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We show that the restricted shareability and distribution of multiqubit entanglement can be characterized by
Tsallis-q entropy. We first provide a class of bipartite entanglement measures named Tsallis-q entanglement, and
provide its analytic formula in two-qubit systems for 1 � q � 4. For 2 � q � 3, we show a monogamy inequality
of multiqubit entanglement in terms of Tsallis-q entanglement, and we also provide a polygamy inequality using
Tsallis-q entropy for 1 � q � 2 and 3 � q � 4.

DOI: 10.1103/PhysRevA.81.062328 PACS number(s): 03.67.Mn, 03.65.Ud

I. INTRODUCTION

Whereas classical correlations can be freely shared among
parties in multiparty systems, quantum correlation, especially
quantum entanglement, is known to have some restriction in
its shareability and distribution. For example, in a tripartite
system consisting of parties A, B, and C, let us assume A

is maximally entangled with both B and C simultaneously.
Because maximal entanglement can be used to teleport an
arbitrary unknown quantum state [1], A can teleport an
unknown state ρ to B and C by using the simultaneous
maximal entanglement. Now, each B and C has an identical
copy of ρ, and this means cloning an unknown state ρ, which
is impossible by the no-cloning theorem [2]. In other words,
the assumption of simultaneous maximal entanglement of A

with B and C is quantum mechanically forbidden.
This restricted shareability of quantum entanglement is

known as the Monogamy of Entanglement (MoE) [3], and it
was also shown to play an important role in many applications
of quantum information processing. For instance, in quantum
cryptography, MoE can be used to restrict the possible
correlation between authorized users and the eavesdropper,
which is the basic concept of the security proof [4].

For three-qubit systems, MoE was first characterized in
forms of a mathematical inequality using concurrence [5] as
the bipartite entanglement measure. This characterization is
known as the CKW inequality named after its establishers,
Coffman, Kundu, and Wootters [6], and it was also generalized
for multiqubit systems later [7].

MoE in multiqubit systems is mathematically well char-
acterized in terms of concurrence, it is, however, also known
that the CKW-type characterization for MoE is not generally
true for other entanglement measures such as Entanglement of
Formation (EoF) [8]: Even in multiqubit systems, there exists
a counterexample that violates the CKW-type inequality in
terms of EoF.

As bipartite entanglement measures, both concurrence and
EoF of a bipartite pure state |ψ〉AB quantify the uncertainty of
the subsystem ρA = trB |ψ〉AB〈ψ |. For the case when |ψ〉AB

is a two-qubit state, the uncertainty of ρA is completely
determined by a single parameter. Furthermore, the extension
of concurrence and that of Eof for a mixed state ρAB are
based on the same method of convex-roof extension, which
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minimizes the average entanglement over all possible pure-
state decompositions of ρAB . In other words, concurrence and
EoF for two-qubit states are essentially equivalent based on
the same concept, the uncertainty of the subsystem. Moreover,
it was also shown that these two measures are related by a
monotone-increasing convex function [5].

However, these two equivalent measures for two-qubit
systems show very different properties in multipartite systems
in characterizing MoE, and this exposes the importance of
having proper entanglement measures to characterize MoE
even in multiqubit systems. Moreover, for the study of general
MoE in multipartite higher-dimensional quantum systems,
having a proper bipartite entanglement measure is one of the
most important and necessary things that must precede.

As generalizations of the von Neumann entropy, there
are two representative classes of entropies quantifying the
uncertainty of quantum systems: One is quantum Rényi
entropy [9,10], and the other is quantum Tsallis entropy
[11,12]. Although both of them are one-parameter classes by
a nonnegative real parameter q having von Neumann entropy
as a special case when q → 1, the Tsallis entropy, however,
shows quite distinct properties from the Rényi entropy. As
a function of probability distributions, the Tsallis entropy is
concave for all q > 0 whereas the Rényi entropy is concave
only for 0 < q � 1. This concavity of the Tsallis entropy
plays an important role in quantifying quantum entanglement
because it assures the property of entanglement monotone
[13]. In other words, the concavity of the Tsallis entropy
assures the construction of an entanglement measure based
on the Tsallis-q entropy for all q > 0, which does not increase
under local operations and classical communication (LOCC).
Furthermore, it is also known that the Tsallis entropy is
Lesche-stable for all q > 0, whereas the Rényi entropy is
not [14].

