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Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap
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We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A
narrow optical transition of Sr+ along with the ground and first excited motional states of the harmonic trapping
potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations,
which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional
qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the
laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is
implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we
demonstrate a Cirac-Zoller controlled-NOT gate in a single ion with a mean fidelity of 91(1)%.
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I. INTRODUCTION

Trapped ions are promising candidates for realizing
large-scale quantum computation [1,2]. Significant progress
has been made in demonstrating the fundamental ingredients of
a quantum processor, with much progress in gate fidelities [3]
and multi-ion entanglement [4,5]. In recent years, there has
been increasing interest in microfabricated surface-electrode
traps, owing to their inherent scalability [6,7]. However,
quantum gates have yet to be demonstrated in such systems.
An issue with miniaturization of traps is that anomalous
heating of the ion’s motional state scales unfavorably with
trap size [8], potentially limiting gate fidelity in traps of
suitable dimensions for scalability [9]. Recently, it has been
shown that, by cooling to cryogenic temperatures, the heating
rate can be reduced by several orders of magnitude from
room-temperature values [10], thus providing one potential
solution to this problem. In this work, we demonstrate a
quantum gate in a microfabricated surface-electrode ion trap
that is operated in a cryogenic environment and present some
control techniques developed for this experiment.

We implement a Cirac-Zoller controlled-NOT (CNOT) gate
using qubits represented by the atomic and motional states of a
single ion. The S ↔ D optical transition in 88Sr+ is used as one
of the qubits. The motional ground state and first excited state
of the ion in the harmonic trap potential form the second qubit.
The optical transition has the advantage of a long lifetime
while requiring only a single laser (unlike hyperfine qubits),
but the qubit is first-order Zeeman sensitive, which makes
it susceptible to magnetic field noise. Taking advantage of
the cryogenic environment, we stabilize the magnetic field
using a pair of superconducting rings [11]. Since the Sr+ ion
qubit is not an ideal two-level system, the coupling between
the sideband and carrier transitions causes level shifts known
as the ac Stark shift, which must be corrected. In previous
work, this has been accomplished with an additional laser
field with the opposite detuning to cancel out the shift [12].
Here, to reduce the experimental complexity of the additional
acousto-optical modulators (AOMs) and optics required, Stark
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shift corrections are implemented in the experiment control
scheme by shifting reference frames as is done in NMR [13].
For readout, the qubit encoded in the motional state of the ion
normally cannot be measured directly, but conditional pulse
sequences allow full state tomography of the qubit system.

The control techniques developed here may be applicable to
use of a single ion to probe and manipulate other systems, even
though they focus on a single ion and do not necessarily imply
scalability. Some such systems include the coupling of ions
to superconducting qubits [14], micromechanical cantilevers
[15], cavities [16], and wires [17]. In many of these experi-
ments, maximizing the coupling requires proximity of the ion
to a surface, and coherence of the motional state is also desired.

This paper is organized as follows. The experimental
setup, including the magnetic field stabilization scheme, is
described in Sec. II. Section III briefly discusses motional
state decoherence and shows that such decoherence has an
insignificant effect on the gate performance in our system.
Section IV presents a theoretical model of the Stark shift
correction and experimental implementation of the method.
Section V describes the state preparation and measurement
sequences that allowed us to implement quantum process
tomography on the single-ion system. Section VI describes
the realization of the CNOT gate, along with a discussion of
gate performance and error sources.

II. EXPERIMENTAL SETUP

A. Cryogenic microfabricated trap

The microfabricated trap is a five-rod surface-electrode
design identical in geometry to that described in Ref. [10].
The trap is made of niobium, and the fabrication process is
similar to prior methods [10] employed for gold traps, and
is described briefly here. A 440-nm Nb layer is grown on
a sapphire substrate by sputtering. The sheet resistance is
0.3 �/sq at 295 K, and the superconducting transition is
at Tc = 9.15 K. Trap electrodes are patterned using NR9-
3000 photoresist and etched using reactive ion etching with
CF4 + O2. The trap center is 100 µm above the surface.
For the experiment described here, the axial and two radial
trap frequencies are 2π × {1.32,2.4,2.7} MHz, respectively.
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Although a superconducting trap was used for the work
described here, the effects of the superconducting material
on trapping behavior will be described elsewhere [18].

The trap is cooled and operated in a 4-K bath cryostat
described in Ref. [19]. Typical ion lifetime is on the order
of several hours, limited only by the liquid-helium hold time.
Loading is done via photoionization of a thermal vapor.

