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It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with
positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set
of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of
entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations.
The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of
product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ.
The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product
transformation. In the case of a system of dimension 3 × 3, we give a complete parametrization of orthogonal
UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present
strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank
entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in
similar ways.
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I. INTRODUCTION

For a composite quantum system, with two separate parts
A and B, the mixed quantum states are described by density
matrices that can be classified as being either entangled
or separable (nonentangled). However, there is in general
no easy way to classify a given density matrix as being
separable or not. This problem is referred to as the separability
problem, and it has been approached in the literature in
different ways over the past several years [1]. As a part of this
discussion there has been a focus on a subset of the density
matrices which includes, but is generally larger than, the set
of separable states. This is the set of the so-called positive
partial transpose (PPT) states, the density matrices that remain
positive under a partial matrix transposition, with respect to
one of the subsystems, either A or B [2].

Since it is straightforward to establish whether a density
matrix is a PPT state, the separability problem is reduced to
identifying the subset of entangled PPT states. We refer here to
the set of separable states as S and the set of PPT states as P ,
with S ⊂ P . These are both convex subsets of the full convex
set of density matrices, which we denote as D, and in principle
the two sets are therefore defined by their extremal states. The
extremal separable states are the pure product states, and these
are also extremal states of the set P . Since P is in general
larger than S, it has additional extremal states, and these states
are not fully known. The problem of finding and classifying
these additional extremal states is therefore an important part
of the problem to identify the PPT states that are entangled.

We have in two previous publications studied, in different
ways, the problem of finding extremal PPT states in systems
of low dimensions. In [3] a criterion for extremality was
established and a method was described to numerically search
for extremal PPT states. This method was applied to different
composite systems, and several types of extremal states were
found. In a recent paper [4] this study has been followed up by
a systematic search for PPT states of different ranks. Series of
extremal PPT states have there been identified and tabulated
for different bipartite systems of low dimensions.

The study in [4] seems to show that the extremal PPT states
with lowest rank are somehow special compared to the other
extremal states. In particular we have found that these density
matrices have no product vectors in their image but do have a
finite, complete set of product vectors in their kernel. This was
found to be a common property of the lowest rank extremal
PPT states studied there, for all systems with subsystems of
dimensions larger than two. This property relates these states
to a particular construction, where unextendible product bases
(UPBs) are used in a method to construct entangled PPT
states [5–7].

The motivation for the present paper is to follow up this
apparent link between the lowest rank extremal PPT states
and the UPB construction. Our focus is particularly on the
rank 4 states of the 3 × 3 system. The rank 4 extremal PPT
states that we find numerically by the method introduced in [4]
are related by product transformations to states constructed
directly from UPBs. We discuss this relation and use it to give
a parametrization of the rank 4 extremal PPT states.

Although a direct application of the (generalized) UPB
construction to the lowest rank extremal states is restricted
to the 3 × 3 system, the similarity between these states and the
lowest rank extremal states in higher dimensions indicates
that there may exist a generalization of this construction
that is more generally valid. We include at the end a brief
discussion of the higher dimensional cases and only suggest
that a construction method, and thereby a parametrization, of
such states may exist.

II. AN EXTENSION OF THE UPB CONSTRUCTION
OF ENTANGLED PPT STATES

We consider in the following a bipartite quantum system
with a Hilbert space H = HA ⊗ HB of dimension N =
NANB . By definition, a separable state can be written as a
density operator of the form

ρ =
∑

k

pkψkψ
†
k , (1)
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with pk � 0,
∑

k pk = 1, and with ψk = φk ⊗ χk as normal-
ized product vectors. The image of ρ, Im ρ, is spanned by these
vectors. The fact that Im ρ must be spanned by product vectors
if ρ is separable is the basis for the UPB construction, which
was introduced in Ref. [5] and used there to find low-rank
entangled PPT states of the 3 × 3 system. We review here this
construction and discuss a particular generalization.

