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We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of
low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial
transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for
the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal
entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of
the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds
on the ranks of extremal PPT states.
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I. INTRODUCTION

In recent years the study of entanglement in composite
quantum systems has taken several different directions. One di-
rection is the study of entanglement from a geometrical point of
view [1–5]. This has led to questions concerning the relations
between different convex sets of Hermitian matrices, where the
full set of density matrices is one of them. The main motivation
for the interest in these convex sets is the information they give
about the general question of how to identify entanglement
in a composite system. Unless the system is in a pure
quantum state, the knowledge of the corresponding density
matrix does not readily disclose the state as being entangled
or nonentangled, and the complexity of the corresponding
problem, known as the separability problem, increases rapidly
with the dimensionality of the quantum system [6].

The density operators are the normalized, positive semidef-
inite Hermitian operators that act on the Hilbert space of the
quantum system, and in the following we shall use the notation
D for this set. Another convex set is the set of nonentangled
states, usually referred to as separable states, and we use S
as notation for this subset of D. Since the set of entangled
states is the complement to the set of separable states, within
the full set of density matrices, the question of identifying the
entangled states can be reformulated as the question of finding
the boundaries of the convex set of separable states S.

For a bipartite system, there is furthermore a convex subset
of the density matrices, here referred to as P , which is closely
related to the set of separable matrices. This is the subset of
density matrices that remain positive semidefinite under the
operation of partial transposition of the matrix with respect
to one of the two subsystems of the composite system. In
short, these states are called PPT states. A necessary condition
for separability of a density matrix is that it remains positive
under partial transposition, and thus the set of separable states
is included in the set of PPT states, S ⊂ P [7]. For bipartite
systems of dimensions 2 × 2 and 2 × 3, the two sets are in fact
identical [8], but in higher dimensions the separable states form
a proper subset of the set of PPT states. However, numerical
studies have shown that for systems of low dimensions, such as
the 3 × 3 system, the set P is only slightly larger than S [4,9].

The necessary condition that the separable density matrices
remain positive under partial transposition is important since
this condition is easy to check. It effectively reduces the

separability problem to a question of identifying the PPT
states that are entangled, that is, that do not belong to S.
These states are also interesting for a separate reason, since
they are known to carry bound entanglement, which means
that the entanglement is not available through entanglement
distillation, a process where entanglement of mixed states is
transferred to a set of pure quantum states [10].

In the literature, there are several studies of states with
bound entanglement, mostly based on the construction of
specific examples. One approach has been to construct
classes of PPT states with special symmetries [11–15]. Other
examples have been obtained through the study of positive
maps or entanglement witnesses, which on several occasions
has led to constructions of classes of entangled PPT states
witnessed by specific maps [16–18]. The violation of the
range criterion by entangled PPT states has also given rise to
several examples through the study of unextendible product
bases [19] and edge states [20].

In a previous publication [9] we focused particularly on
extremal PPT states. These are the states that define the full set
P of PPT states, in the sense that all other PPT states can be
expressed as convex combinations of these states. The set P
share with the set of separable states S the pure product states
as extremal states, but in addition, P has other extremal states
that are not fully known. These extremal states are special ex-
amples of entangled PPT states. In Ref. [9] we have presented
a criterion for identifying extremal PPT states, and we have
there described an algorithm to systematically search for such
states. By use of the method, a list of extremal PPT states was
found and presented for a series of low-dimensional systems.

In the present article we follow up the study of entangled
PPT states in [9] by use of numerical methods. The method
described here is different from that of the publication [9] in the
sense that it does not make use of direct searches for extremal
PPT states, but rather of searches for PPT states with specified
ranks for the density matrix and for its partial transpose.
It is therefore also different from most of the other papers
cited earlier in the sense that it does not aim at states with
particular properties, apart from specification of the ranks. By
systematically searching through matrices of different ranks,
we have obtained in this way, for a series of low-dimensional
systems, a list of low-rank PPT states, many of which are
identified as extremal and others as nonextremal entangled
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PPT states. These results supplement those of [9], where only a
limited set of different types of extremal states were identified.

The results we have obtained for different low-dimensional
systems show certain regularities. In particular we find
extremal PPT states for essentially all ranks of the density
operator and its partial transpose when these lie between
an upper and a lower limit. We suggest general expressions
for these limits and relate them to generic properties of the
image and kernel of the density matrices. A special focus is
on the properties of the extremal PPT states of lowest rank.
In a separate publication [21] we follow up these results by
a specific study of the lowest rank extremal PPT states of
the 3 × 3 system, which are also identical to the lowest rank
entangled PPT states in any dimension [22] (see also [23]). As
discussed there, these states can be classified by a small number
of parameters, and an interesting question is whether a similar
classification can be given for other extremal PPT states.

II. THE METHOD

We consider a bipartite quantum system with Hilbert space
H = HA ⊗ HB , where A and B label the two subsystems,
and HA and HB are of dimensions NA and NB , respectively.
The density operators ρ satisfy the normalization condition
Tr ρ = 1, but often it is convenient to give up this condition
and rather consider all density operators that differ by a
normalization factor to be equivalent. The set of normalized
density operators we refer to as D, while K(D) is the
positive cone of nonnormalized density operators. A similar
notation is used for other subsets of Hermitian operators.
Partial transposition is the operation on density operators
that corresponds to transposition of indices of one of the
subsystems, ρB

ij → ρB
ji (here chosen as subsystem B). For

density operators of the full, composite system, we refer to
this operation as ρ → ρP , and it maps the convex set D into
another convex set denoted DP . The operation will depend on
the choice of subsystem (A or B) and on the choice of basis
in the corresponding Hilbert space. However, the distinction
between these different choices is of no importance for our
discussion. We note in particular that the mapping of sets
D → DP is independent of the choice. The set of PPT states
is defined as the section P = D ∩ DP , which means that it
consists of the positive semidefinite operators that remain
positive semidefinite under partial transposition.

A. Searching for density operators of given ranks

The Hermitian matrices define a real vector space, and it
is convenient to introduce a complete set of matrices that are
orthonormal with respect to the trace norm

Tr(MiMj ) = δij . (1)

A general Hermitian matrix M is then described as a vector x
with real components

xi = Tr(MMi). (2)

For a composite system of Hilbert space dimension N =
NANB , the vector space of Hermitian matrices is of dimension
N2 = N2

AN2
B .

The algorithm we use to find PPT states ρ with specified
ranks (m,n) for ρ and ρP is the following. We expand ρ as

ρ = ρ(x) =
∑

i

xiMi. (3)

The eigenvalues of ρ we write as λi = λi(x), with λP
i = λP

i (x)
as the eigenvalues of the partially transposed matrix ρP . The
eigenvalues of each matrix are listed in decreasing order,
and for the density matrix that we are searching for, a
certain number of the eigenvalues should vanish. Thus we
want to have λk = 0 for k = m + 1, . . . ,N and λP

k = 0 for
k = n + 1, . . . ,N . The eigenvalues that should vanish we treat
as components of a new vector µ so that

µ = [
λm+1,λm+2, . . . ,λN,λP

n+1,λ
P
n+2, . . . ,λ

P
N

]
, (4)

and the problem is then to find the point x which solves the
equation µ(x) = 0.