B. Sr+ qubit and laser system

An atomic ion confined in a harmonic trapping potential
can encode two qubits, one in its optical atomic transition and
one in its lowest motional states. The 88Sr+ ion has a narrow
optical transition S1/2 ↔ D5/2 with a linewidth of 0.4 Hz.
The m = −1/2 ↔ m = −5/2 levels are used for the atomic
qubit transition. This transition is chosen for convenience,
as along with the P3/2(m = −3/2) level it forms a closed
three-level system for sideband cooling [20]. The degeneracy
of the multiple Zeeman levels is lifted by applying a constant
field of 4 G with external coils. To address this transition at
674 nm, a diode laser is grating-stabilized and locked to an
external cavity via optical feedback [21]. It is further stabilized
by locking to a high-finesse cavity made of ultralow expansion
glass as in Ref. [22]. The frequency noise, indicated by the
Pound-Drever-Hall error signal as measured with a spectrum
analyzer, is 0.3 Hz for noise components above 1 kHz. Below
1 kHz, acoustic noise broadens the laser linewidth to ∼300 Hz,
an estimate based on Ramsey spectroscopy measurements on
the carrier S-D transition assuming that the Ramsey contrast
decay is caused primarily by the laser linewidth. This laser
beam propagates along the axial direction of the trap, so we
ignore the radial modes of motion in sideband cooling and
quantum operations. Doppler cooling is performed on the
S1/2 ↔ P1/2 transition with a 422-nm diode laser. Two ir diode
lasers, at 1092 and 1033 nm, repump the ion from the D5/2

and D3/2 states. For all measurements, the ion is initialized to
the S1/2(m = −1/2) state and the motional ground state via
a sequence of Doppler cooling, sideband cooling, and optical
pumping. Figure 1 shows the relevant levels of Sr+ for the
experiment.

FIG. 1. (a) 88Sr+ level diagram. The 422- and 1091-nm transitions
are used for Doppler cooling and detection. The 673.837-nm
transition couples the qubit levels. (b) Details of the qubit states
with Zeeman levels explicitly drawn. The “pump” transition is
used to pump the ion out of the S1/2(m = 1/2) state during
initialization.

A pulse sequencer [23] consisting of a field-programmable
gate array (OpalKelly XEM3010-1000) and direct digital
synthesis boards controls the phases, amplitudes, and lengths
of the laser pulses. Switching of the beam and setting of
the desired frequency and phase shift are accomplished using
AOMs on the 674-, 422-, and 1033-nm lasers. Phase-coherent
switching is implemented by computing the expected phase
at time t , referenced to a fixed point in the past, for a
given frequency f using φ0(t) = f t(mod 2π ). Then, after a
frequency switch at time T , the absolute phase of the waveform
is adjusted to equal φ0(T ) + φ, where φ is any desired phase.
This process allows for frequency switching while maintaining
phase information throughout any arbitrary pulse sequence.

C. Magnetic field stabilization

When the optical qubit is encoded in a pair of levels that are
first-order sensitive to magnetic fields, field fluctuations on the
time scale of gate operations will decrease gate fidelity. One
way of passively stabilizing the field is by use of a µ-metal
shield, which is expensive and inconvenient for optical access,
and also mainly effective for low-frequency noise. Active
stabilization of the magnetic field using a flux gate sensor
and coils has been implemented in another experiment [24], at
the cost of higher complexity.

Superconducting solenoids have been employed for pas-
sively stabilizing ambient magnetic field fluctuations in NMR
experiments, with field suppression by a factor of 156 [11]. A
similar method for ion traps which would permit good optical
access is desired. In the NMR implementation, the field needs
to be stabilized over a region 1 cm in length, whereas in an
ion trap the region of interest is much smaller. Our method
uses the same principle of superconductive shielding, but the
small region and requirement for optical access suggest a more
compact approach.

We stabilize the magnetic field by employing the persistent
current in two superconducting rings, placed closely adjacent
to the ion trap chip. This is a very compact and experimentally
convenient arrangement, with high passive field stability and
little barrier to optical access. Below the trap is a 1 × 1
cm2 square Nb plate with a 1.5 mm diameter hole, located
0.5 mm below the trap center. Above the trap is a 50 cm2 square
plate with an 11-mm-diameter hole, located 7 mm above the
trap center [Fig. 2(a)]. Both rings are 0.5 mm thick. This
geometry was chosen to optimize the field suppression at the
trap location using the method to calculate magnetic fields in
superconducting rings described in Ref. [25].

With a single trapped ion, we measured the field suppression
by applying a constant field with external coils, cooling the
trap and Nb rings to below Tc, and reducing the field while
measuring the S ↔ D transition frequency. The magnetic
field is calculated from the Zeeman splitting between the
m = −1/2 ↔ m = −5/2 and the m = +1/2 ↔ m = −3/2
transitions. A 50-fold reduction in field sensitivity was ob-
served (Fig. 2), in agreement with the numerical calculation.
To determine the effectiveness of the noise suppression on
coherence of the atomic qubit, we measured the decay
of Ramsey fringes as a function of the separation of the
Ramsey π/2 rotations on the carrier S ↔ D transition. Such
a measurement also includes effects caused by laser linewidth
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FIG. 2. (a) Two superconducting disks, one below and one above
the trapped ion, stabilize the magnetic field in the ẑ direction. (Not to
scale.) (b) Magnetic field fluctuation suppression due to the top disk
only (×), the bottom disk only (+), and both disks (). When both
disks are used, field changes are suppressed 50-fold.

and the drift in laser-ion distance. We found that reducing the
magnetic field noise by a factor of 50 did not improve the
coherence time by more than a factor of 2, from T ∗

