macroscopic polarization of the sample and thus the intensity
of the echo and (ii) the average population on the excited state
and thus the noise. We then deduce the signal-to-noise ratio for
the specific case of single-photon storage. This approach also
allows us to bound the storage efficiency. However, its does
not give any information about additional limitations caused
by the propagation of the light fields, which could be obtained
by solving the Maxwell-Bloch equations. Yet, it is interesting
to note that a model as simple as the one based on the dynamics
of a single atom clearly shows the impossibility of faithfully
storing individual photons with the three-pulse photon echo.
A complete comparison between this semiclassical approach
and the quantum theory will be treated elsewhere [9].

In the next section, we present our analysis of the three-
pulse photon echo in two-level systems. In Sec. III, we extend
our study to three-level systems. The last section is devoted to
our conclusion.

II. TWO-LEVEL SYSTEMS

We start with an ensemble of two-level systems with a
ground state |1〉 and an excited state |2〉 as depicted in Fig. 1.
We suppose that, initially, all N atoms are prepared in the state
|1〉. We first look at the temporal evolution of a single atom
which interacts with several laser pulses.

A. Response of a single atom

Let us recall the expression of propagators associated with
a two-level atom under a pulsed excitation detuned from the
resonance by � and with the Rabi frequency �i(t). If the light
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FIG. 1. Basic scheme of inhomogeneously broadened two-level
systems with a ground state |1〉 and an excited state |2〉. The spectral
atomic distribution is supposed to have a Gaussian shape with the
characteristic width �0. The interaction of the atomic ensemble with
a laser pulse is parametrized by the Rabi frequency � and by the
detuning �.

pulse is short enough (i.e., its spectrum is much larger than the
detuning �), the propagator is given by

Uθi (τ ) =
(

cos (θi/2) −i sin (θi/2)
−i sin (θi/2) cos (θi/2)

)
,

(1)
θi =

∫
ds�i(s) ≈ �max

i τ,

where τ is the temporal duration of the pulse and �max
i

is the maximum value of the Rabi frequency [i.e., �max
i =

maxt {�i(t)}]. Now consider the situation where the laser pulse
is off. In this case, the propagator from time ti to tf reduces to

U�(tf ,ti) =
(

1 0

0 e−i�(tf −ti )

)
. (2)

Having this in mind, we calculate the state of the atom
after a sequence of three pulses (cf. Fig. 2). We denote by
a and b the probability amplitudes of states |1〉 and |2〉,
respectively. Since the atom is initially prepared in the ground
state, we have a(t0 = 0) = 1 and b(t0 = 0) = 0. The first pulse,
corresponding to the stored pulse and associated with the Rabi
frequency �1, interacts with the atom at time t1. Then, two
pulses are used to halt and to reverse the dephasing due to the
inhomogeneous broadening. The interaction with the second
pulse, corresponding to �2, occurs at time t2. The probability
amplitudes at t2 are obtained by applying the propagators

FIG. 2. Pulse sequence associated with the three-pulse photon
echo in two-level atoms. The first pulse corresponding to �1 interacts
with the atoms at time t1 in order to be stored. The two next pulses,
�2 and �3, applied at times t2 and t3, respectively, correspond to
rephasing pulses. The echo signal is expected at time t4 = t3 + t2 − t1.

Uθ2 (τ )U�(t2,t1)Uθ1 (τ )U�(t1,t0) into the initial amplitudes,
leading to

a(t2) = cos (θ1/2) cos (θ2/2)

− sin (θ1/2) sin (θ2/2)e−i�(t2−t1), (3)
b(t2) = −i cos (θ1/2) sin (θ2/2)

− i sin (θ1/2) cos (θ2/2)e−i�(t2−t1). (4)

We are interested in the case where the third pulse associated
with �3 is applied at time t3 such that t3 − t2 is much longer
than the phase relaxation time of the |1〉–|2〉 transition and
much shorter than the radiative lifetime of the state |2〉. At time
t3 just before the interaction with the pulse �3, the populations
are identical to the ones at t2 but the coherence between the
states |1〉 and |2〉 is lost and the atomic state becomes

ρ(t3) = |a(t2)|2|1〉〈1| + |b(t2)|2|2〉〈2|. (5)

At time t4 > t3, the atom is finally described by

ρ(t4) = a(t2)|2U�(t4,t3)Uθ3 (τ )|1〉〈1|Uθ3†(τ )U�†(t4,t3)