We choose a starting point x such that ρ = ρ(x) as well
as ρP are positive semidefinite matrices (it is not strictly
necessary that the positivity conditions hold to begin with since
they will automatically hold for the solution we obtain in the
end). If the equation µ(x) = 0 is not already solved, we search
for a better approximate solution x′ = x + �x. The linear ap-
proximation to the Taylor expansion gives an equation for �x:

µ(x) + (�x · ∇)µ(x) = 0. (5)

In matrix form the equation can be written as

B �x = −µ, (6)

with Bij = ∂µi/∂xj . It implies another equation,

A �x = b, (7)

where A = BT B is a positive, real symmetric matrix and
where b = −BT µ. We use the conjugate gradient method [24]
to solve the last equation for �x. The conjugate gradient
method is useful because it works even if A is singular.
Next, we replace x by x′ = x + �x and, if µ(x′) �= 0, iterate
in order to get successively better approximate solutions. If
the method converges, we reach a value of x where µ(x) = 0
within machine precision, where the iteration is stopped.

The matrix B is computed in each iteration by the first-order
perturbation formula

∂λk

∂xj

= ψ
†
k

∂ρ

∂xj

ψk = ψ
†
k Mj ψk , k = m + 1, . . . ,NA, (8)

where ψk is the eigenvector of ρ with eigenvalue λk . A similar
formula is used for the derivatives of λP

k . Since these formulas
are valid in first-order nondegenerate perturbation theory, this
raises a question concerning convergence of the method at a
point of degeneracy. However, in practice, we find that the
method works well when the dimension of the system is not
too large.

Note that, by the way the method works, all the states we
find are PPT. That is the case since in the iterative search for a
state with a certain number of vanishing eigenvalues for ρ and
ρP , the eigenvalues are always ordered in such a way that the
lowest eigenvalues are forced to be zero. This means that both
the density matrix and its partial transpose will be positive
semidefinite.
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We have applied the method to a series of low-dimensional
systems, and the results are listed in Tables I–IV and in the
figures in the next section. The convergence of the method
slows down with increase of the Hilbert space dimension
N , and in the form we have implemented the algorithm, the
practical limit of the dimension is N <∼ 20. For the systems
we have studied, the method has been used repeatedly with
different starting points for each choice of ranks (m,n). In
most cases the iteration converges, but in some cases that does
not happen, and these iterations are then simply aborted. For
some values of m and n we do not find any density matrix
with the given ranks, and the method will then in most cases
converge to a density matrix with lower rank for either ρ or ρP ,
or both. We have not imposed any restriction to avoid that, so
in practice the method searches for density matrices of ranks
equal to or lower than the specified values (m,n).

Since we have made no particular effort to optimize
our code for speed, we do not discuss here details of the
implementation such as convergence rates and execution times.
One interesting detail, however, is the numerical accuracy of
the algorithm. For N <∼ 20 it is very good. In determining the
ranks of the density matrices and the dimensions of the facesF
(see later discussion), we need to decide whether eigenvalues
are equal to or different from either 0 or 1, and in general we
obtain these values within machine precision of 10−16. There
is most of the time several orders of magnitude difference
between small but nonzero eigenvalues, and eigenvalues that
are zero within the machine precision.

B. Determining the dimension of the face of K(P)

For each density matrix ρ found in the searches, we have
evaluated and listed certain properties. Among these are the
local ranks (rA,rB) of the density matrices, defined with
respect to the subsystems A and B. These are the ranks of
the reduced density matrices ρA and ρB . The most interesting
cases are those where the density matrices have full local ranks
(rA,rB) = (NA,NB ). If that is not the case the density matrix
can be viewed as belonging to a composite system of lower
dimension, which is embedded in the higher-dimensional
system.

We have also evaluated and listed the dimension of the
face F of the convex cone K(P) to which ρ belongs. The
extreme points of P correspond to one-dimensional, positive
rays in K(P) and are consequently characterized by dim F =
1. Therefore the extremal states can be identified in the tables as
the density matrices with this minimal value for the dimension
of the face.

The method we use to evaluate dimF has earlier been
described in [9]. It is based on the fact that the face F to which
ρ belongs can be viewed as the section between a face (or
all) of K(D) and a face (or all) of K(DP ). This means that
ρ = ρ(x) satisfies two equations:

Px = x , Q̄x = x, (9)

with P as the orthogonal projection on the subspace in the
vector space of Hermitian matrices defined by the face of
K(D) and Q̄ as the projection on the subspace defined by the
face of K(DP ). Note that as orthogonal projections, P and
Q̄ are real and symmetric N2 × N2 matrices. The method for

computing these matrices for a given density operator ρ is
described in [9].

As follows from the preceding equations, the section
between the subspaces defined by P and Q̄ is spanned by
the eigenvectors of the composite, real symmetric matrix
P Q̄ P (or alternatively Q̄ P Q̄), with eigenvalues equal to
1. This implies that dim F can be determined simply by
diagonalizing the composite matrix and counting the number
of such eigenvalues.

Since we compute the eigenvalues with machine precision,
there is an unambiguous distinction between eigenvalues that
are equal to or different from 1. For example, an eigenvalue of
0.999 differs from 1 by about 13 orders of magnitude.

As a consequence of the way F is constructed, there is a
geometrical constraint on the possible values of dim F for
given ranks (m,n) of ρ and ρP [9]. Thus, the faces of K(D)
and K(DP ) are of dimensions m2 and n2, respectively, and
therefore the face of K(D) is specified by N2 − m2 linear
constraints, and similarly the face of K(DP ) is specified by
N2 − n2 linear constraints. If these sets of constraints are
independent, they determine the dimension of the section
F as dimF = m2 + n2 − N2. However, if the two sets
of constraints are not fully independent, the dimension of
the section is larger. Therefore the following inequality is
generally valid:

dimF � m2 + n2 − N2. (10)

For extremal PPT states with dim F = 1, this gives an upper
bound to the ranks of ρ and ρP :

m2 + n2 � N2 + 1 (extremality). (11)

C. Counting the number of product vectors

For each density matrix ρ, we have examined the image
(Im ρ) and kernel (Ker ρ) for the presence of product vectors,
and the numbers of such vectors are listed. The method we
use to search for product vectors in a given subspace of H is
described in some detail in Appendix A. To briefly outline the
approach, let us assume that we search for product vectors in
Im ρ, with P as the orthogonal projection on this subspace.
The vectors should satisfy the condition

(1 − P )(φ ⊗ χ ) = 0, (12)

and this can be reexpressed as a minimization problem, which
we in Appendix A refer to as a double eigenvalue problem.
The solutions of Eq. (12) are the minima of the function

f = (φ† ⊗ χ †)(1 − P )(φ ⊗ χ ), (13)

with f = 0, and such minima can be found by the iterative
approach described in Appendix A. By varying the starting
point of the iteration, different minima can be identified, and
by systematically searching for minima of f and of

1 − f = (φ ⊗ χ )†P (φ ⊗ χ ), (14)

we have reproduced and counted the product vectors in Im ρ

and Ker ρ for every density matrix found in the numerical
searches. In the tables the number of product vectors and
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the number of linearly independent product vectors are listed
for Im ρ and Ker ρ. The same type of iterative method for
minimization over product vectors has been applied in the
separability test that is described in the next section.