2 ∼ 350 µs
to ∼660 µs. This suggests that magnetic field noise is no
longer a dominant source of decoherence when compared to
laser linewidth. Although this measurement was done under
dc and the dominant source of magnetic field fluctuations is
frequencies near 60 Hz and its harmonics, we can estimate
the bandwidth of this compensation scheme by relating it to
material properties of niobium as a type-II superconductor. The
field suppression factor is determined by how fast the induced
currents in the superconducting rings respond to changes in
the external field, which depends on the ring’s inductance (a
geometric factor independent of frequency) and resistance.
Above the first critical field, type-II superconductors exhibit
flux pinning, which leads to ac resistance, but the critical field
for niobium is on the order of 1000 G [26,27]. Below the
critical field, superconductors can still exhibit a frequency-
dependent ac resistance as described in Ref. [28]. However,
for niobium the effect is not significant until frequencies up to
∼1012 Hz. Therefore at typical bias fields (4 G) and frequencies
relevant to our qubit (<1 kHz), niobium behaves as a perfect
superconductor, and we expect the field suppression factor to
be the same as that measured under dc.

Greater reduction can be obtained by optimizing the
geometry further, for example, by decreasing the distance
between the plates to 4 mm, but is not implemented because of
physical constraints in the apparatus. This method stabilizes
the magnetic field only along the axis of the superconducting
rings, but since the 4-G bias field defining the quantization
axis is applied in the same direction, field noise in the x or y
direction contributes only quadratically to the change in the
total field [11].

III. MOTIONAL STATE COHERENCE

The Cirac-Zoller CNOT gate employs superpositions of ion
motional states as intermediate states during the gate and thus
is sensitive to motional decoherence. In particular, a high ion
heating rate will reduce the gate fidelity. An upper bound
on the maximum heating rate tolerable, ṅmax, can be given
by consideration of the total time Tgate required for the pulse
sequence implementing the CNOT gate, together with a design
goal for the gate error probability pgate desired. Assuming
that a single quantum of change due to heating will cause a
gate error, then ṅmax < Tgate/pgate. For Tgate ∼ 230 µs (for our
experiment), a heating rate of ṅmax < 40 quanta/s is needed
to get pgate ∼ 0.01.

We measured the heating rate of the trap at the operating
secular frequency of 2π×1.32 MHz. The number of motional
quanta is measured by probing the blue and red sidebands of the
S ↔ D transition using the shelving technique, and comparing
the ratio of shelving probability on each sideband [29]. The
heating rate is determined by varying the delay before readout
and comparing the number of quanta versus delay time. The
measured heating rate is weakly dependent on the rf voltage
and dc compensation voltages. Noise on the rf pseudopotential
can cause heating [30,31], so the ion micromotion is minimized
using the photon correlation method [32]. For more details
about the measurements, see Ref. [33]. The heating rate can
also depend on the trap’s processing history and may vary
between temperature cycles [34]; for this trap, the variation
is small. In a typical experimental run, the rf voltage and dc
compensation values are adjusted to minimize the heating rate
before the coherence time and quantum gate data are taken.
Typical heating rates obtained in this trap are 4–6 quanta/s,
while the lowest heating rate measured is 2.1(3) quanta/s.
Figure 3(a) shows Rabi flops on the blue sideband after the ion
is initialized to the motional ground state with average number
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FIG. 3. (a) Rabi oscillations on the blue sideband. The fitted initial
contrast is 97.6(3)% and the frequency is 46.7 kHz. (b) Ramsey
spectroscopy on the blue sideband. The fitted Gaussian envelope of
the decay has time constant T ∗

2 = 622(37) µs.
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of quanta n̄ < 0.01. The fitted initial contrast is 97.6(3)% and
the frequency is 46.7 kHz. Motional state coherence is demon-
strated by performing Ramsey spectroscopy on the blue side-
band [Fig. 3(b)]. The coherence time T ∗

2 is 622(37) µs. This is
comparable to the coherence time of 660(12) µs of the atomic
qubit as measured by the same method on the carrier transition.

IV. STARK SHIFT CORRECTION

When a two-level atom encoding a qubit is driven off
resonance, as on a sideband transition, it excites the carrier
transition and creates an ac Stark shift. In a real ion with
multiple levels, additional complication comes from other
transitions that contribute shifts which are independent of
the laser detuning. In the past, correction for the Stark shift
has been done by using an additional laser detuned to the
opposite sideband transition to cancel the shift [12]. In qubits
addressed by a Raman transition, this can also be accomplished
by changing the power ratio of the Raman pulses [35]. In this
work, the Stark shift correction is done by calculating the
shift and accounting for it in the pulse sequencer, following an
example in NMR [13]. Here, we develop a systematic model
of the light shifts experienced by a single trapped ion.

The Stark shift is traditionally a phase shift caused by a
small change in the transition frequency caused by level shifts.
In reality, it is a unitary transform involving more than just a
change of energy levels. We also take this into consideration
later as a “generalized” Stark shift. The model presented here
is adapted from well-known methods in NMR and included
for pedagogical reasons. Section IV A identifies the reference
frames useful for discussing the single ion in the context
of quantum control. The generalized Stark shift correction
operation is then derived as a result of switching between these
frames. In Sec. IV B we apply this method to our single-ion
system and describe how to calculate the appropriate Stark
shift correction for any gate in an arbitrary gate sequence.
Section IV C describes the measurement of the ac Stark shift
and results of the Stark shift correction.