Consider U to be a subspace of H that is spanned by a set
of orthonormal product vectors

ψk = φk ⊗ χk, k = 1,2, . . . ,p, (2)

which cannot be extended further inH to a set of p + 1 orthog-
onal product vectors. This defines the set as an unextendible
product basis. Let U⊥ be the orthogonal complement to U . The
state proportional to the orthogonal projection onto U⊥,

ρ1 = a1

(
1 −

∑
k

ψkψ
†
k

)
, (3)

with a1 = 1/(N − p) as a normalization factor, is then an
entangled PPT state. It is nonseparable because Im ρ1 = U⊥
contains no product vector, and it is a PPT state because ρP

1 ,
the partial transpose of ρ1 with respect to subsystem B, is
proportional to a projection of the same form,

ρP
1 = a1

(
1 −

∑
k

ψ̃kψ̃
†
k

)
, (4)

with ψ̃k = φk ⊗ χ∗
k . The vector χ∗

k is the complex conjugate
of χk , in the same basis in HB as is used for the partial
transposition.

The set of product vectors {ψ̃k = φk ⊗ χ∗
k } is a new

orthonormal UPB, which generally spans a different subspace
than the original set {ψk = φk ⊗ χk}. However, it may happen
that there exists a basis for the Hilbert space HB of the second
subsystem in which all the vectors χk have real components.
In such a basis the two UPB sets are identical and the state ρ1

is a PPT state for the simple reason that it is invariant under
partial transposition, ρP

1 = ρ1. All the states given as examples
in Ref. [5] are of this special kind.

An entangled PPT state ρ1 defined by this UPB construction
is a rather special density operator. Ker ρ1 is spanned by
product vectors, while Im ρ1 contains no product vector.
Since ρ1 is proportional to the orthogonal projection onto
the subspace Im ρ1, it is the maximally mixed state on this
subspace. There is also a symmetry between ρ1 and ρP

1 , such
that ρP

1 shares with ρ1 all the properties just mentioned and
has the same rank N − p, where N = NANB is the dimension
of the Hilbert space and p is the number of product vectors in
the UPB.

Implicitly the construction implies limits to the rank of ρ1.
Thus, for a given Hilbert space of dimension N = NANB there
is a lower limit to the number of product vectors in a UPB,
which follows from the requirement that there should exist no
product vector in the orthogonal space U⊥. The corresponding
upper bound on the rank m of ρ1, as discussed in Ref. [4], is
given by m < N − NA − NB + 2. There is also a lower bound
m > max{NA,NB}, which is the general lower bound on the
rank of entangled PPT states with full local rank [8]. In some

special cases there exist more restrictive bounds than the ones
given here [9].

For the 3 × 3 system these two bounds allow only one value
m = 4 for the rank of a state ρ1 constructed from a UPB, and
for this rank explicit constructions of UPBs exist [5]. Also in
higher dimensions a few examples of UPB constructions have
been given [6].

The extension of the UPB construction that we shall
consider here is based on a certain concept of equivalence
between density operators previously discussed in [10]. The
equivalence relation is defined by transformations between
density operators of the form

ρ2 = a2Vρ1V
†, (5)

where a2 is a positive normalization factor, and V = VA ⊗ VB ,
with VA and VB as nonsingular linear operators on HA and
HB , respectively. The operators ρ1 and ρ2 are equivalent in the
sense that they have in common several properties related to
entanglement. In particular, the form of the operator V implies
that separability as well as the PPT property is preserved under
the transformation (5). Preservation of separability follows
directly from the product form of the transformation, while
preservation of PPT follows because the partially transposed
matrix ρP

1 is transformed in a similar way as ρ1,

ρP
2 = a2Ṽ ρP

1 Ṽ †, (6)

with Ṽ = VA ⊗ V ∗
B . If ρ1 and ρP

1 are both positive then the
transformation equations show explicitly that the same is
true for ρ2 and ρP

2 . Furthermore, since the operators V and
Ṽ are nonsingular, the ranks of ρ1 and ρ2 are the same, and so
are the ranks of ρP

1 and ρP
2 . The same is true for the local ranks

of the operators, which are the ranks of the reduced density
operators, defined with respect to the subsystems A and B.
Finally, if ρ1 is an extremal PPT state, so is ρ2.

Let us again assume ρ1 to be given by the expression
(3). Since the product operator V is an invertible mapping
from Im ρ1 to Im ρ2, and since Im ρ1 contains no product
vector, there is also no product vector in Im ρ2, and hence
ρ2 is entangled. Similarly, the product operator (V †)−1 is an
invertible mapping from Ker ρ1 to Ker ρ2, and it maps the UPB
in Ker ρ1, Eq. (2), into a set of product vectors in Ker ρ2,

ψ ′
k = [(V †

A)−1φk] ⊗ [(V †
B)−1χk], k = 1,2, . . . ,p. (7)

If the operators VA and VB are both unitary, then this is another
UPB of orthonormal product vectors, and ρ2 is proportional
to a projection, just like ρ1. More generally, however, we may
allow VA and VB to be nonunitary. Then the product vectors ψ ′

k

in Ker ρ2 will no longer be orthogonal, but ρ2 is nevertheless
an entangled PPT state. It has the same rank as ρ1, but it is not
proportional to a projection.