III. DISCUSSION OF THE RESULTS

A. Diagrammatic representation

The results of the searches are tabulated in Appendix B and
are also included in condensed form in the subsequent text
as Figs. 1–4. The variables of the two axes of the figures are
the ranks m of ρ and n of ρP . The small open and filled
circles in the figures indicate the ranks for states that are
found in the numerical searches. As discussed earlier, all the
states produced in this way are PPT. The filled (red) circles
represent extremal PPT states with full local ranks, while the
open circles represent nonextremal PPT states, either separable
or entangled. Note that all diagrams are symmetric under the
interchange m ↔ n since in the search for PPT states there is
no intrinsic difference between ρ and ρP .

The states we find by use of our method we refer to as
typical for the chosen ranks (m,n). For some ranks, there will
exist states with untypical characteristics, which we do not
find in the searches, presumably due to low dimensionality of
the set of such states. We note, in particular, when we compare
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FIG. 1. (Color online) Diagrams for the ranks of PPT states in the
composite systems of dimensions 3 × 3 and 4 × 4. The coordinates
m and n on the axes are the ranks of the density matrix ρ and its partial
transpose ρP . States found by use of the numerical method discussed
in the text are indicated by small circles or dots (filled circles). The
green circles in the lower left corner indicate ranks for a special set of
separable states, the red dots correspond to extremal PPT states, and
the red circles in the upper right corner correspond to nonextremal
PPT states. Ranks (5,5) in the 4 × 4 system is an exception; there we
find both separable states and a special type of entangled, nonextremal
PPT state. The unbroken, horizontal, and vertical straight red lines
show the lower bound for entangled PPT states with full local ranks,
the similar dashed red lines show our conjectured lower bound for
extremal PPT states with full local ranks, and the red circular arcs
show the upper bound for extremal PPT states. The dashed green
45◦ straight lines show the upper bound for the application of the
separability criterion described in the text. For all ranks indicated by
red circles up to and on this line (and above the circular arc), the
corresponding states are always found to be entangled PPT states.
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FIG. 2. (Color online) Diagrams for the ranks of PPT states in
the composite systems of dimensions 3 × 4 and 3 × 5. States found
by use of the numerical method discussed in the text are indicated by
the small circles or dots. Also here entangled PPT states are found
for all ranks indicated by red circles up to and on the dashed green
line. For further explanation of the diagrams, see Fig. 1.

the diagrams of the 3 × 3 and 4 × 4 systems, that most
of the states of the 3 × 3 system are not seen in the diagram
of the 4 × 4 system. However, we know that all the states of
the lower-dimensional system should be present in the form of
states with less than full local ranks.

For most choices of ranks (m,n) the density matrices that
we find in repeated searches with different initial conditions
are all found to have identical characteristics in the form
of the parameters listed in the tables. There is only a small
number of exceptions where density matrices with different
characteristics but equal ranks (m,n) have been found. These
are all listed in the tables.

B. Different groups of PPT states

There is a clear similarity between Figs. 1–4, with the states
for each figure being separated into groups with different
characteristics. One group consists of the low-rank states
with m = n � max{NA,NB}. These low-rank states, which
are represented by the series of green circles in the figures,
are all separable, with equal ranks for ρ and ρP . As shown in
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FIG. 3. (Color online) Diagrams for the ranks of PPT states in the
composite systems of dimensions 2 × 4 and 2 × 5. For explanations
of the diagrams, see Figs. 1 and 2. Note that the results for the 2 × 4
system agree with the fact that the only possible ranks for extremal
states in 2 × 4 are (5,5), (6,5), and (5,6) [9,25].
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FIG. 4. (Color online) Diagrams for the ranks of PPT states in
the composite systems of dimensions 2 × 2 and 2 × 3. For these
systems, all PPT states are separable, but the distinction between the
special set of states with low, symmetric ranks m = n and the set of
states with higher, asymmetric ranks is similar to what is found in the
higher-dimensional systems.

the tables, all the corresponding density matrices ρ contain a
number of product vectors in their image which is equal to their
rank m. In fact, it is obvious that one can construct such states
by taking randomly a small number of pure product states and
forming a convex combination of these. Such a sequence of
separable states can be defined in all dimensions, and they are
not of further interest for our discussion.

The remaining states, with ranks m > max{NA,NB} and
n > max{NA,NB}, are restricted to the upper right corners of
the diagrams. For these values of the ranks, all states produced
in our searches, with one exception, have full local ranks. [The
exception is the case (m,n) = (5,5) of the 4 × 4 system, where
in addition to full rank states, also states with less than full
rank are found.] The systems of dimension 2 × 2 and 2 × 3,
represented by the diagrams in Fig. 4, are special since for these
systems, all PPT states are separable. However, for the higher
dimensional systems we note that the preceding restriction on
the ranks of ρ and ρP coincides with a lower bound, found
by Horodecki et al. [22], on the rank of entangled PPT states
with full local ranks. (In the following we shall refer to this as
the HLVC bound.) In fact, with the exception of some of the
(5,5) states of the 4 × 4 system, we find for all ranks above
and sufficiently close to this lower bound that the states are not
only entangled but extremal PPT states.

As displayed by the figures, there are a few intermediate
values of m, above the HLVC bound, where only symmetric
ranks m = n are found. We shall later discuss these states
separately and focus now on the states with ranks m �
NA + NB − 1 and n � NA + NB − 1. For almost all ranks
that satisfy these inequalities we find PPT states. The only
exceptions are some of the cases with the largest asymmetry
between the values of m and n. In fact we cannot rule out that
we miss these states as a consequence of the method we use.
We find that with large asymmetry in m and n the numerical
method seems preferably to pick up matrices with lower and
more symmetric ranks. Therefore a much larger number of
searches has to be performed in order to find density matrices
when the ranks are highly asymmetric.

With exception for the systems 2 × 2 and 2 × 3, all the
states we find with ranks between the lower bounds m � NA +
NB − 1 and n � NA + NB − 1 and the upper bound m2 +
n2 � N2 + 1 are extremal (and hence entangled) PPT states.
The upper bound is the constraint [Eq. (11)] on extremality

that has already been discussed, and in the figures this bound
is displayed as the red circular arc. For ranks above this bound,
we have used a separability test [22] on the states, and this test
shows that for all ranks that satisfy the inequality m + n �
2N − NA − NB + 2, we find entangled PPT states. Beyond
this limit the test is not applicable.