A. Stark shift on carrier: Simple free-ion model

There are several useful frames of reference to describe the
two-level atom model. Consider a single ion at a fixed position
in free space, interacting with a single-mode laser. Let this be
described by the laboratory reference frame Hamiltonian (with
the rotating-wave approximation)

H0 = ω0σz + �σx cos ωt + �σy sin ωt, (1)

where ω0 is the optical transition frequency, σx ,σy ,σz are
spin-1/2 operators corresponding to the Pauli matrices with
eigenvalues ±1/2, and � is the Rabi frequency.

Let the laser be applied at frequency ω = ω0 + δ, such that
we may define

HL = ωσz (2)

as a convenient frame of reference. In the frame of the laser,
the Hamiltonian is

VL = −δσz + �σx. (3)

The frame of reference we wish to use for quantum
computation (QC frame) is defined by the Hamiltonian

HQC = ω0σz. (4)

Thus, if we define a state in this frame as

|γ (t)〉 = e+iHQCt |ψ(t)〉 (5)

where |ψ(t)〉 is the state in the laboratory frame, then we find
that

|γ (t)〉 = eiδσzt e−i(δσz+�σx )t |γ (0)〉, (6)

assuming that |γ (0)〉 = |ψ(0)〉.
The generalized Stark shift correction operation that needs

to be applied is thus R†, where

R = eiδσzt e−i(δσz+�σx )t . (7)

This is an operator that rotates about an axis

n̂ = ẑ + (�/δ)x̂√
1 + (�/δ)2

. (8)

When the detuning is very large compared with the Rabi
frequency, the maximum rotation about the x̂ axis, which
corresponds to a population change, can be bounded by �2/δ2

for a π rotation about n̂. For our experimental parameters
(Sec. VI A), this is less than 1%. Therefore the Stark shift
is traditionally approximated as a rotation about the ẑ axis,
Rz(θ ) = eiθσz . We can compute what this operation and the
rotation angle θ would be by looking for the Rz closest
to R. The angle of rotation of the operator e−i(δσz+�σx )t is√

δ2 + �2t , while the angle of rotation of the operator eiδσzt

is δt . Thus, if one ignored the axes of rotation and treated the
first operator as if it were also a rotation about ẑ, then the Stark
shift correction would be a rotation by angle

(δ −
√

δ2 + �2)t (9)

about ẑ.

B. Stark shift corrections for arbitrary gate sequences

We now examine a real experimental situation with a
multilevel ion. To verify our proposed Stark shift correction
and later to consider the effect of error sources on gate
fidelity, we simulated gate operations by modeling the action
of lasers on the full system Hamiltonian in the space formed
by {|D〉,|S〉} ⊗ {|0〉,|1〉,|2〉}.

Exact simulation of the action of the lasers on the
computational space requires the use of both laser and QC
frames. The full Hamiltonian is time independent in the laser
frame, suggesting that gate operations should be computed
in that frame. The states used in quantum computation are
defined in the QC frame, where they are stationary without
the interaction applied. Simulation of a gate sequence will
therefore require frequent switching between the frames, for
which we define the operator ULQC(t).

Computation is performed by moving to the laser frame,
exponentiating VL, and moving back to the QC frame. For
example, a gate performed by application of a laser pulse of
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detuning δ, phase φ, starting at time t0 for time t , can be
computed in the QC frame to be

U (δ,φ,t,t0) = ULQC(t + t0)e−ıVLt/h̄ULQC(t0)†, (10)

where VL and ULQC depend on the laser detuning, phase, and
Rabi frequency as well as the trap parameters. Note that each
laser detuning and trap frequency define a separate laser frame.
The operator ULQC moves between the unique QC frame and
one of the infinite number of laser frames.

Let Uφ(φ) = e−iφ be a phase shift on the D states:

Uφ(φ) =
(

eiφ 0

0 1

)
⊗ I3, (11)

where In is the identity matrix of size n × n. Here the 2 × 2 ma-
trix acts on {|D〉,|S〉} and I3 acts on the motional states. Exper-
imentally, this operator is equivalent to shifting the laser phase
by φ. In a sequence of gates, application of such a phase rota-
tion implies shifting the laser phases of all subsequent gates.

In a multilevel atom, there are other transitions that are
off-resonantly coupled to the laser and contribute to additional
phase shifts that are detuning independent. In our modeling of
the Sr+ computation presented here, we include the S1/2 ↔
P1/2, S1/2 ↔ P3/2, and D1/2 ↔ P3/2 transitions. The matrix
elements of all these transitions, which determine the resulting
shift, can be calculated as in Ref. [36].

For gates performed on the carrier transition, since the
duration of carrier gates is shorter than that of sideband gates
by the Lamb-Dicke factor η (=0.06 for our case), carrier gates
take only a small fraction of the total time in a typical gate
sequence (∼2% in the CNOT pulse sequence). Thus we ignore
off-resonant coupling to the motional sidebands and coupling
to far-off-resonant transitions. For gates on the sideband
transitions, consider an interaction with laser detuning δ � �,
carrier Rabi frequency �, and phase φ applied for time t

starting at time t0. There are three separate phase shifts that
need to be canceled:

(1) We can remove the Stark shift of the ground and
excited states by rotating the phase of the |e〉 state by φs =
− (δ − √

δ2 + �2)t , equivalent to applying e−ıσzφs , following
the offending gate. Z rotations can be performed by changing
the phases of all subsequent laser pulses by φs .