Since the normalization of the density operators ρ1 and
ρ2 is taken care of by the normalization factors a1 and a2, we
may impose the normalization condition det VA = det VB = 1,
which defines the operators as belonging to the special linear
(SL) groups on HA and HB . We will say then that the two
density operators ρ1 and ρ2, related by a transformation of the
form (5), are SL ⊗ SL equivalent, or simply SL equivalent.

This construction motivates a generalization of the concept
of a UPB, where we no longer require the product vectors to
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be orthogonal. This generalization has also previously been
proposed in the literature [7]. In the following we will refer
to an unextendible product basis of orthogonal vectors as an
orthogonal UPB. A more general UPB is then a set of product
vectors that need not be orthogonal (need not even be linearly
independent) but still satisfies the condition that no product
vector exists in the subspace orthogonal to the set. The UPB
defined by (7) is a special type of generalized UPB, since it
is SL equivalent to an orthogonal UPB. More general types
of UPBs exist, and they are in fact easy to generate, since
an arbitrarily chosen set of k product vectors is typically a
generalized UPB, in the above sense, when k is sufficiently
large. However, if it is not SL equivalent to an orthogonal UPB,
then we have no guarantee that there will be any entangled PPT
state in the subspace U⊥ orthogonal to the generalized UPB.

III. PARAMETRIZING THE UPBS OF THE 3 × 3 SYSTEM

We focus now on the orthogonal UPBs in the 3 × 3 system,
which must have precisely five members. In fact, for any given
set of four product vectors φk ⊗ χk , there exists a product
vector φ ⊗ χ orthogonal to all of them, for example with
φ1 ⊥ φ ⊥ φ2 and χ3 ⊥ χ ⊥ χ4. And with six members in an
orthogonal UPB, it would define a rank 3 entangled PPT state,
which is known not to exist [8].

The general condition for five product vectors to form an
orthogonal UPB in the 3 × 3 system was discussed in Ref. [5].
The condition implies that for any choice of three product
vectors from the set, the first factors φk are linearly independent
and so are the second factors χk . The orthogonality condition
further implies that if the product vectors are suitably ordered,
there is a cyclic set of orthogonality relations between the
factors of the products of the form

φ1 ⊥ φ2 ⊥ φ3 ⊥ φ4 ⊥ φ5 ⊥ φ1,
(8)

χ1 ⊥ χ3 ⊥ χ5 ⊥ χ2 ⊥ χ4 ⊥ χ1.

In Fig. 1 the situation is illustrated by a diagram composed
of a pentagon and pentagram, where each corner represents
a product vector. Each pair of vectors is interconnected by a
line showing their orthogonality. A solid (blue) line indicates
orthogonality between φ states (of subsystem A) and a dashed
(red) line indicates orthogonality between χ states. As shown
in the diagram, precisely two A lines and two B lines connect
any given corner with the other corners of the diagram.

Introducing a complete set of orthonormal basis vectors αj

in HA, we write

φk =
3∑

j=1

ujkαj , k = 1,2,3,4,5. (9)

We may choose, for example, α1 proportional to φ1 and α2

proportional to φ2. If we multiply each basis vector αj by a
phase factor ωj , and each vector φk by a normalization factor
Nk , we change the 3 × 5 matrix ujk into ω−1

j Nkujk . It is always
possible to choose these factors so as to obtain a standard form

u =

⎛
⎜⎝

1 0 a b 0

0 1 0 1 a

0 0 b −a 1

⎞
⎟⎠ , (10)

1

2

3 4

5

FIG. 1. (Color online) Diagrammatic representation of the or-
thogonality relations in a five-dimensional UPB of the 3 × 3 system.
The corners of the diagram represent the product vectors of the UPB,
and the lines represent orthogonality between pairs of states. There
are two types of orthogonality, represented by the solid (blue) lines
and the dashed (red) lines. The solid lines represent orthogonality
between the vectors of the products that belong to subsystem A and the
dashed lines represent orthogonality between the vectors belonging
to subsystem B.