C. Dimensions of faces and numbers of product vectors

The structure of the diagrams discussed earlier can to some
extent be related to simple regularities of the parameters in the
tables. We focus first on the list of the values of dimF . This
number is constrained by the geometric bound (10), dim F �
m2 + n2 − N2. We note that for all states where the ranks
are sufficiently large to give a positive number for this lower
bound, the constraint is satisfied with equality. This means
that the linear constraint equations [Eqs. (9)] that define F as a
section between faces of K(D) andK(DP ) are all independent.

For all ranks m,n � NA + NB − 1 that give negative values
for the bound, we find dimF = 1. This is the minimum value
consistent with the fact that the density operator ρ is located on
both faces. Other “accidental” relations between the two inter-
secting faces, therefore, seem not to be present. The fact that
dim F takes the minimal value consistent with this condition
gives an explanation for why all the states with ranks between a
lower and an upper bound are found to be extremal PPT states.
For sufficiently low ranks, m,n < NA + NB − 2, we find states
where dim F does not take this minimum value. Therefore we
see these states as corresponding to more special constructions.

The numbers of product vectors we find in Im ρ and Ker ρ

also show a simple regularity. For a long sequence of high ranks
m, all states have no product vector in Ker ρ and a complete
basis (in fact an overcomplete set) of product vectors in Im ρ.
When lowering the rank, there are in some of the lists a small
set of intermediate ranks where there is no product vector
in neither Im ρ nor Ker ρ, and below this there is a single
extremal state at m = n = NA + NB − 2 (not present in the
2 × NB systems) with a complete set of product vectors in
Ker ρ and no product vector in Im ρ. For even lower ranks the
states are also here exceptional and do not fit into this picture.

When we exclude these lowest rank states, the numbers we
find in the lists are in fact identical to the numbers of product
vectors expected for generic subspaces of the given dimension.
To show this we consider the conditions for a product state φ ⊗
χ to be present in a randomly chosen subspace of dimension
d in the Hilbert space H = HA ⊗ HB . The product state will
satisfy a set of constraint equations of the form

ψ
†
k (φ ⊗ χ ) = 0 , k = 1,2, . . . ,N − d, (15)

where ψk is a linearly independent set of states that are all
orthogonal to the chosen d-dimensional space. The solutions to
the equation will generally depend on a number of continuous
parameters that can be determined by parameter counting.
Thus the product state will be specified by NA + NB − 2
complex parameters (when the complex normalization factors
are not included), and this number is reduced by the N − d

complex constraint equations to give for the solution a
remaining set of p complex parameters, with

p = NA + NB − 2 − N + d. (16)
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We may then distinguish between three cases: (1) p > 0,
which means d > N − NA − NB + 2; the set of Eqs. (15) is
underdetermined, and there is an infinite set of product vectors
in the d-dimensional subspace, described by p complex free
parameters; (2) p = 0, which means d = N − NA − NB + 2;
the number of equations matches the number of parameters to
give a finite set of solutions; and (3) p < 0, which means d <

N − NA − NB + 2; the set of equations is overdetermined, and
there is in the generic case no solution. There may, however,
be solutions for specially selected subspaces.

For case 2, the number of product vectors is given by the
expression

nps =
(

NA + NB − 2

NA − 1

)
= (NA + NB − 2)!

(NA − 1)!(NB − 1)!
. (17)

The problem of finding this number of product vectors can
be related to the problem in algebraic geometry of finding
the degree of the variety defined by the Segre embedding
between projective spaces P NA−1 × P NB−1 → P NANB−1 [26].
The number given in Eq. (17) is identical to this degree.

It is straightforward to check that all the numbers in the
tables are consistent with these results, except for the special
low-rank states. Apart from these states, the PPT states we
find in the numerical searches are therefore also in this respect
typical states for the given ranks (m,n).

D. The lowest rank extremal and entangled PPT states

For the systems with NA > 2 and NB > 2 the lowest rank
extremal PPT states with full local ranks seem to have a special
status. These states have symmetric ranks m = n, and for these
values of m (or n) we find no states with asymmetric ranks.
They are also special in the sense that they are the only ones
with no product vector in Im ρ and a finite, complete set of
product vectors in Ker ρ.

For the 3 × 3 system these are rank (4,4) states, and
the presence of product vectors in Ker ρ but not in Im ρ

indicates that they are related to a special construction of low
rank entangled PPT states for this system, with the use of
unextendible product bases (UPB) [19]. The UPB is a set of
orthogonal product vectors that spans a subspace (Ker ρ) and
that cannot be extended with additional orthogonal product
vectors (in Im ρ). The (4,4) states that we find by our method
do not directly exemplify this construction since the product
vectors in Ker ρ are nonorthogonal, but there is a general
connection to the UPB construction that we discuss in detail
in a separate publication [21].

We find similar types of extremal PPT states in all the
systems we have studied with dimensions of the subsystems
larger than 2. This we take as an indication for the presence of
such lowest rank extremal states in all higher dimensional
systems. When we combine the assumption of a finite,
complete set of product vectors in Ker ρ and no product
vector in Im ρ with the expectations for the number of
product vectors in generic subspaces of a given dimension,
we find that these states should generally have ranks equal to
m = n = NA + NB − 2. We will phrase the assumption about
these states in the form of the following conjecture: The lowest
rank extremal PPT state with full local ranks in an NA × NB

system, with NA and NB larger than 2, is characterized by

symmetric ranks m = n for the density matrix and its partial
transpose, with value m = n = NA + NB − 2.

We write this as an inequality for the rank of extremal PPT
states with full local ranks,

m,n � NA + NB − 2 (conjecture), (18)

and compare it to the lower bound for entangled PPT states
with full local ranks:

m,n � max{NA,NB} + 1 (HLVC). (19)

For systems of dimension 2 × NB we note that the HLVC
bound lies above the lower bound for extremality, and therefore
the bound of Eq. (18) cannot be saturated. That is in accordance
with the lack of the special type of lowest-rank extremal PPT
state for these systems. For systems of dimension 3 × NB

(with NB � 3) the two bounds coincide, and the lowest rank
extremal states that we have found for these systems are indeed
also the lowest rank entangled states. For systems of dimension
4 × NB (with NB � 4), there is a difference of 1 between the
two lower bounds, with the HLVC bound being the lowest. We
have examined only one example of such systems, namely,
the 4 × 4 system. For this system we do find entangled PPT
states with lower rank than the lowest rank extremal PPT state.
For general systems NA × NB with NA � NB , the difference
between the two bounds is, according to our conjecture, equal
to NA − 3 and therefore increases linearly with the lowest
dimension of the two subsystems.