(2) Resonant excitation of sidebands is applied at a fre-
quency Stark-shifted owing to the carrier. The laser frame
corresponding to that frequency will rotate with respect to the
unshifted states at a rate proportional to the Stark shift. To
bring the laser frame and unshifted states in phase, the laser
phase has to be shifted by φf = (δ − √

δ2 + �2)t0. Such a
phase shift is equivalent to applying e−ıσzφf before the gate
and eıσzφf after.

(3) Off-resonant phase shifts account for approximately
10% of the total Stark shift in Sr+. Let �0 be a constant
factor to account for these off-resonant phase shifts.

Define the carrier gate Uc, sideband gate Um, and phase
correction � as follows. Along with the gate time t and gate
starting time t0, these variables contain all the information
relevant to calculating the required Stark shift correction.

Uc = U, (12)

Um = Uφ[(−�(t + t0)]UUφ(�t0), (13)

� = (δ −
√

δ2 + �2) + �0. (14)

From the definition of U and properties of the exponential
function, it can be shown that the phase correction on the nth
gate Un in an arbitrary gate sequence is

Un = Uφ

(
−

n∑
i=1

�iti

)
U

(
δ,φ + �ntn0 −

n−1∑
i=1

�iti,tn,tn0

)
.

(15)

This phase correction consists of the appropriate correction
for that particular gate plus a global phase, the sum of all
phase corrections applied to previous gates. In our pulse
sequencer [23], the global time and global phase are kept
as internal registers and are used to calculate the appropriate
phase correction every time the qubit laser phase is set during
a pulse sequence.

C. Results

Ramsey spectroscopy on the blue sideband can be used
to characterize the effectiveness of the Stark shift correction.
Using the methods described in Ref. [12], we measure the ac
Stark shift for various detunings and compare to the theoretical
model. Figure 4(b) shows the typical oscillation in the shelving
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FIG. 4. (a) Pulse sequence used to measure ac Stark shift, from
Ref. [12]. The delay between two carrier π/2 pulses is Tfixed =
230 µs while the length τ of the Stark pulse is varied. (b) Typical
measurement with the pulse sequence in (a). The ac Stark shift is given
by the oscillation frequency of the shelving probability. Here, the
fixed laser detuning is 1.05ωsec, which gives an ac Stark shift of 2π ×
5.50(4) kHz. (c) Measured ac Stark shift as a function of detuning
in units of ωsec, fitted to the Stark shift model with the detuning-
independent shift as a free parameter. (d) Ramsey spectroscopy on
the sideband, demonstrating compensation of Stark shift.
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probability P (D) when a pulse detuned from the S ↔ D

transition (Stark pulse) of varying duration is applied. The
ac Stark shift is given by the oscillation frequency. This shift
is measured for several values of detuning and is shown in
Fig. 4(c) along with a one-parameter fit to A/x + b, where the
fixed parameter is A = �2/(2ωsec), the detuning-dependent
shift to first order, and b is the detuning-independent Stark shift
caused by farther-off-resonant transitions. The fitted offset is
b = −2π × 0.5(1) kHz, in agreement with −2π × 0.50 kHz
predicted by theory.

The effectiveness of ac Stark shift compensation was
evaluated by performing Ramsey spectroscopy on the sideband
and varying the delay time between the two pulses, with both
Ramsey pulses shifted by π/2. In the absence of uncorrected
Stark shifts, the expected P (D) is 1/2 for all delay times.
Figure 4(d) shows the result of such a measurement. Here,
the secular frequency is determined by taking a spectrum and
fitting to the sideband; then the Ramsey sequence is performed.
The parameter φs is fixed in the experiment control hardware
while �0 is tuned such that P (D) is maintained near 1/2. From
the slope of Fig. 4(d), we estimate the residual Stark shift to
be 2π × 24(20) Hz.

V. QUANTUM PROCESS TOMOGRAPHY
ON A SINGLE ION

With N = 2 qubits encoded in a single ion and methods of
coupling and controlling these states, a Cirac-Zoller CNOT gate
can be implemented [37]. The CNOT gate is universal in that
all quantum operations can be decomposed into single-qubit
operations and the CNOT gate, and is thus of interest for
implementing quantum information processing in ion traps. To
evaluate the performance of such a gate, we prepare the system
in a set of basis states that spans the space of 2N × 2N density
matrices and perform a set of measurements that completely
specifies the resulting state (state tomography). Quantum
process tomography (QPT) is performed on the two qubits to
construct the process matrix, allowing a full characterization
of the gate. Section V A gives a brief summary of state tomog-
raphy using conditional measurements. Section V B describes
a minimal set of available measurements and operations in this
two-qubit single-ion system necessary for QPT. Sections V C
and V D list the pulse sequences for preparing all basis states
and measuring the outcome. Section V E briefly describes the
construction of the process matrix that fully characterizes the
gate from these measurements.