with a and b as real and strictly positive parameters, and
with the vectors φk not normalized to length 1. A similar
parametrization of the vectors of subsystem B with orthonor-
mal basis vectors βj gives

χk =
3∑

j=1

vjkβj , k = 1,2,3,4,5, (11)

and a standard form

v =

⎛
⎜⎝

1 d 0 0 c

0 1 1 c 0

0 −c 0 1 d

⎞
⎟⎠ , (12)

with two more positive parameters c and d. Thus, an arbitrary
orthogonal UPB is defined, up to unitary transformations in
HA and HB , by four continuous, positive parameters a,b,c,d.

Note that, for a given UPB, the parameter values are not
uniquely determined, since this prescription does not specify a
unique ordering of the five product vectors within the set. Any
permutation that preserves the orthogonality relations pictured
in Fig. 1 will generate a new set of values of the parameters
that define the same UPB. These permutations form a discrete
group with ten elements, generated by the cyclic shift k →
k + 1, and the reflection k → 6 − k.

Given the orthonormal basis vectors αj in HA and βj in
HB , we may think of the four positive parameters a,b,c,d as
defining not only one single orthogonal UPB but a continuous
family of generalized UPBs that are SL equivalent to this
particular orthogonal UPB. The parameter values defining one
such family may be computed from any UPB in the family via
SL invariant quantities, in the following way. Given the product
vectors φk ⊗ χk for k = 1,2,3,4,5, not necessarily orthogonal,
we introduce expansion coefficients as in (9) and arrange them
as column vectors

uk =

⎛
⎜⎝

u1k

u2k

u3k

⎞
⎟⎠ . (13)
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Then we introduce the following quantities:

s1 = −det(u1u2u4) det(u1u3u5)

det(u1u2u5) det(u1u3u4)
= a2,

(14)

s2 = −det(u1u2u3) det(u2u4u5)

det(u1u2u4) det(u2u3u5)
= b2

a2
,

where the values to the right are determined from the
parametrization (10) of the orthogonal UPB defining the
family. Similarly, we define

s3 = det(v1v2v3) det(v1v4v5)

det(v1v2v5) det(v1v3v4)
= c2,

(15)

s4 = det(v1v3v5) det(v2v3v4)

det(v1v2v3) det(v3v4v5)
= d2

c2
.

The quantities s1,s2,s3,s4 defined in terms of 3 × 3 determi-
nants are useful because they are invariant under SL trans-
formations as in (7), and in addition they are independent of
the normalization of the column vectors uk and vk . Obviously,
many more similar invariants may be defined from five product
vectors, but these four invariants are sufficient to characterize
a family of UPBs that are SL equivalent to an orthogonal UPB.

There exists a less obvious further extension of the set of
invariants. In fact, there are always six vectors that can be
used to define invariants, since in addition to the five linearly
independent product vectors of the UPB, the space spanned
by these will always contain a sixth product vector. In the
case of an orthogonal UPB, given by the parameters a,b,c,d,
we have found (by means of a computer algebra program)
explicit polynomial expressions for the components of the one
extra product vector. We have checked, both analytically and
numerically, that the existence of exactly six product vectors is
a generic property of a five-dimensional subspace of the 3 × 3
dimensional Hilbert space H. This number of product vectors
is also consistent with the formula discussed in [4], which
specifies more generally, as a function of the dimensions,
the number of product vectors in a subspace of H. For an
orthogonal UPB in the 3 × 3 system the sixth vector is singled
out because it is not orthogonal to the other vectors, but for
a nonorthogonal UPB there is no intrinsic difference between
the six vectors of the set, which should therefore be treated on
an equal footing.

For a UPB that is SL equivalent to an orthogonal UPB
there are strong restrictions on the values of invariants of
this kind, since they are all rational functions of the four
real parameters a,b,c,d. In particular, they must all take
real values. A given choice of four invariants, as in (14)
and (15), is sufficient to define the parameter space for the
equivalence classes of these UPBs. But since the six product
vectors listed in any order define the same UPB, and the
same PPT state, there is a discrete set of 6! = 720 symmetry
transformations that introduce identifications between points
in the corresponding parameter space. As we shall see in the
following, the requirement that all four invariants s1,s2,s3,s4

should be positive allows 60 different orderings from the total
of 720.