The entangled PPT states with lower ranks than the lowest
rank extremal PPT states with full local ranks will include only
extremal PPT states with less than full local ranks, when writ-
ten as convex combinations of extremal states. We have found
examples of such states with ranks (5,5) in the 4 × 4 system. In
the table such a state ρ appears with dimF = 2, which means
that it is a convex combination of two extremal PPT states,

ρ = (1 − x)ρe + xρp, (20)

with 0 < x < 1. One of these is a pure product state
ρp = ww†, where w = u ⊗ v is the single product vector
found in Im ρ. The other one is a rank (4,4) state ρe, which
we identify as an extremal PPT state of a 3 × 3 subsystem.
We find this state by subtracting ρp with the value of the
coefficient x determined as discussed in [22]. To summarize,
the entangled rank (5,5) PPT state ρ has full local ranks and
saturates the HLVC bound but is a convex combination of two
extremal PPT states that both have less than full local ranks.

A closer look at the preceding decomposition of the
(5,5) state ρ motivates the following general construction of
states that saturate the HLVC bound in successively higher
dimensions. Assume that

HA = U1 ⊕ U2 , HB = V1 ⊕ V2, (21)

where dimU1 = dimV1 = 3 and dimU2 = dimV2 = 1. We
assume that U1 and U2 are complementary but not necessarily
orthogonal subspaces of HA and that V1 and V2 are comple-
mentary but not necessarily orthogonal in HB .

Let ρe be a rank (4,4) extremal PPT state on the 3 × 3
dimensional subspace U1 ⊗ V1 ⊂ H. A property of ρe is that
there are no product vectors in Im ρe ⊂ U1 ⊗ V1. Let ρp be a
pure product state ρp = ww† with w = u ⊗ v, u ∈ U2 and
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v ∈ V2. Then define ρ = (1 − x)ρe + xρp with 0 < x < 1.
The image of ρ is

Im ρ = Im ρe ⊕ Im ρp

= Im ρe ⊕ (U2 ⊗ V2) ⊂ (U1 ⊗ V1) ⊕ (U2 ⊗ V2). (22)

Since U2 ⊗ V2 is one-dimensional, it follows that the rank of
ρ is one higher than the rank of ρe. Similarly, the rank of ρP

is one higher than the rank of ρP
e .

The only product vector in Im ρ is now w = u ⊗ v. To see
this, consider the most general product vector

w′ = (u1 + u2) ⊗ (v1 + v2)

= (u1 ⊗ v1) + (u1 ⊗ v2) + (u2 ⊗ v1) + (u2 ⊗ v2), (23)

with ui ∈ Ui and vj ∈ Vj . It is a sum of four vectors belonging
to four complementary subspaces Ui ⊗ Vj ⊂ H with i,j =
1,2. In order to have w′ ∈ Im ρ we must have

w′ ∈ (U1 ⊗ V1) ⊕ (U2 ⊗ V2), (24)

but this requires that u1 ⊗ v2 = u2 ⊗ v1 = 0. Since we want
to have w′ �= 0, the only possibilities left are w′ = u1 ⊗ v1,
which is not in Im ρ, or w′ = u2 ⊗ v2, which is not new.

It should be clear from this analysis that the same
construction can be applied to higher dimensional systems.
For example, we may reinterpret ρe to be the (5,5) state ρ

of the 4 × 4 system, as constructed earlier. We reinterpret
ρp to be a new pure product state that increases the local
ranks from 4 to 5, in a similar manner as discussed, so that
ρ = (1 − x)ρe + xρp is a (6,6) state of the 5 × 5 system.
The analysis of product vectors in Im ρ can be done in the
same way, with one exception. In this case there is already
one product vector in Im ρe, and therefore there are two
possible solutions for the product vector w′, namely, the newly
added vector w = u ⊗ v and the previous product vector in
Im ρe. Since the number of product vectors is lower than
dim Im ρ, the state is entangled, and it saturates the HLVC
bound.

The construction can be continued to arbitrarily high dimen-
sion, and it will always create an entangled state that saturates
the HLVC bound. The state will be a convex combination of
extremal PPT states with less than full local ranks, but it will
itself have full local ranks. The construction is not restricted
to symmetric cases, NA = NB , since asymmetric systems can
be reached by introducing product vectors which increase the
dimension of only HA or HB . In this way it is possible to
saturate the HLVC bound in all higher dimensional systems.

E. Checking for entanglement at higher ranks

All the states with ranks above the upper limit for
extremality, that is, with

m2 + n2 > N2 + 1, (25)

we find to have a complete set of product vectors in their
image. This means that they satisfy the necessary condition
for separability given by the range criterion, which however,
does not exclude the possibility that they may be entangled.
To get some further information about this, we have made use
of a separability criterion introduced in [22]. This condition
for separability can be seen as a strengthened version of the

range criterion and is based on a relation that, for separable
states, exists between product vectors in Im ρ and in Im ρP . We
describe subsequently the basis for this criterion and further
describe the method we have applied for checking the criterion.

Assume ρ to be a separable density operator, which there-
fore can be written as a convex combination of product states,

ρ =
∑

k

pkψkψ
†
k , (26)

with ψk = φk ⊗ χk . The partially transposed density operator
can then be written as

ρP =
∑

k

pkψ̃kψ̃
†
k , (27)

with ψ̃k = φk ⊗ χ∗
k , where χ∗

k is the complex conjugate of χk

with respect to the same basis in HB that is used for the partial
transposition. Therefore, corresponding to the set of product
vectors {ψk}, which spans Im ρ, there is a set of product
vectors {ψ̃k}, which we will refer to as the conjugate set,
that spans Im ρP . This implies that a necessary condition for
separability of a density operator ρ is that the number of pairs
of product vectors in Im ρ and in Im ρP that are conjugate is
equal to or larger than the ranks of both ρ and ρP . We write
the condition as

K � max{m,n}, (28)

with K as the number of conjugate pairs of product vectors in
Im ρ and Im ρP .

The preceding condition for separability is effectively
restricted to cases where the ranks m and n of ρ and ρP

are not too large. This follows since if the dimensions of Im ρ

and Im ρP are sufficiently large, the number of such pairs will
necessarily be infinite. The condition for the number of pairs to
be finite can be determined by essentially the same method of
counting parameters as used to determine the typical number
of product vectors in a Hilbert space of given dimension, as
discussed in Sec. III C. Thus a conjugate pair of product vectors
(ψ,ψ̃), with ψ = φ ⊗ χ and ψ̃ = φ ⊗ χ∗, has to satisfy two
sets of equations:

θ
†
i ψ = 0 , ξ

†
i ψ̃ = 0, (29)

where {θi} is a basis of Ker ρ and {ξi} is a basis of Ker ρP .
The number of equations that ψ has to satisfy will be equal to
or will exceed the number of free parameters in this product
state, provided the following condition is satisfied [22]:

dim Ker ρ + dim Ker ρP � dimHA + dimHB − 2. (30)

If the condition is satisfied with proper inequality, there will
typically be no solution, and if it is satisfied with equality,
there will be a finite set of solutions. Expressed in terms of the
ranks m and n and the Hilbert space dimensions N , NA, and
NB , the inequality takes the form

m + n � 2N − NA − NB + 2, (31)

and this sets the limit for applications of the criterion. In the
diagrams this limit is indicated by the dashed green line.