The Tsallis entropy has been widely used in many areas
of quantum information theory such as the conditions for
separability of quantum states [15–17] and the characterization
of classical statistical correlations inherent in quantum states
[18]. There are also discussions about using the nonextensive
statistical mechanics to describe quantum entanglement [19].

For the characterization of MoE in multipartite quantum
systems, it was recently shown that the Rényi entropy can
be used for the CKW-type characterization of multiqubit
monogamy. Using a bipartite entanglement measure based on
the Rényi-q entropy, a CKW-type monogamy inequality was
proposed for all q � 2 [20].

1050-2947/2010/81(6)/062328(8) 062328-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.062328


JEONG SAN KIM PHYSICAL REVIEW A 81, 062328 (2010)

Here, we show that the Tsallis entropy can characterize
MoE in multiqubit systems for a selective choice of the
parameter q. Using quantum Tsallis entropy of order q (or
Tsallis-q entropy), we first provide a one-parameter class of
bipartite entanglement measures, Tsallis-q entanglement, and
provide its analytic formula for arbitrary two-qubit states when
1 � q � 4. This class contains EoF as a special case when
q → 1. Furthermore, we show the monogamy inequality of
multiqubit systems in terms of the Tsallis-q entanglement
for 2 � q � 3. For 1 � q � 2 or 3 � q � 4, we also provide
a polygamy inequality of multiqubit entanglement using the
Tsallis-q entropy.

This paper is organized as follows. In Sec. II A, we recall
the definition of Tsallis-q entropy, and define Tsallis-q entan-
glement and its dual quantity for bipartite quantum states. In
Sec. II B, we provide an analytic formula of Tsallis-q entangle-
ment for arbitrary two-qubit states when 1 � q � 4. In Sec. III,
we derive a monogamy inequality of multiqubit entanglement
in terms of Tsallis-q entanglement for 2 � q � 3. We also
provide a polygamy inequality of multiqubit entanglement for
1 � q � 2 or 3 � q � 4. Finally, we summarize our results in
Sec. IV.

II. TSALLIS-q ENTANGLEMENT

A. Definition

For any quantum state ρ, its Tsallis-q entropy is defined as

Tq(ρ) = 1

q − 1
(1 − trρq), (1)

for any q > 0 and q �= 1. For the case when α tends to 1, Tq(ρ)
converges to the von Neumann entropy, that is,

lim
q→1

Tq(ρ) = −trρ log ρ = S(ρ). (2)

In other words, Tsallis-q entropy has a singularity at q = 1, and
it can be replaced by the von Neumann entropy. Throughout
this paper we will just consider T1(ρ) = S(ρ) for any quantum
state ρ.

For a bipartite pure state |ψ〉AB and each q > 0, Tsallis-q
entanglement is

Tq(|ψ〉AB) := Tq(ρA), (3)

where ρA = trB |ψ〉AB〈ψ | is the reduced density matrix onto
subsystem A. For a mixed state ρAB , we define its Tsallis-q
entanglement via convex-roof extension, that is,

Tq(ρAB) := min
∑

i

piTq(|ψi〉AB), (4)

where the minimum is taken over all possible pure state
decompositions of ρAB = ∑

i pi |ψi〉AB〈ψi |.
As a dual quantity to Tsallis-q entanglement, we also define

Tsallis-q entanglement of Assistance (TEoA) as

T a
q (ρAB) := max

∑
i

piTq(|ψi〉AB), (5)

where the maximum is taken over all possible pure state
decompositions of ρAB .