A. Two-qubit state tomography for one ion

State tomography on the single-ion system of atomic
and motional qubits requires a nontrivial set of operations,
since a single qubit rotation on the motional qubit cannot be
realized directly except by first swapping it with the internal
state, performing the desired gate, then swapping back. The
SWAP operation is complicated since the most straightforward
physical operations, red- and blue-sideband pulses, generally
take the system out of the computational space, and into
higher-order motional states such as |2〉 [38]. For the CNOT

gate, a set of composite pulse sequences can keep the system
in the computational space. But if the goal is measurement

of the two-qubit state space rather than the realization of a
coherent operation, an alternative approach can be employed.
A sequence of measurements, with the second conditioned on
the results of the first, can suffice to allow full state tomography
on the two-qubit atomic+motional state space. This is an
extension of the single-ion tomography technique described
in [39].

The conditional measurement sequence is as follows. First
we apply an optional π pulse on the carrier transition;
then the internal atomic state is measured by fluorescence
detection. When this measurement scatters photons, it provides
information about the internal state only, and the motional
state information is lost. When this first measurement does
not scatter photons, a π pulse is applied on the blue-sideband
transition, which allows measurement of the population in
the state pairs {|S0〉,|S1〉} or {|D0〉,|D1〉}, depending on
whether the initial carrier π pulse was applied or not. Two
measurements, with and without the carrier pulse, are sufficient
to determine the population in all four states.

B. Process tomography: Operator definitions

The state tomographic measurement just described mea-
sures state populations only, which are the diagonal elements
of the full density matrix. Relative phases between qubit states,
which determine coherence properties of the state, are also
needed in order to perform complete process tomography. The
phases can be obtained by appropriate rotations of the qubits
prior to measurement. Here we define the measurement and
rotation operators for the sections following.

The single available measurement is the usual fluorescence
detection, which is a projective measurement into the |S〉 state,
denoted PS . Let PD denote a projection into the |D〉 state. The
matrices for PS and PD in the basis |D0,D1,D2,S0,S1,S2〉
are

PS =
(

0 0

0 1

)
⊗ I3, PD = I6 − PS (16)

.
The available unitary operations are as follows.

(1) Rx(θ ), Ry(θ ): Single qubit (carrier) rotations on the
{|S〉,|D〉} qubit.

(2) R+
x (θ ), R+

y (θ ): Blue-sideband rotations, connecting
{|S0〉,|D1〉} and {|S1〉,|D2〉} (neglecting higher-order vibra-
tional modes). θ is the rotation angle on the {|S0〉,|D1〉}
manifold.

(3) Red-sideband rotations can be defined similarly, but
are actually not necessary for construction of a complete
measurement set.

Explicitly, these rotation matrices are defined as follows:

Rx(θ ) = exp[−iθ (σx ⊗ I3)],

Ry(θ ) = exp[−iθ (σy ⊗ I3)],
(17)

R+
x (θ ) = exp[θ (σ+ ⊗ a† − σ− ⊗ a)/2],

R+
y (θ ) = exp[−iθ (σ+ ⊗ a† + σ− ⊗ a)/2],

where a† and a are the creation and annilation operators in the
Jaynes-Cummings Hamiltonian.
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TABLE I. State preparation operations.

(i) Operations applied to 0 State

(1) Ry(−π ) |D0〉
(2) R+

x (−π ) |D1〉
(3) I |S0〉
(4) Ry(π )R+

x (π ) |S1〉
(5) R+

x (π )Ry(−π/2) (|D0〉 + |D1〉)/√2
(6) R+

y (−π )Ry(−π/2) (|D0〉 + i|D1〉)/√2
(7) Ry(−π/2) (|D0〉 + |S0〉)/√2
(8) Rx(π/2) (|D0〉 + i|S0〉)/√2
(9) Ry(−π )R+

x (−π/2) (|D0〉 + |S1〉)/√2
(10) Ry(−π )R+

x (π/2) (|D0〉 + i|S1〉)/√2
(11) R+

x (π/2) (|D1〉 + |S0〉)/√2
(12) R+

y (π/2) (|D1〉 + i|S0〉)/√2
(13) Ry(π/2)R+

x (π ) (|D1〉 + |S1〉)/√2
(14) Rx(−π/2)R+

x (−π ) (|D1〉 + i|S1〉)/√2
(15) Ry(−π )R+

x (−π )Ry(π/2) (|S0〉 + |S1〉)/√2
(16) Ry(−π )R+

y (π )Ry(π/2) (|S0〉 + i|S1〉)/√2

C. State preparation

For every measurement sequence, the ion is initialized to
the state 0 ≡ |S0〉. The sequences of operations listed in
Table I generates the 16 input states that span the space
of 4 × 4 density matrices created from the product states
|D0,D1,S0,S1〉.

D. Complete basis of measurements

The following is a procedure for performing complete state
tomography of the two-qubit {|S〉,|D〉} ⊗ {|0〉,|1〉} state of a
single ion, using the measurements and operations in Sec. V B.
This is a generalization of the method used to measure just the
diagonal elements of the density matrix. There are two kinds
of measurement used; we call them MU and MUV .

MU involves performing a unitary operation U on the input
state and then projecting into the |S〉 subspace PS . This is
described by the measurement operator

MU (U ) = U †PSU. (18)

Typically, U will be a rotation in the {|S〉,|D〉} subspace,
implemented by a carrier transition pulse.