+ |b(t2)|2U�(t4,t3)Uθ3 (τ )|2〉〈2|Uθ3†(τ )U�†(t4,t3),

that is, by a mixture of

U�(t4,t3)Uθ3 (τ )|1〉 = cos(θ3/2)|1〉 − i sin(θ3/2)e−i�(t4−t3)|2〉
and

U�(t4,t3)Uθ3 (τ )|2〉
= −i sin(θ3/2)|1〉 + cos(θ3/2)e−i�(t4−t3)|2〉

with weights |a(t2)|2 and |b(t2)|2, respectively.

B. Intensity of the echo signal

Consider the case where the first pulse corresponds to
a few-photon pulse θ1 ≈ 2ε. In this case, the number of
atoms transferred into the state |2〉 is given by N sin(θ1/2)2 ≈
Nε2, which is, in the single-photon case, equal to 1. When
absorbed by the sample, this few-photon pulse induces a weak
macroscopic polarization

P (t1) =
∫ ∞

−∞
d�g(�) ℘〈1|ρ(t1)|2〉

=
∫ ∞

−∞
d�g(�) ℘ a(t1)b(t1)� = i ℘ Nε, (6)

where ℘ is the electric dipole moment and g(�) is the atomic
spectral distribution, which satisfies

∫ ∞
−∞ d�g(�) = N.

The light pulses in our model, in particular the pulse one
wants to store, have spectral widths that are much larger
than the width of the atomic distribution g(�), which we
assume to have a Gaussian shape with the characteristic
width �0. The spectral-band-matching condition required
for efficient absorption is thus not met. However, one can
still bound the readout efficiency by comparing the initial
polarization (6) and the one at the echo time (cf. the
following).

Within the context of a three-pulse photon echo, the
rephasing pulses that maximize the echo intensity are π/2
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pulses (i.e., θ2 = θ3 = π/2). The electric dipoles radiate in
phase at time t4 = t3 + t2 − t1, leading to a macroscopic
polarization given by

P (t3 + t2 − t1) =
∫ ∞

−∞
d�g(�)℘〈1|ρ(t4 = t3 + t2 − t1)|2〉

= −
∫ ∞

−∞
d�g(�)

i℘ε

2
(1 + e2i�(t2−t1))

→ −i℘Nε

2
for (t2 − t1) � 1/�0. (7)

Hence, the initial polarization [see Eq. (6)] is not completely
restituted. The efficiency of the storage protocol is thus
intrinsically limited. Indeed, the polarization (7) of the atomic
ensemble serves as a source for the collective emission of an
echo that has an intensity given by

Iecho = I0

∣∣∣∣
∫ ∞

−∞
d�g(�) 〈1|ρ(t4 = t3 + t2 − t1)|2〉

∣∣∣∣
2

= 1

4
N2ε2I0, (8)

where I0 is the radiation intensity from a single isolated
atom prepared in the excited state in the spatiotemporal mode
associated with the echo. Note that this mode is completely
defined by the combination of excitation pulses. The quantity
Iecho is to be compared with the intensity related to the absorbed
part of the input pulse, which can be deduced from the initial
polarization using

I1 = I0

∣∣∣∣
∫ ∞

−∞
d�g(�) a(t1)b(t1)�

∣∣∣∣
2

= N2ε2I0.

The readout efficiency Iecho/I1 (and thus the overall storage
efficiency) is upper bounded by 1/4. Note that other detrimen-
tal effects due to the propagation within the atomic ensemble
(free-induction decay resulting in the propagation of intense
light pulses in the atomic medium or the finite value of the
optical depth) further limit the efficiency [5]. Let us now
compare Iecho with the incoherent emission from the same
sample.

C. Fluorescence

To determine the amount of fluorescence (i.e., the spon-
taneous emission), we evaluate the population in the excited
state at the echo time t3 + t2 − t1 without having exposed the
atoms to the first excitation (i.e. for ε = 0). We easily obtain
that 〈2|ρ(t3 + t2 − t1)|2〉 = 1/2, meaning that the intensity
associated with the spontaneous fluorescence is given by

Inoise = 1
2NI0. (9)

Equations (8) and (9) remind us that the incoherent radiation
as emanating from an ensemble of dipoles that are oscillating
with random phases has an intensity proportional to N whereas
the collective emission coming from an ensemble of dipoles
in phase gives rise to an echo with an intensity proportional to
N2 [10].