One should note that for a generalized UPB consisting of
five randomly chosen product vectors the invariants will in
general be complex rather than real, and it is not a priori

clear that four invariants are sufficient to parametrize the
equivalence classes of random UPBs.

IV. CLASSIFYING THE RANK 4 ENTANGLED PPT STATES

We have in [4] described a method to generate PPT states
ρ for given ranks (m,n) in low-dimensional systems, with
m = rankρ and n = rankρP . By repeatedly using this method
with different initial data we have generated a large number
of different PPT states of rank (4,4) in the 3 × 3 system. They
are all entangled PPT states, and as a consequence they are
extremal PPT states. This follows from the fact that if they
were not extremal they would have to be convex combinations
involving entangled PPT states of even lower ranks, and such
states do not exist.

The remarkable fact is that every one of these states has a
UPB in its kernel which is SL equivalent to an orthogonal UPB,
and the state itself is SL equivalent to the state constructed
from the orthogonal UPB. We regard our numerical results as
strong evidence for our belief that the four real parameters
which parametrize the orthogonal UPBs give a complete
parametrization of the rank 4 entangled PPT states of the 3 × 3
system, up to the SL (or more precisely SL ⊗ SL) equivalence.
We will describe here in more detail the numerical methods
and results that lead us to this conclusion.

Assume ρ to be an entangled PPT state of rank (4,4), found
by the method described in [4]. The question to examine is
whether it is SL equivalent to an entangled PPT state defined
by the orthogonal UPB construction. We therefore make the
ansatz that it can be written as ρ ≡ ρ2 = a2Vρ1V

†, where ρ1 is
defined by a so far unknown orthogonal UPB, parametrized as
in (10) and (12), and where the transformation V is of product
form, V = VA ⊗ VB . We consider how to compute the product
transformation V , assuming that it exists. The fact that we are
able to find such a transformation for every (4,4) state is a
highly nontrivial result.

Given ρ, the first step is to find all the product vectors in
Ker ρ. We solve this as a minimization problem: A normalized
product vector ψ = φ ⊗ χ with ρψ = 0 is a minimum point
of the expectation value ψ†ρψ . Details of the method we use
are given in Ref. [4]. Empirically, we always find exactly six
such product vectors ψk = φk ⊗ χk , k = 1,2, . . . ,6, any five
of which are linearly independent and form a UPB, typically
nonorthogonal.

Although the numbering of the six product vectors is
arbitrary at this stage, we compute the invariants s1,s2,s3,s4,
substituting φk for uk and χk for vk , with k = 1,2, . . . ,5. As
shown by the previous discussion all four invariants have to be
real, for otherwise no solution can exist. A random UPB has
complex invariants, and the empirical fact that the invariants
are always real for a UPB in Ker ρ, where ρ is a rank (4,4)
entangled PPT state, is a nontrivial test of the hypothesis that
such a UPB can be transformed into orthogonal form.

It is not sufficient that the invariants are real. As shown by
the expressions (14) and (15) there has to exist an ordering
of the product vectors where all four invariants take positive
values. The signs of the invariants will depend on the ordering
of the product vectors, and most orderings produce both
positive and negative invariants. For the rank (4,4) density
matrices that we have constructed, it turns out that it is always
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possible to renumber the five first vectors in the set in such a
way that all four invariants become positive. This is a further
nontrivial test of our hypothesis.

There are in fact, in all the cases we have studied, precisely
10 of the 5! permutations of the five vectors that give positive
values of the four invariants. This means that such an ordering
is unique up to the symmetries noticed for the diagram in Fig. 1.
However, there is a further symmetry, since the reordering
which gives positive invariants works for any choice of the
sixth vector of the set. The possible reorderings of all six
product vectors which preserve the positivity of the invariants
therefore define a discrete symmetry group with altogether
6 × 10 = 60 elements, which defines mappings between
different, but equivalent, representations of the UPB in terms of
the set of four real and positive invariants. The corresponding
parameter transformations are given in the Appendix.