Because Tsallis-q entropy converges to von Neumann
entropy when q tends to 1, we have

lim
q→1

Tq(ρAB) = Ef(ρAB), (6)

where Ef (ρAB) is the EoF of ρAB defined as [8]

Ef (ρAB) = min
∑

i

piS
(
ρi

A

)
. (7)

Here, the minimization is taken over all possible pure state
decompositions of ρAB , such that,

ρAB =
∑

i

pi |φi〉AB〈φi |, (8)

with trB |φi〉AB〈φi | = ρi
A. In other words, Tsallis-q entan-

glement is one-parameter generalization of EoF, and the
singularity of Tq (ρAB) at q = 1 can be replaced by Ef(ρAB).

Similarly, we have

lim
q→1

T a
q (ρAB) = Ea(ρAB), (9)

where Ea(ρAB) is the Entanglement of Assistance (EoA) of
ρAB defined as [21]

Ea(ρAB) = max
∑

i

piS
(
ρi

A

)
. (10)

Here, the maximum is taken over all possible pure state
decompositions of ρAB , such that,

ρAB =
∑

i

pi |φi〉AB〈φi |, (11)

with trB |φi〉AB〈φi | = ρi
A.

B. Analytic formula for two-qubit states

Before we provide an analytic formula for Tsallis-q entan-
glement in two-qubit systems, let us first recall the definition of
concurrence and its functional relation with EoF in two-qubit
systems.

For any bipartite pure state |ψ〉AB , its concurrence,
C(|ψ〉AB) is defined as [5]

C(|ψ〉AB) =
√

2
(
1 − trρ2

A

)
, (12)

where ρA = trB(|ψ〉AB〈ψ |). For a mixed state ρAB , its concur-
rence is defined as

C(ρAB) = min
∑

k

pkC(|ψk〉AB), (13)

where the minimum is taken over all possible pure state
decompositions, ρAB = ∑

k pk|ψk〉AB〈ψk|.
For two-qubit systems, concurrence is known to have an

analytic formula [5]; for any two-qubit state ρAB ,

C(ρAB) = max{0,λ1 − λ2 − λ3 − λ4}, (14)

where λi’s are the eigenvalues, in decreasing order, of√√
ρABρ̃AB

√
ρAB and ρ̃AB = σy ⊗ σyρ

∗
ABσy ⊗ σy with the

Pauli operator σy . Furthermore, the relation between concur-
rence and EoF of a two-qubit mixed state ρAB (or a pure
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state |ψ〉AB ∈ C2 ⊗ Cd , d � 2), can be given as a monotone
increasing, convex function [5], such that

Ef(ρAB) = E(C(ρAB)), (15)

where

E(x) = H

(
1

2
+ 1

2

√
1 − x2

)
, for 0 � x � 1, (16)

with the binary entropy function H (t) = −[t log t + (1 − t)
log(1 − t)]. In other words, the analytic formula of concur-
rence as well as its functional relation with EoF lead us to an
analytic formula for EoF in two-qubit systems.

For any 2 ⊗ d pure state |ψ〉AB (especially a two-qubit pure
state) with its Schmidt decomposition |ψ〉AB = √

λ0|00〉AB +√
λ1|11〉AB , its Tsallis-q entanglement is

Tq(|ψ〉AB) = Tq(ρA) = 1

q − 1

(
1 − λ

q

0 − λ
q

1

)
. (17)

Because the concurrence of |ψ〉AB is

C(|ψ〉AB) =
√

2
(
1 − trρ2

A

) =
√

λ0λ1, (18)

it can be easily verified that

Tq(|ψ〉AB) = gq(C(|ψ〉AB)), (19)

where gq(x) is an analytic function defined as

gq(x) := 1

q − 1

[
1 −

(
1 + √

1 − x2

2

)q

−
(

1 − √
1 − x2

2

)q]
, (20)

on 0 � x � 1. In other words, for any 2 ⊗ d pure state
|ψ〉AB , we have a functional relation between its concurrence
and Tsallis-q entanglement for each q > 0. Note that gq(x)
converges to the function E(x) in Eq. (16) for the case when q

tends to 1.
It was shown that there exists an optimal decomposition for

the concurrence of a two-qubit mixed state such that every
pure state concurrence in the decomposition has the same
value [5]: For any two-qubit state ρAB , there exists a pure
state decomposition ρAB = ∑

i pi |φi〉AB〈φi | such that

C(ρAB) =
∑

i

piC(|φi〉AB), (21)

and

C(|φi〉AB) = C(ρAB), (22)

for each i. Based on this, one possible sufficient condition for
the relation in Eq. (19) to be also true for two-qubit mixed
states is that the function gq(x) is monotonically increasing
and convex [22]. In other words, we have