The ratio between the echo signal corresponding to a weak
input and the noise is given by

Iecho

Inoise
= 1

2
Nε2, (10)

which reduces to 1/2 in the particular case of a single-photon
input where Nε2 = 1. This calculation shows that, due to
the spontaneous emission that severely limits the achievable
fidelity of the quantum state storage, the conventional three-
pulse photon echo cannot be used to implement a quantum
memory in two-level systems. Indeed, the fidelity for storage
and recall of a time-bin qubit, that is, a single photon in a
superposition of two different emission times, F = tr(ρinρout)
with ρout = (2F − 1)ρin + (1 − F ) 1, is limited to (1 − F ) =
Inoise/(Iecho + 2Inoise), that is, F 2−level

max = 3/5 = 0.6. The value
for the fidelity is smaller than the limit Fclassical = 2/3 imposed
by optimum classical storage [11,12]. Moreover, for storage
times shorter than the phase relaxation time where the mixed-
state description is removed, formulas (8), (9), and (10)
still hold [in the limit where (t3 − t2) > (t2 − t1) > 1/�0],
meaning that independently of the storage time, the fidelity and
the efficiency of the three-pulse photon echo are fundamentally
limited at the single-photon level.

Note that this calculation concerns a sample of N atoms
which is small compared with λ3. For larger samples (i.e., for
sample sizes large compared with λ3), the spatial dependence
of the electromagnetic fields must be taken into account. In
this case, the polarization of the atomic ensemble at time t4 =
t3 + t2 − t1 for the specific mode associated with the wave
vector k is found to be

P (t3 + t2 − t1,k)

= −
∫ ∞

−∞
d� dr g(�,r)

i℘ε

2
(ei(k+k1−k2−k3).r

+ ei(k−k1+k2−k3).re2i�(t2−t1)),

where ki, i = {1,3}, refers the ith pulse and the atomic density
now depends on the spatial coordinate r. The exponential
terms average to zero unless the phase-matching condition
is fulfilled: k ≈ −k1 + k2 + k3. When the sample is small
compared with λ3, the collective emission is isotropic and
the signal-to-noise ratio (10) holds for any direction. For
sample sizes larger than λ3, the collective emission is highly
directional. For the specific direction associated with the
wave vector k satisfying the phase-matching condition, the
echo intensity is related to the spontaneous radiation intensity
I0(k) from a single atom by Iecho(k) = 1

4N2ε2I0(k). The
noise intensity is given by Inoise(k) = 1

2NI0(k) and, as before,
the signal-to-noise ratio reduces to 1/2 in the case of a
single-photon storage. For another direction, the signal field is
obtained by squaring each individual dipole and then summing.
This leads to a much worse signal-to-noise ratio of order
ε2. The conclusion is that a spatial filtering cannot be used
to circumvent the problem of noise. Moreover, the simpler
calculation where the spatial dependence of the fields is
neglected, gives an upper bound for the signal-to-noise ratio.
Now, we extend our analysis to three-level systems, omitting
the spatial dependence of the light.
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III. THREE-LEVEL SYSTEMS

A recent paper [6] suggests that the extension of the
three-pulse photon echo to systems with additional ground
states would allow us to implement a quantum memory. In the
following we apply the approach just described to quantify the
fluorescence in three-level systems and we show that, even in
these systems, the photon echo is inappropriate for the storage
of single photons.

The basic scheme, motivated by the analysis of the proposal
of Ref. [6], is as follows. We start with an ensemble of three-
level systems with an excited state |2〉 and two ground states
|1〉 and |3〉. We consider that the optical transition |1〉–|2〉 is
homogeneous and that the spin transition |1〉–|3〉 exhibits an
inhomogeneous broadening (see Fig. 3). As before, we first
focus on the dynamics of a single atom interacting with a
sequence of resonant pulses. To evaluate the response of the
atomic ensemble, we sum over all individual responses to
quantify the intensity of the echo and the fluorescence.