Assume now, for a given rank (4,4) state, that a “good”
numbering has been chosen for the six product vectors ψk =
φk ⊗ χk in the corresponding UPB, so that the four invariants
defined by the first five vectors are all real and positive. The
problem to be solved is then to find the transformation that
brings the UPB into orthogonal form. This means finding
3 × 3 matrices C and D such that φk = N ′

kCuk and χk =
N ′′

k Dvk for k = 1,2, . . . ,5, with unspecified normalization
constants N ′

k and N ′′
k . Here the vectors uk and vk belong

to an orthogonal UPB as given by the Eqs. (10) and (12),
and these vectors are all known at this stage, because the
invariants s1,s2,s3,s4 determine the parameters a,b,c,d. The
transformation matrices C and D correspond to V

†
A and

V
†
B in (7). The condition for two vectors φk and Cuk to

be proportional is that their antisymmetric tensor product
vanishes; hence we write the following homogeneous linear
equations for the matrix C:

φk ∧ (Cuk) = φk ⊗ (Cuk) − (Cuk) ⊗ φk = 0,
(16)

k = 1,2, . . . ,5.

Since the antisymmetric tensor product φk ∧ (Cuk) has, for
given k, three independent components, there are altogether
fifteen linear equations for the nine unknown matrix elements
Cij . We may rearrange the 3 × 3 matrix C as a 9 × 1 matrix
C and write a matrix equation

MC = 0, (17)

where M is a 15 × 9 matrix. This equation implies
that (M†M)C = 0. The other way around, the equation
(M†M)C = 0 implies that (MC)†(MC) = C†(M†M)C = 0
and hence MC = 0. Thus we may compute the matrix C as
an eigenvector with zero eigenvalue of the Hermitean 9 × 9
matrix M†M . The matrix D is computed in a similar way.

It is a final nontrivial empirical fact for the (4,4) states we
have found that solutions always exist for the matrices C and
D, whenever the ordering of the six product vectors ψk =
φk ⊗ χk is such that the invariants s1,s2,s3,s4 are positive.

The result is that every rank (4,4) state of the 3 × 3
system which we have found in numerical searches [4] can be
transformed into a projection operator with an orthogonal UPB
in its kernel. We have also checked the published examples of
entangled PPT states of rank (4,4), which are based on special

constructions [5,6,11,12], and have obtained the same result
for these states. The explicit transformations have been found
numerically by the method discussed here, and in all cases the
four parameters a,b,c,d have been determined, with values
that are unique up to arbitrary permutations of product vectors
from the 60-element symmetry group.

V. SUMMARY AND OUTLOOK

The main result of this paper is a classification of the rank 4
entangled PPT states of the 3 × 3 system. We find empirically
that every state of this kind is equivalent, by a product
transformation of the form SL ⊗ SL, to a state constructed
from an orthogonal unextendible product basis. We refer to
this type of equivalence as SL equivalence. We have shown
how to parametrize the orthogonal UPBs by four real and
positive parameters, and we have described how permutations
of the vectors in the UPB give rise to identifications in the
four-parameter space.

The concept of SL equivalence of states and of product
vectors leads to a generalization of the concept of unextendible
product bases so as to include sets of nonorthogonal product
vectors, and further to the concept of equivalence classes of
generalized UPBs that are SL equivalent to orthogonal UPBs.
Thus, the parametrization of the orthogonal UPBs by four
positive parameters is at the same time a parametrization of
the corresponding equivalence classes of generalized UPBs.

We have described a method for checking whether a given
rank 4 entangled PPT state in the 3 × 3 system is equivalent,
by a product transformation, to a state constructed from an
orthogonal UPB. It is a highly nontrivial result that all the rank-
four entangled states that we have produced numerically, and
all states of this kind that we have found in the literature, are SL
equivalent to states that are generated from orthogonal UPBs.
This we take as a strong indication that the parametrization
of the UPBs in fact gives also a parametrization of all the
equivalence classes of rank 4 entangled PPT states of the 3 × 3
system.

Apart from the pure product states, the rank 4 entangled
PPT states are the lowest rank extremal PPT states among
the 3 × 3 states that we have found in numerical searches, as
reported on in [4]. The property of such a state—that it has a
nonorthogonal UPB in its kernel, which means that there is a
complete set of product vectors in Ker ρ and no product vector
in Im ρ—is shared with the lowest rank extremal PPT states of
the other systems that we have studied, of dimensions different
from 3 × 3. This has led us to conjecture that this is a general
feature of the lowest rank extremal PPT states, valid also in
higher dimensional systems [4], and to speculate that there may
exist a generalization of the construction used for the 3 × 3
system in terms of orthogonal UPBs and SL transformations,
which can be applied in the higher dimensional systems.