For states that satisfy the preceding inequality, we have
found a practical method to check the separability condition
[Eq. (28)] by applying essentially the same double-eigenvalue
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method as used for detecting product vectors in Im ρ (and in
Ker ρ) and which is described in Appendix A. The outline of
the method is the following. Let P be the orthogonal projection
on Im ρ and Q the orthogonal projection on Im ρP . We con-
sider the following bilinear function of the product state ψ =
φ ⊗ χ :

f (ψ) = ψ†(1 − P )ψ + ψ̃†(1 − Q)ψ̃, (32)

and search for the minima of the function where f = 0. Since
both terms in Eq. (32) are non-negative, such a solution will
give zero for each term separately, and from this follow the
relations Pψ = ψ and Qψ̃ = ψ̃ , which are equivalent to
the two sets of Eqs. (29). The second term in Eq. (32) can
be rewritten in the following way: ψ̃†(1 − Q)ψ̃ = ψ†(1 −
QP )ψ , with QP as the partial transpose of Q. This gives

f (ψ) = ψ†(21 − P − QP )ψ, (33)

and written in this way the function f (ψ) has the same form
as the function that is minimized in the search for product
vectors in Im ρ (see Sec. II C). The only difference is that
the operator 1 − P is replaced by 21 − P − QP . The same
method to search for product vectors with vanishing value for
the function can therefore be used.

The result is that for all the states we have found with
m > NA + NB − 1, and where Eq. (31) is satisfied as a proper
inequality, there are no pairs of conjugate product vectors, and
the states are therefore entangled. In the diagrams these states
are located below the dashed green lines. For the states on the
dashed green line in the diagrams the condition (31) is satisfied
with equality, and for these states we find a finite number K

of pairs of conjugate product vectors that is sufficiently large
to satisfy the separability condition of Eq. (28). This means
that just counting the number of pairs of conjugate product
vectors is insufficient to determine if the states are entangled.
However, with only a finite number of product vectors available
it is possible to check whether the density operator can be
reconstructed as a convex combination of these product states.
The result is that for all ranks where Eq. (31) is satisfied with
equality, we find entangled states. However, in a small number
of cases, we find both separable and entangled states with the
same set of ranks (m,n). That happens for the (6,6), (5,7), and
(7,5) states of the 2 × 4 system.

IV. CONCLUDING REMARKS

The results presented in this article are based on the use
of a numerical method to search for density matrices ρ of a
composite, bipartite system with specified values for the ranks
of ρ and its partial transpose ρP . The method works well for
systems where the Hilbert space dimension N is not too large,
in our calculations, with N <∼ 20. In higher dimensions the
main problem is a too-slow convergence of the iteration proce-
dure. Additional methods to find the number of product vectors
in the image and kernel of the density matrices and to determine
the dimension of the corresponding face of the set of PPT states
have been described. The results based on the use of these
methods are listed in the tables and displayed in the figures.

The results obtained for the low-dimensional systems that
we have studied reveal several regularities. For sufficiently low
ranks we find only separable states of a specific form. Above a

certain value for the ranks of ρ and ρP the states we find are typ-
ically extremal PPT states, until the ranks reach an upper limit.
In our discussion we suggest that there are in fact two lower
bounds, one for entangled states with full local ranks and an-
other, generally more restrictive, for extremal PPT states with
full local ranks. The first we identify as the bound on entangled
PPT states discussed in [22], and we show, by an explicit con-
struction, how this bound can be saturated. On the basis of cer-
tain properties of the extremal states with minimal ranks that
are found in our searches, we conjecture a specific value for the
second, the lower bound on the ranks of extremal PPT states.
The property we focus on is the number of product vectors in
the image and in the kernel of this state, which makes these
states different from the higher rank extremal states. Assuming
this property to be present for the lowest rank extremal states
in general, we draw the conclusion about the lower bound.

Above this lower bound we find in our search a large set of
ranks (m,n) of ρ and ρP where the states are extremal. There
is an upper limit to the ranks of these states, which can be
understood as following from a geometrical constraint on the
face of the set P to which an extremal PPT state belongs. It
is of interest to note that all the states we find for sufficiently
low ranks are limited to the symmetric cases m = n, whereas
for m and n above this limit we find in addition states for
essentially all the asymmetric values of the ranks. However,
as we have stressed, the states we find by our method should
be considered as typical states for the given ranks (m,n). This
means that we cannot exclude the presence of untypical states
also for ranks for which we have not identified any PPT state.

Concerning this last point, it is of interest to relate the
results for the properties of the PPT states found in our
searches with those of other entangled and extremal PPT states
referred to in the literature [11,12,17–19,27]. These states are
based on special constructions which lead to certain classes
of extremal PPT states. Among the states presented by these
special constructions, we have found no example of states
with ranks different from those referred to in our tables and
figures. The main difference, however, is that these specially
constructed states are not necessarily typical in the meaning
used here, and in particular the number of product vectors in
the image and kernel may be larger than the minimal values
that we find in our searches.

In the discussion of our results we have put some emphasis
on the properties of the lowest rank extremal PPT states. For
all the systems we have studied they are special in the sense
that they have no product state in their image but a complete,
finite set of product vectors in their kernel. In a separate
publication [21] we have made a detailed study of these states
for the 3 × 3 system, where they have ranks (4,4). We show
there that these states can be related to states constructed from
unextendible product bases, and the set of such states can
be given an explicit parametrization. We do not know how
to generalize this construction to higher dimensions, and the
question of a general parametrization of extremal PPT states
remains as an interesting problem for future work.
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APPENDIX A: THE MINIMUM DOUBLE EIGENVALUE
PROBLEM

Given the Hermitian matrix A, the problem considered
here is to minimize the expectation value ψ†Aψ over product
vectors ψ = φ ⊗ χ , with the normalization conditions
φ†φ = χ †χ = 1. The problem is equivalent to a set of
coupled eigenvalue problems for the two subsystems, shown
in Eq. (A2), which we have previously analyzed and applied
in Ref. [28]. We present here a modified iteration method,
used for solving certain subproblems discussed in this article.
The motivation for the new iteration method is that it may
converge to different local minima, depending on the starting
point for the iterations. It is important for our purposes here
to be able to find all local minima.

We introduce Lagrange multipliers λ,µ and define

f =
∑
i,j,k,l

φ∗
i χ

∗
j Aij ;klφkχl − λ

(∑
i

φ∗
i φi − 1

)

−µ

⎛
⎝∑

j

χ∗
j χj − 1

⎞
⎠ . (A1)

The following equations must hold at the minimum, or more
generally at an extremum,

∂f

∂φ∗
i

=
∑
j,k,l

χ∗
j Aij ;klφkχl − λφi = 0 ,

(A2)
∂f

∂χ∗
j

=
∑
i,k,l

φ∗
i Aij ;klφkχl − µχj = 0 ,

with ∑
i

φ∗
i φi =

∑
j

χ∗
j χj = 1 ,

(A3)
λ = µ =

∑
i,j,k,l

φ∗
i χ

∗
j Aij ;klφkχl .

Note that λ = µ is the desired minimal (or extremal) value of
the expectation value ψ†Aψ .