A. Response of a single atom

Consider a three-level atom under a pulsed Raman exci-
tation corresponding to the effective Rabi frequency �r

i (t) =√
�2

i (t) + �′2
i (t), where �i(t) [�′

i(t)] is associated with the
transition |1〉–|2〉 (|2〉–|3〉) and detuned from the two-photon
resonance by �r. Further suppose that the Rabi frequencies
satisfy �max

i ≈ �′ max
i and that the pulse durations τ are short

enough so that τ � 1/�0, as before. In the basis {|1〉,|2〉,|3〉},
the propagator is given by

Uθr
i (τ ) =

⎛
⎜⎜⎜⎝

1
2

(
1 + cos θr

i

2

)
−i√

2
sin θr

i

2
1
2

(
−1 + cos θr

i

2

)
−i√

2
sin θr

i

2 cos θr
i

2
−i√

2
sin θr

i

2

1
2

(
−1 + cos θr

i

2

)
−i√

2
sin θr

i

2
1
2

(
1 + cos θr

i

2

)

⎞
⎟⎟⎟⎠

with θr
i ≈ �

r,max
i τ. If the laser pulses are off, the propagator

reduces to

U�r (tf ,ti) =

⎛
⎜⎝

1 0 0

0 1 0

0 0 e−i�r (tf −ti )

⎞
⎟⎠ . (11)

FIG. 3. Basic scheme of three-level systems with an excited state
|2〉 and two ground states |1〉 and |3〉 that exhibits an inhomogeneous
broadening on the spin transition. As in the two-level scheme,
the atomic spectral distribution is supposed to be Gaussian with
characteristic width �0. The interaction of the atomic ensemble with
a Raman laser pulse is parametrized by the effective Rabi frequency
�r

i = √
�2 + �′2 and by the two-photon detuning �r.

FIG. 4. Pulse sequence for the three-pulse photon echo in three-
level systems. The first pulse, resonant with the transition |1〉–|2〉,
is the one to store. It is immediately followed by a π pulse at time
t1 on the transition |2〉–|3〉 to transfer the optical coherence into a
spin coherence. The next two pulses, corresponding to �r

2 and �r
3,

which are Raman pulses, force the ensemble of dipoles to rephase.
The resulting coherences are read out at time t4 = t3 + t2 − t1 by a π

pulse on the transition |2〉–|3〉. The echo is emitted immediately after
this final π pulse.

A possible procedure to transfer properly a weak-light excita-
tion into a spin coherence requires first the preparation of atoms
in one of the two ground states, say, the state |1〉. The weak
pulse that one wants to store is resonant with the transition
|1〉–|2〉 and generates a weak coherence iε between the states
|1〉 and |2〉 (see Fig. 4). By applying immediately a π pulse on
the transition |2〉–|3〉, the optical coherence is transferred to a
coherence between the state |1〉 and the state |3〉. At time t1
after this sequence of pulses, the probability amplitudes a, b,
and c associated with the states |1〉, |2〉, and |3〉, respectively,
are given by

a(t1) = 1, b(t1) = 0, c(t1) = −ε; (12)

that is, the weak pulse information is correctly stored into a
spin coherence.

Note at this stage that if one would use rephasing pulses
that are off-resonant with the |1〉–|2〉 and |2〉–|3〉 transitions,
the protocol would be identical with the three-pulse echo
in two-level systems already discussed. Nonresonant light
could indeed compensate for the dephasing associated with
the inhomogeneously broadened spin transition without pop-
ulation transfer to the excited state |2〉, which could thus be
eliminated adiabatically. The two spin states |1〉 and |3〉 would
be equally populated at the rephasing time. As a consequence,
the last π pulse used to transfer the spin coherence to an
optical coherence would transfer the population of one of
ground states into the excited state. The resulting spontaneous
emission would lead to a signal-to-noise ratio equal to the one
given in Eq. (10).

But let us consider resonant rephasing light pulses applied
simultaneously on the transitions |1〉–|2〉 and |2〉–|3〉, as in
Ref. [6]. More precisely, two Raman pulses corresponding
to θr