Tq(ρAB) = gq(C(ρAB)), (23)

for any two-qubit mixed state ρAB provided that gq(x) is
monotonically increasing and convex. Moreover, for the
range of q where gq(x) is monotonically increasing and
convex, Eq. (23) also implies an analytic formula of Tsallis-q
entanglement for any two-qubit state.

Now, let us consider the monotonicity and convexity of
gq(x) in Eq. (20). Because gq(x) is an analytic function on
0 � x � 1, its monotonicity and convexity follow from the
nonnegativity of its first and second derivatives.

By taking the first derivative of gq(x), we have

dgq(x)

dx
= qx[(1 + √

1 − x2)
q−1 − (1 − √

1 − x2)
q−1

]

2q(q − 1)
√

1 − x2
,

(24)

which is always nonnegative on 0 � x � 1 for q > 0. It is
also direct to check that Eq. (24) is strictly positive for 0 <

x < 1. In other words, gq(x) is a strictly monotone-increasing
function for any q > 0.

For the second derivative of gq(x), we have

d2gq(x)

dx2

= α

[
(1 + √

1 − x2)
q−2

1 − x2

(
1 + √

1 − x2

√
1 − x2

− x2(q − 1)

)

− (1 − √
1 − x2)

q−2

1 − x2

(
1 − √

1 − x2

√
1 − x2

+ x2(q − 1)

)]
,

(25)

where α = q

2q (q−1) . Here, we first prove that gq (x) is not convex
for q � 5 by showing the existence of x0 between 0 and 1 such

that d2gq (x0)
dx2 is negative. To see this, first note that the second

term of the right-hand side in Eq. (25) is always negative for
0 < x < 1 if q > 1. Thus, it suffices to show that the first term
of the right-hand side in Eq. (25) is nonpositive at x0 ∈ (0,1)
for q � 5. Furthermore, the only factor of the first term that
can be negative is(

1 + √
1 − x2

√
1 − x2

− x2(q − 1)

)
, (26)

since both α and (1+√
1−x2)

q−2

1−x2 are always positive at x ∈ (0,1)
if q > 1. By defining a function such that

h(x) = 1 − √
1 − x2

x2
√

1 − x2
+ 1, (27)

the nonpositivity of Eq. (26) is equivalent to

q � h(x). (28)

Since h(x) is an analytic function on 0 < x < 1, it is direct to
verify that it has a critical point at x0 =

√
3

2 with gq(x0) = 5,
which is the global minimum. In other words, for q � 5, there
always exists x0 ∈ (0,1) making Eq. (26) nonpositive, and thus
gq(x) is not convex for this region of q.

For the region of q < 5, let us first consider the function
gq(x) of the integer value q, that is q = 1, 2, 3, and 4. If q → 1,
gq(x) converges to E(x) in Eq. (16), which is already known
to be convex on 0 � x � 1. Furthermore, we have

g2(x) = x2

2
, g3(x) = 3x2

8
, g4(x) = 8x2 − x4

24
, (29)

which are convex polynomials on 0 � x � 1.
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FIG. 1. (Color online) The function values of l(q,x) = d2gq (x)
dx2 for

4 � q � 4.5 and 0.4 � q � 0.8 are illustrated in pictures (a) and (b),
respectively.

In fact, if we consider d2gq (x)
dx2 in Eq. (25) as a function of x

and q

l(x,q) = d2gq(x)

dx2
, (30)

defined on the domain D = {(x,q)|0 � x � 1,1 � q � 4},
it is tedious but also straightforward to check that l(x,q)
does not have any vanishing gradient in the interior of D,
and its function value on the boundary of D is always
nonnegative. Because l(x,q) is analytic in the interior of D,
and continuous on the boundary, l(x,q) is nonnegative through
whole the domain D, and this implies the convexity of gq(x)
for 1 � q � 4. Thus, we have the following theorem.