In each iteration, given an approximate solution ψ =
φ ⊗ χ , we compute the next approximation ψ ′ = φ′ ⊗ χ ′
as follows. We compute x = Bφ − λφ, y = Cχ − λχ , with
λ = ψ†Aψ and

Bik =
∑
j,l

χ∗
j Aij ;klχl , Cjl =

∑
i,k

φ∗
i Aij ;klφk . (A4)

In practice, we compute z = Aψ , ui = ∑
j χ∗

j zij , vj =∑
i φ

∗
i zij , λ = φ†u = χ †v, x = u − λφ, and y = v − λχ . We

define φ′ = N1(φ + εx) and χ ′ = N2(χ + εy), where N1,N2

are normalization factors and where ε is determined as follows.
To first order in ε, we have

(φ + εx) ⊗ (χ + εy) = ψ + εw , (A5)

with w = φ ⊗ y + x ⊗ χ . Note that ψ†w = 0 since φ†x =
χ †y = 0. The vector s = ψ + εw is used as a trial vector, and
the parameter ε is determined by minimizing s†As/s†s. This
is an eigenvalue problem in the two-dimensional subspace
spanned by ψ and w, and it can be solved analytically.

This iteration method is based on the linear approximation
in Eq. (A5), which should be good when the starting point
for an iteration is close to a local minimum so that ε will be
small. By minimizing s†As/s†s, we get successively smaller
values of ψ†Aψ , and the iterations will converge to the local
minimum.

APPENDIX B: TABLES

TABLE I. Numerical results for the 2 × 4 and the 2 × 5 systems.
The first column lists the ranks of ρ and ρP where PPT states have
been found. The second column lists the lower limit for the value of
the dimension of the face ofK(P) for the given ranks (m,n), while the
third column lists the actual values of the dimensions for the states we
have found. The fourth column lists the values of the local ranks with
respect to subsystems A and B. The fifth and sixth columns give the
number of product vectors in Im ρ and Ker ρ, respectively. In each
of these columns, two numbers are given, with the number to the left
as the total number and the one to the right as the number of linearly
independent product vectors. Symbol ∞ indicates that we find no
upper limit to the number of product vectors that can be generated.
In the present tables the extremal PPT states with no product state
in Im ρ and a complete set in Ker ρ, which we find in all the other
tables, are missing.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

2 × 4
(8,8) 64 64 (2,4) ∞/8 0
(8,7) 49 49 (2,4) ∞/8 0
(8,6) 36 36 (2,4) ∞/8 0
(7,7) 34 34 (2,4) ∞/7 0
(8,5) 25 25 (2,4) ∞/8 0
(7,6) 21 21 (2,4) ∞/7 0
(7,5) 10 10 (2,4) ∞/7 0
(6,6) 8 8 (2,4) ∞/6 0
(6,5) −3 1 (2,4) ∞/6 0
(5,5) −14 1 (2,4) ∞/5 0
(4,4) −32 4 (2,4) 4/4 4/4
(3,3) −46 3 (2,3) 3/3 ∞/5
(2,2) −56 2 (2,2) 2/2 ∞/6
(1,1) −62 1 (1,1) 1/1 ∞/8

2 × 5

(10,10) 100 100 (2,5) ∞/10 0
(10,9) 81 81 (2,5) ∞/10 0
(10,8) 64 64 (2,5) ∞/10 0
(9,9) 62 62 (2,5) ∞/9 0
(10,7) 49 49 (2,5) ∞/10 0
(9,8) 45 45 (2,5) ∞/9 0
(9,7) 30 30 (2,5) ∞/9 0
(8,8) 28 28 (2,5) ∞/8 0
(9,6) 17 17 (2,5) ∞/9 0
(8,7) 13 13 (2,5) ∞/8 0
(8,6) 0 1 (2,5) ∞/8 0
(7,7) −2 1 (2,5) ∞/7 0
(7,6) −15 1 (2,5) ∞/7 0
(6,6) −28 1 (2,5) ∞/6 0
(5,5) −50 5 (2,5) 5/5 5/5
(4,4) −68 4 (2,4) 4/4 ∞/6
(3,3) −82 3 (2,3) 3/3 ∞/7
(2,2) −92 2 (2,2) 2/2 ∞/8
(1,1) −98 1 (1,1) 1/1 ∞/9
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TABLE II. Numerical results for the 3 × 3 and the 3 × 4 systems.
For explanations, see Table I. Except for one case in the 3 × 4 system,
we find only one type of state, characterized by the listed properties,
for each set of ranks (m,n). The exception is the case (4,4), where
we find both extremal PPT states with less than full local ranks and
separable states of the same construction as those of lower ranks.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

3 × 3
(9,9) 81 81 (3,3) ∞/9 0
(9,8) 64 64 (3,3) ∞/9 0
(9,7) 49 49 (3,3) ∞/9 0
(8,8) 47 47 (3,3) ∞/8 0
(9,6) 36 36 (3,3) ∞/9 0
(8,7) 32 32 (3,3) ∞/8 0
(8,6) 19 19 (3,3) ∞/8 0
(7,7) 17 17 (3,3) ∞/7 0
(8,5) 8 8 (3,3) ∞/8 0
(7,6) 4 4 (3,3) ∞/7 0
(7,5) −7 1 (3,3) ∞/7 0
(6,6) −9 1 (3,3) ∞/6 0
(6,5) −20 1 (3,3) ∞/6 0
(5,5) −31 1 (3,3) 6/5 0
(4,4) −49 1 (3,3) 0 6/5
(3,3) −63 3 (3,3) 3/3 ∞/6
(2,2) −73 2 (2,2) 2/2 ∞/7
(1,1) −79 1 (1,1) 1/1 ∞/8

3 × 4

(12,11) 121 121 (3,4) ∞/12 0
(12,10) 100 100 (3,4) ∞/12 0
(11,11) 98 98 (3,4) ∞/11 0
(12,9) 81 81 (3,4) ∞/12 0
(11,10) 77 77 (3,4) ∞/11 0
(12,8) 64 64 (3,4) ∞/12 0
(11,9) 58 58 (3,4) ∞/11 0
(10,10) 56 56 (3,4) ∞/10 0
(11,8) 41 41 (3,4) ∞/11 0
(10,9) 37 37 (3,4) ∞/10 0
(11,7) 26 26 (3,4) ∞/11 0
(10,8) 20 20 (3,4) ∞/10 0
(9,9) 18 18 (3,4) ∞/9 0
(11,6) 13 13 (3,4) ∞/11 0
(10,7) 5 5 (3,4) ∞/10 0
(9,8) 1 1 (3,4) ∞/9 0
(10,6) −8 1 (3,4) ∞/10 0
(9,7) −14 1 (3,4) ∞/9 0
(8,8) −16 1 (3,4) ∞/8 0
(9,6) −27 1 (3,4) ∞/9 0
(8,7) −31 1 (3,4) ∞/8 0
(8,6) −44 1 (3,4) ∞/8 0
(7,7) −46 1 (3,4) 10/7 0
(7,6) −59 1 (3,4) 10/7 0
(6,6) −72 1 (3,4) 0 0
(5,5) −94 1 (3,4) 0 10/7
(4,4) −112 1 (3,3) 0 ∞/8

4 (3,4) 4/4 ∞/8
(3,3) −126 3 (3,3) 3/3 ∞/9
(2,2) −136 2 (2,2) 2/2 ∞/10
(1,1) −142 1 (1,1) 1/1 ∞/11

TABLE III. Numerical results for the 3 × 5 system. For expla-
nations, see Table I. We here find two types of states with ranks
(5,5).