MUV involves first performing a unitary operation U on the
input state and making a measurement to detect fluorescence,
which is equivalent to projecting to the |S〉 subspace. Since
|D〉 is long lived, this projection leaves the {|D0〉,|D1〉, . . .}
subspace undisturbed, but motional state information is lost
if the ion is in state |S,n〉. If no fluorescence is detected,
the postmeasurement state is PDρPD . Conditioned on the
first measurement returning |D〉 (no fluorescence), a unitary
transform V is performed, and finally another into the |S〉
subspace PS . If the first measurement returns fluorescence, the
measurement sequence stops, in which case only information
about the atomic state is obtained. MUV is described by the
measurement operator

MUV (U,V ) = U †PDV †PSV PDU. (19)

TABLE II. State measurement functions.

Mj Measurement functions

M1 MU (I )
M2 MUV (I,R+

y (π ))
M3 MUV (Ry(π ),R+

y (π ))
M4 MU (Ry(π/2))
M5 MU (Rx(π/2))
M6 MUV (I,Ry(π/2)R+

y (π/2))
M7 MUV (Ry(π ),Ry(π/2)R+

y (π/2))
M8 MUV (Ry(π/2),Ry(π/2)R+

y (π/2))
M9 MUV (Ry(π/2),Rx(π/2)R+

y (π/2))
M10 MUV (I,Rx(π/2)R+

y (π/2))
M11 MUV (Rx(π ),Rx(π/2)R+

y (π/2))
M12 MUV (Rx(π/2),Rx(π/2)R+

y (π/2))
M13 MUV (Rx(π/2),Ry(π/2)R+

y (π/2))
M14 MUV (Ry(π/2),R+

y (π/2))
M15 MUV (Rx(π/2),R+

y (π/2))

Typically, U will be a rotation in the {|S〉,|D〉} subspace, while
V will be one or more rotations on the carrier and the red or
blue sideband.

The measurements listed in Table II provide a complete
basis of observables from which the full density matrix ρ

can be reconstructed, assuming that ρ is initially in only
the two-qubit computational subspace. These measurement
observables are linearly independent.

The relationship between measurements and the density
matrix can be expressed by a matrix A with elements

Aij = Mj ((i)). (20)

The full density matrix ρ can be reconstructed as

ρ =
∑
ij

mjA
−1
ij |i〉〈i |, (21)

where mj is the result of measurement Mj .

E. Construction of the process matrix

A quantum gate including all error sources can be rep-
resented by the operation E(ρ), which can be written in the
operator sum representation as

E(ρ) =
∑
mn

EmρE†
nχmn, (22)

where ρ is the input state and Ei is a basis of the set of
operators on the state space. The process matrix χmn contains
the full gate information. For two qubits, the state space is
spanned by 16 basis states, and 162 elements define the χ

matrix, although it only has 16 × 15 independent degrees
of freedom because of normalization. This is reflected in
the fact that only 15 measurements are needed. The χ

matrix can be obtained by inverting the above relation. To
avoid unphysical results [namely, a non-positive-semidefinite
ρ, Tr(ρ2) > 1] caused by statistical quantum error in the
experiment, a maximum-likelihood estimation algorithm [40]
is employed to determine the physical operation E that most
likely generated the measured data. An alternate, iterative
algorithm is presented in Ref. [41].
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VI. SINGLE-ION CNOT GATE

The CNOT gate is implemented with the pulse sequence
described in Ref. [42]. The optical transition is the control
qubit, and the motional ground and first excited states are used
as the target qubit. In the product basis {|D0〉,|D1〉,|S0〉,|S1〉},
the unitary matrix implemented is

U =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠

= 1

2
(−iY ⊗ Z + Z ⊗ I + Z ⊗ Z + iY ⊗ Z). (23)

This differs from the ideal CNOT matrix by only single-qubit
phase shifts. Section VI A describes the achieved gate fidelities
and Sec. VI B discusses the major known error sources that
compromise gate fidelity.

A. Gate performance

Quantum process tomography was carried out to evaluate
the performance of various gates on the two qubits of a
single ion. The ion in its motional and atomic ground state
is initialized to one of the 16 input states in Table I. Then
the gate is applied, and the output state is determined by
making all of the measurements listed in Table II. The longest
duration of the full measurement sequence (excluding the gate)
is 610 µs, and a single CNOT gate takes 230 µs. These durations
are determined by the Rabi frequency on the carrier � =
2π×125 kHz and on the sideband �BSB = 2π×7.7 kHz, and
the secular frequency ωsec = 2π×1.32 MHz. The resulting χ

matrix for the CNOT gate is shown in Fig. 5.
We evaluate the performance of the identity gate (all

preparation and measurement sequences performed with no
gate in between), the single CNOT gate, and two concatenated
CNOT gates (CNOT × 2). The results are shown in Table III. The
process fidelity is defined as Fp = Tr(χidχexpt), where χid is
the ideal χ matrix calculated with the ideal unitary operation
U , and χexpt is experimentally obtained using maximum-
likelihood estimation. We also calculate the mean fidelity
Fmean, based on the overlap between the expected and mea-

TABLE III. Measured gate fidelities for the identity gate, the
single CNOT gate, and two concatenated CNOT gates.