Theorem 1. For 1 � q � 4,

gq(x) = 1

q − 1

[
1 −

(
1 + √

1 − x2

2

)q

−
(

1 − √
1 − x2

2

)q]
,

(31)

is a monotonically increasing convex function on 0 � x � 1.
Furthermore, for this range of q, any two-qubit state ρAB has
an analytic formula for its Tsallis-q entanglement such that
Tq (ρAB) = gq(C(ρAB)) where C(ρAB) is the concurrence of
ρAB .

Due to the continuity of gq(x) with respect to q, we can
always assure the convexity of gq(x) for some region of q

slightly less than 1 or larger than 4. Furthermore, the continuity
of l(x,q) in Eq. (30) also assures the existence of q0 between
4 and 5, at which the convexity of gq(x) starts being violated.
However, it is generally hard to get an algebraic solution of

such q0 since d2gq (x)
dx2 in Eq. (25) is not an algebraic function

with respect to q. Here, we have a numerical way of calculation
to test various values of x and q, and it is illustrated in Fig. 1.

According to Fig. 1, gq(x) is convex for the region
0.7 � q � 4.2, and thus the analytic formula of Tsallis-q
entanglement for two-qubit states in Eq. (23) can also be
claimed for this region of q.

III. MULTIQUBIT ENTANGLEMENT CONSTRAINT
IN TERMS OF TSALLIS-q ENTANGLEMENT

Using concurrence as the bipartite entanglement mea-
sure, the monogamous property of a multiqubit pure state

|ψ〉A1A2···An
was shown to have a mathematical characterization

as,

C2
A1(A2···An) � C2

A1A2
+ · · · + C2

A1An
, (32)

where CA1(A2···An) = C(|ψ〉A1(A2···An)) is the concurrence of
|ψ〉A1A2···An

with respect to the bipartite cut between A1 and the
others, and CA1Ai

= C(ρA1Ai
) is the concurrence of the reduced

density matrix ρA1Ai
for i = 2, . . . , n [6,7].

As a dual value to concurrence, Concurrence of Assistance
(CoA) [23] of a bipartite state ρAB is defined as

Ca(ρAB) = max
∑

k

pkC(|ψk〉AB), (33)

where the maximum is taken over all possible pure state
decompositions of ρAB = ∑

k pk|ψk〉AB〈ψk|. Furthermore,
it was also shown that there exists a polygamy (or dual
monogamy) relation of multiqubit entanglement in terms of
CoA [24]: For any multiqubit pure state |ψ〉A1···An

, we have

C2
A1(A2···An) �

(
Ca

A1A2

)2 + · · · + (
Ca

A1An

)2
, (34)

where Ca
A1Ai

is the CoA of the reduced density matrix ρA1Ai

for i = 2, . . . , n.
Here, we show that this monogamous and polygamous

property of multiqubit entanglement can also be characterized
in terms of Tsallis-q entanglement and TEoA. Before this, we
provide an important property of the function gq(x) in Eq. (20)
for the proof of multiqubit monogamy and polygamy relations.

For each q > 0, let us define a two-variable function
mq(x,y),

mq(x,y) := gq(
√

x2 + y2) − gq(x) − gq(y), (35)

on the domain D = {(x,y)|0 � x,y,x2 + y2 � 1}. Since
mq(x,y) is continuous on the domain D and analytic in the
interior, its maximum or minimum values can arise only at
the critical points or on the boundary of D. By taking the
first-order partial derivatives of mq(x,y), we have its gradient

∇mp(x,y) =
(

∂mp(x,y)

∂x
,
∂mp(x,y)

∂y

)
, (36)

where

∂mq(x,y)

∂x

= αx

[
(1 +

√
1 − x2 − y2)

q−1 − (1 +
√

1 − x2 − y2)
q−1√

1 − x2 − y2

− (1 + √
1 − x2)

q−1 − (1 + √
1 − x2)

q−1

√
1 − x2

]
(37)

∂mq(x,y)