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

3 × 5
(15,14) 196 196 (3,5) ∞/15 0
(15,13) 169 169 (3,5) ∞/15 0
(14,14) 167 167 (3,5) ∞/14 0
(15,12) 144 144 (3,5) ∞/15 0
(14,13) 140 140 (3,5) ∞/14 0
(15,11) 121 121 (3,5) ∞/15 0
(14,12) 115 115 (3,5) ∞/14 0
(13,13) 113 113 (3,5) ∞/13 0
(14,11) 92 92 (3,5) ∞/14 0
(13,12) 88 88 (3,5) ∞/13 0
(14,10) 71 71 (3,5) ∞/14 0
(13,11) 65 65 (3,5) ∞/13 0
(12,12) 63 63 (3,5) ∞/12 0
(14,9) 52 52 (3,5) ∞/14 0
(13,10) 44 44 (3,5) ∞/13 0
(12,11) 40 40 (3,5) ∞/12 0
(14,8) 35 35 (3,5) ∞/14 0
(13,9) 25 25 (3,5) ∞/13 0
(14,7) 20 20 (3,5) ∞/14 0
(12,10) 19 19 (3,5) ∞/12 0
(11,11) 17 17 (3,5) ∞/11 0
(13,8) 8 8 (3,5) ∞/13 0
(12,9) 0 1 (3,5) ∞/12 0
(11,10) −4 1 (3,5) ∞/11 0
(13,7) −7 1 (3,5) ∞/13 0
(12,8) −17 1 (3,5) ∞/12 0
(11,9) −23 1 (3,5) ∞/11 0
(10,10) −25 1 (3,5) ∞/10 0
(12,7) −32 1 (3,5) ∞/12 0
(11,8) −40 1 (3,5) ∞/11 0
(10,9) −44 1 (3,5) ∞/10 0
(11,7) −55 1 (3,5) ∞/11 0
(10,8) −61 1 (3,5) ∞/10 0
(9,9) −63 1 (3,5) 15/9 0
(10,7) −76 1 (3,5) ∞/10 0
(9,8) −80 1 (3,5) 15/9 0
(9,7) −95 1 (3,5) 15/9 0
(8,8) −97 1 (3,5) 0 0
(8,7) −112 1 (3,5) 0 0
(7,7) −127 1 (3,5) 0 0
(6,6) −153 1 (3,5) 0 15/9
(5,5) −175 1 (3,4) 0 ∞/10

5 (3,5) 5/5 ∞/10
(4,4) −193 4 (3,4) 4/4 ∞/11
(3,3) −207 3 (3,3) 3/3 ∞/12
(2,2) −217 2 (2,2) 2/2 ∞/13
(1,1) −223 1 (1,1) 1/1 ∞/14
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TABLE IV. Numerical results for the 4 × 4 system. For explana-
tions, see Table I. The pattern of the listed properties is much like
that of the other tables, but here with more low-rank states below the
lowest rank (m = n = 6) extremal PPT state with full local ranks.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

4 × 4
(16,16) 256 256 (4,4) ∞/16 0
(16,15) 225 225 (4,4) ∞/16 0
(16,14) 196 196 (4,4) ∞/16 0
(15,15) 194 194 (4,4) ∞/15 0
(16,13) 169 169 (4,4) ∞/16 0
(15,14) 165 165 (4,4) ∞/15 0
(16,12) 144 144 (4,4) ∞/16 0
(15,13) 138 138 (4,4) ∞/15 0
(14,14) 136 136 (4,4) ∞/14 0
(16,11) 121 121 (4,4) ∞/16 0
(15,12) 113 113 (4,4) ∞/15 0
(14,13) 109 109 (4,4) ∞/14 0
(15,11) 90 90 (4,4) ∞/15 0
(14,12) 84 84 (4,4) ∞/14 0
(13,13) 82 82 (4,4) ∞/13 0
(15,10) 69 69 (4,4) ∞/15 0
(14,11) 61 61 (4,4) ∞/14 0
(13,12) 57 57 (4,4) ∞/13 0
(15,9) 50 50 (4,4) ∞/15 0
(14,10) 40 40 (4,4) ∞/14 0
(15,8) 33 33 (4,4) ∞/15 0
(13,11) 34 34 (4,4) ∞/13 0
(12,12) 32 32 (4,4) ∞/12 0
(14,9) 21 21 (4,4) ∞/14 0
(15,7) 18 18 (4,4) ∞/15 0
(13,10) 13 13 (4,4) ∞/13 0
(12,11) 9 9 (4,4) ∞/12 0
(14,8) 4 4 (4,4) ∞/14 0

TABLE IV. (Continued.)

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

(13,9) −6 1 (4,4) ∞/13 0
(14,7) −11 1 (4,4) ∞/14 0
(12,10) −12 1 (4,4) ∞/12 0
(11,11) −14 1 (4,4) ∞/11 0
(13,8) −23 1 (4,4) ∞/13 0
(12,9) −31 1 (4,4) ∞/12 0
(11,10) −35 1 (4,4) ∞/11 0
(13,7) −38 1 (4,4) ∞/13 0
(12,8) −48 1 (4,4) ∞/12 0
(11,9) −54 1 (4,4) ∞/11 0
(10,10) −56 1 (4,4) 20/10 0
(12,7) −63 1 (4,4) ∞/12 0
(11,8) −71 1 (4,4) ∞/11 0
(10,9) −75 1 (4,4) 20/10 0
(11,7) −86 1 (4,4) ∞/11 0
(10,8) −92 1 (4,4) 20/10 0
(9,9) −94 1 (4,4) 0 0
(10,7) −107 1 (4,4) 20/10 0
(9,8) −111 1 (4,4) 0 0
(9,7) −126 1 (4,4) 0 0
(8,8) −128 1 (4,4) 0 0
(8,7) −143 1 (4,4) 0 0
(7,7) −158 1 (4,4) 0 0
(6,6) −184 1 (4,4) 0 20/10
(5,5) −206 1 (4,3) 0 ∞/11

2 (4,4) 1/1 ∞/11
5 (4,4) 5/5 ∞/11

(4,4) −224 1 (3,3) 0 ∞/12
4 (4,4) 4/4 ∞/12

(3,3) −238 3 (3,3) 3/3 ∞/13
(2,2) −248 2 (2,2) 2/2 ∞/14
(1,1) −254 1 (1,1) 1/1 ∞/15
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