In higher dimensions the orthogonality condition is harder
to satisfy, and therefore another condition may take its place
as the defining characteristic of a special subset of extremal
states from each SL equivalence class. This hypothetical new
condition may involve the full set of product vectors in the
subspace, rather than an arbitrarily selected subset as in the
definition of the orthogonal UPBs. We consider examining
this possibility, with the aim of parametrizing the lowest rank
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extremal PPT states more generally, an interesting task for
further research, and we are currently looking into the problem.
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APPENDIX: EQUIVALENT ORDERINGS OF THE
SIX PRODUCT VECTORS

Assume that the sequence of product vectors ψk = φk ⊗ χk ,
k = 1,2,3,4,5, in this order, is characterized by parameter
values a,b,c,d, as computed from the invariants s1,s2,s3,s4.
It is convenient here to replace the parameters a,b,c,d by
α = a2, β = b2, γ = c2, δ = d2.

Then the cyclic permutation ψk 	→ ψ̃k with ψ̃1 = ψ5 and
ψ̃k = ψk−1 for k = 2,3,4,5 corresponds to the following
parameter transformation, which is periodic with period 5:

α̃ = β

1 + α
,

β̃ = β

α(1 + α)
,

(A1)
γ̃ = 1

γ + δ
,

δ̃ = γ (1 + γ + δ)

δ(γ + δ)
.

The inversion ψ1 	→ ψ̃1 = ψ1, ψk 	→ ψ̃k = ψ7−k for k =
2,3,4,5 corresponds to the parameter transformation α̃ = α,
γ̃ = γ ,

β̃ = α(1 + α)

β
,

(A2)
δ̃ = γ (1 + γ )

δ
.

Let ψ6 = φ6 ⊗ χ6 be the sixth product vector in the five-
dimensional subspace spanned by these five product vectors.
Then the sequence ψ̃1 = ψ6, ψ̃2 = ψ5, ψ̃3 = ψ3, ψ̃4 = ψ4,
ψ̃5 = ψ2 corresponds to the parameter transformation α̃ = γ ,
γ̃ = α,

β̃ = β(1 + γ )[(α + β)(γ + δ) + δ]

α(1 + α + β)δ + (1 + α)(α + β)(1 + γ )
,

(A3)
δ̃ = (1 + α)[βδ + (α + β)γ (1 + γ + δ)]

[1 + α + (1 + α + β)(γ + δ)]δ
.

It is not easy to see by looking at the formulas that this
parameter transformation is its own inverse.

Altogether, these transformations generate a transformation
group of order 60 (with 60 elements), isomorphic to the
symmetry group of a regular icosahedron with opposite corners
identified. Equivalently, it is the group of proper rotations of
the icosahedron, excluding reflections. The icosahedron has
twelve corners, and we may associate the six product vectors
with the six pairs of opposite corners.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[2] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[3] J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76,

034304 (2007).
[4] J. M. Leinaas, J. Myrheim, and P. Ø. Sollid, Phys. Rev. A 81,

062329 (2010).
[5] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor,

J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385
(1999).

[6] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.
Terhal, Commun. Math. Phys. 238, 379 (2003).

[7] A. O. Pittenger, Linear Algebr. Appl. 359, 235 (2003).
[8] P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev.

A 62, 032310 (2000).
[9] N. Alon and L. Lovasz, J. Comb. Theory, Ser. A 95, 169 (2001).

[10] J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 74,
012313 (2006).

[11] D. Bruß and A. Peres, Phys. Rev. A 61, 030301(R) (2000).
[12] K. Ha, S. Kye, and Y. Park, Phys. Lett. A 313, 163 (2003).

062330-6

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevA.76.034304
http://dx.doi.org/10.1103/PhysRevA.76.034304
http://dx.doi.org/10.1103/PhysRevA.81.062329
http://dx.doi.org/10.1103/PhysRevA.81.062329
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1016/S0024-3795(02)00423-8
http://dx.doi.org/10.1103/PhysRevA.62.032310
http://dx.doi.org/10.1103/PhysRevA.62.032310
http://dx.doi.org/10.1006/jcta.2000.3122
http://dx.doi.org/10.1103/PhysRevA.74.012313
http://dx.doi.org/10.1103/PhysRevA.74.012313
http://dx.doi.org/10.1103/PhysRevA.61.030301
http://dx.doi.org/10.1016/S0375-9601(03)00733-3