2 and θr
3 are sent through the medium at times t2 and t3,

respectively, to compensate for the inhomogeneous dephasing.
Further, consider the case where the delay t3 − t2 between
these Raman pulses is much longer than the phase relaxation
time of the |1〉–|3〉 transition, as before. Finally, at time t4 > t3,
a π pulse resonant with the transition |2〉–|3〉 transfers back
the spin coherence into an optical coherence. At time t4 just
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after the interaction with this last π pulse, the state of the atom
is described by a mixture of three states,

|ψ1〉 = 1

2

(
1 + cos

θr
3

2

)
|1〉

− i

2

(
−1 + cos

θr
3

2

)
e−i�r (t4−t3)|2〉 − 1√

2
sin

θr
3

2
|3〉,

|ψ2〉 = − i√
2

sin
θr

3

2
|1〉

− 1√
2

sin
θr

3

2
e−i�r (t4−t3)|2〉 − i cos

θr
3

2
|3〉,

|ψ3〉 = 1

2

(
−1 + cos

θr
3

2

)
|1〉

− i

2

(
1 + cos

θr
3

2

)
e−i�r (t4−t3)|2〉 − 1√

2
sin

θr
3

2
|3〉,

with respective weights |a(t2)|2, |b(t2)|2, and |c(t2)|2 given by

a(t2) = 1

2

(
1 + cos

θr
2

2

)
− ε

2

(
−1 + cos

θr
2

2

)
e−i�r (t2−t1),

b(t2) = − i√
2

sin
θr

2

2
+ iε√

2
sin

θr
2

2
e−i�r (t2−t1),

c(t2) = 1

2

(
−1 + cos

θr
2

2

)
− ε

2

(
1 + cos

θr
2

2

)
e−i�r (t2−t1).

B. Intensity of the echo signal

When absorbed by the sample, the first weak pulse induces
a weak macroscopic polarization

P (t1) = i℘Nε. (13)

If the two Raman pulses are Raman π pulses, that is, θr
2 =

θr
3 = π as suggested in Ref. [6], they lead to a macroscopic

polarization at time t4 = t3 + t2 − t1 given by

P (t4 = t3 + t2 − t1) → −i3℘Nε

8
for (t2 − t1) � 1/�0.

As in two-level systems, the initial polarization (13) is not
completely restituted, leading to a fundamental limitation for
the storage efficiency. The intensity of the echo signal is related
to the intensity associated with the spontaneous emission
coming from a single atom I0 by

Iecho = 9
64N2ε2I0. (14)

Since the intensity related to the absorbed part of the input
pulse is equal to N2ε2I0, the storage efficiency is upper
bounded by 9/64 (roughly 15%).

C. Fluorescence

To determine the amount of noise, we evaluate the pop-
ulation in the excited state at the echo time t4 = t3 + t2 − t1

without excitation, that is, for ε = 0, as in two-level systems.
We find

Inoise = 3
8NI0 (15)

so that the signal-to-noise ratio is given by

Iecho

Inoise
= 3

8
Nε2, (16)

which reduces to 3/8 in the single-photon case corresponding
to Nε2 = 1. Again, due to the spontaneous emission induced
by the rephasing pulses, the fidelity of the quantum state
storage is degraded beyond the classical limit: F 3−level

max = 11
19 ≈

0.58. Note that F 3−level
max < F 2−level

max .
Before concluding, let us focus on the analysis presented

in Ref. [6]. The author uses four-level systems with three
ground states |1〉, |3〉, and |a〉 and one excited state |2〉.
The studied protocol is similar to the one discussed here,
except that the excited atoms are reversibly transferred to the
auxiliary state |a〉 during storage (i.e., between the times t2
and t3). This population transfer to |a〉 avoids the loss by
spontaneous emission between times t2 and t3. However, the
upper level population is restored at time t3, before applying
the second Raman π pulse. Hence, one exactly recovers the
situation we considered here. As a consequence, the problem
of spontaneous emission is not circumvented and the signal is
equally dominated by the noise.

IV. CONCLUSION

In this paper, we proved that the conventional three-
pulse photon echo cannot be used for quantum storage. A
fundamental limitation is related to the medium excitation
induced by the rephasing pulses. This excitation induces
spontaneous emission, which produces a noise comparable
to the retrieved signal and thus deteriorates the storage fidelity
beyond the classical limit. This is a major difference compared
to genuine quantum memory protocols such as stopped light
based on electromagnetically induced transparency (EIT)
[13], controlled reversible inhomogeneous broadening (CRIB)
[14–17], or atomic frequency combs (AFC) [18], where the
control pulses transfer a negligible number of atoms to excited
states. Note finally that additional detrimental effects due
to propagation [5] could further limit the fidelity and the
efficiency of quantum storage based on three-pulse photon
echo.
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