Gate Fp (%) Fmean (%)

Identity 90(1) 94(3)
CNOT 85(1) 91(5)
CNOT × 2 81(1) 89(6)

sured density matrices, Tr(ρidρexpt), averaged over all prepared
and measured basis states, as in Ref. [43]. Fp characterizes the
process matrix whereas Fmean is a more direct measure of the
gate performance. There exists a simple relationship between
the two measures, Fmean = (dFp + 1)/(d + 1) [44], which is
consistent with the independently calculated values for our
data. Error bars on Fp are calculated from quantum projection
noise using Monte Carlo methods [45]. The large error
bars on Fmean occur because certain measured basis states
consistently have a higher or lower overlap with the ideal
states. In general, states that involve multiple pulses to create
entanglement are more susceptible to error and therefore have
a lower fidelity than states that are closer to pure states. The
pulse sequence for some states essentially performs a CNOT

gate to create and remove entanglement; thus imperfect state
preparation and measurement contributes significantly to the
overall infidelity. Using the data for 0, 1, and 2 gates, we
can estimate the fidelity of a single CNOT gate normalized
with respect to the overall fidelity of the state preparation
and measurement steps. Assuming that the fidelity of the
nth gate is Fn

p = Fi(Fg)n, where Fi is the preparation and
measurement fidelity, the fitted fidelity per gate, Fg , is 95%.

B. Error sources

A number of possible error sources and their contributions
to the process fidelity of the single CNOT gate are listed
in Table IV. To estimate and understand error sources, we
simulated the full system evolution in the (2 atomic state) ×
(3 motional state) manifold using the exact Hamiltonian,
including Stark shift and tomographic measurements. The
magnitude of each source is measured independently and
then added to the simulated pulse sequence. Laser frequency
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FIG. 5. (Color online) Process tomography on the CNOT gate. (a), (b), and (c) show the absolute, real, and imaginary parts of the χ matrix,
respectively.
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TABLE IV. Error budget listing the major sources of errors in
the process fidelity of the single CNOT gate, obtained by simulation.
Each error source is assumed to be independent. The total error is
calculated as the product of individual errors.

Error source Magnitude Approx. contribution

Off-resonant excitations 1% 10%
Laser frequency fluctuations 300 Hz 5%
Laser intensity fluctuations 1% 1%
Total 15%

fluctuation is assumed to be the primary cause of decoherence
and is measured by observing the decay of Ramsey fringes on
the carrier transition. The frequency fluctuation is simulated
as a random variable on the laser frequency which grows
in amplitude over time, and accounted for via Monte Carlo
techniques. Laser intensity fluctuations are measured directly
with a photodiode. On short time scales comparable to the
length of the gate, the fluctuations are ∼0.1% peak to peak;
on longer time scales, up to 1% drifts are observed. Both of
these effects are accounted for in the simulation. Off-resonant
excitations are automatically included in the model of the full
Hamiltonian. The effect can be removed from the simulation
if decoherence is not included and the simulated pulses are
of arbitrarily long lengths, which is equivalent to reducing the
laser intensity. The resulting χ matrix and fidelity agree well
with the measured results, indicating that the observed fidelity
is well understood in terms of technical limitations.

Off-resonant excitations, caused by the square pulse shape
used to address all transitions, is expected to be the largest
source of error, as previous work has found [46]. Square
pulses on the blue-sideband transition contain many higher
harmonics, which causes residual excitation of the carrier
transition. The carrier transition oscillations caused by this can
be measured directly, averaged over many scans because of
their small amplitude. Although the measured amount of off-
resonant excitation is small (∼1%) for the laser intensity and
secular frequencies used for our gates, both our simulations and
previous work [46] have found that up to 10% improvement in

gate fidelity can be gained by implementing amplitude pulse
shaping.

VII. CONCLUSION

In summary, we have developed a cryogenic, microfabri-
cated ion trap system and demonstrated coherent control of a
single ion. The cryogenic environment suppresses anomalous
heating of the motional state, as well as enabling the use
of a compact form of magnetic field stabilization using
superconducting rings. We perform Stark shift correction in
the pulse sequencer, removing the requirement for a separate
laser path and acousto-optical modulator. A complete set of
pulse sequences for performing quantum process tomography
on a single ion’s atomic and motional state is implemented.
These components are sufficient to perform a CNOT gate on
the atomic and motional states of a single ion. It is expected
that amplitude pulse shaping would further improve the gate
fidelity. These techniques, realized in a relatively simple
experimental system, make the single ion a possible tool for
studying other interesting quantum-mechanical systems.

The control techniques and the CNOT gate demonstrated
in this work focus on a single ion and do not constitute a
universal gate set for scalable quantum computation. However,
the additional requirements for such a universal two-ion
gate, including individual addressing [47] and readout of two
ions, have been realized in traditional three-dimensional Paul
traps as well as other surface trap experiments, and are not
expected to pose significant challenges. The microfabricated
surface-electrode ion trap operated in a cryogenic environment
thus offers a viable option for realizing a large-scale quantum
processor.

ACKNOWLEDGMENTS

We thank Eric Dauler for assistance in trap fabrication and
Peter Herskind for helpful discussions and a critical reading of
the manuscript. This work was supported by the Japan Science
and Technology Agency, the COMMIT Program with funding
from IARPA, and the NSF Center for Ultracold Atoms.
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