∂y

= αy

[
(1 +

√
1 − x2 − y2)

q−1 − (1 +
√

1 − x2 − y2)
q−1√

1 − x2 − y2

− (1 +
√

1 − y2)
q−1 − (1 +

√
1 − y2)

q−1√
1 − y2

]
,

with α = q

2q (q−1) .
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Suppose there exists (x0,y0) in the interior of D (that
is, 0 < x0,y0,x

2
0 + y2

0 < 1) such that ∇mp(x0,y0) = 0. From
Eq. (37), it is straightforward to verify that ∇mp(x0,y0) = 0 is
equivalent to

nq(x0) = nq(y0), (38)

for an analytic function

nq(t) = (1 + √
1 − t2)

q−1 − (1 + √
1 − t2)

q−1

√
1 − t2

, (39)

on 0 < t < 1. Furthermore, it is straightforward to see that
dnq (t)

dt
< 0 for q > 1. In other words, nq(t) is a strictly

monotone-decreasing function with respect to t for q > 1;
therefore Eq. (38) implies x0 = y0. However, from Eq. (37),
∂mq (x0,y0)

∂x
= 0 together with x0 = y0 imply that nq(

√
2x0) =

nq(x0), which contradicts to the strict monotonicity of nq(t).
Thus mq(x,y) has no vanishing gradient in the interior of D.

Now, let us consider the function values of mq(x,y) on the
boundary of D. If x = 0 or y = 0, it is clear that mq(x,y) = 0.
For the case when x2 + y2 = 1, mq(x,y) = 0 becomes a single
variable function

bq(x) = β[(1 +
√

1 − x2)q + (1 −
√

1 − x2)q]

+β[c(1 + x)q + (1 − x)q − 2 − 2q], (40)

with β = 1
(q−1)2q , which is an analytic function on 0 � x � 1.

For the case when q = 2 or 3, it is clear form Eq. (29) that
mq(x,y) = 0, and thus bq(x) = 0. If q is neither 2 nor 3,
bq(x) has only one critical point at x = 1√

2
for any q > 1.

Because bq(0) = bq(1) = 0, which are the function values at
the boundary, the signs of the function values of bq(x) are
totally determined by that of bq( 1√

2
), which is the function

value at the critical point. Now, we have

bq

(
1√
2

)
= 2

(q − 1)2q

[(
1 + 1√

2

)q

+
(

1 − 1√
2

)q]

− 1

(q − 1)2q
(2 + 2q), (41)

whose function value with respect to q is illustrated in Fig. 2.

q

qb
1 2

FIG. 2. (Color online) The function values of bq ( 1√
2
) for

1 < q � 4.

In other words, the function mq(x,y) in Eq. (35) has no
vanishing gradient in the domain D for q > 1, and its function
values at the boundary of D is always nonpositive for 1 � q <

2 and 3 < q � 4, whereas mq(x,y) is always nonnegative for
2 < q < 3. Thus, we have

gq(
√

x2 + y2) � gq(x) + gq(y), (42)

for 1 < q < 2 and 3 < q < 4, and

gq(
√

x2 + y2) � gq(x) + gq(y), (43)

for 2 < q < 3. For the case when q = 2 or 3, we have

gq(
√

x2 + y2) = gq(x) + gq(y). (44)

Now, we are ready to have the following theorem, which is
the monogamy inequality of multiqubit entanglement in terms
of Tsallis-q entanglement.

Theorem 2. For a multiqubit state ρA1···An
and 2 � q � 3,

we have

Tq

(
ρA1(A2···An)

)
� Tq

(
ρA1A2

) + · · · + Tq

(
ρA1An

)
, (45)

where Tq(ρA1(A2···An)) is the Tsallis-q entanglement of
ρA1(A2···An) with respect to the bipartite cut between A1 and
A2 · · ·An, and Tq(ρA1Ai

) is the Tsallis-q entanglement of the
reduced density matrix ρA1Ai

for i = 2, . . . , n.
Proof 1. For the case when q = 2 or 3, Eq. (29) implies

T2(ρAB) = CAB
2

2
, T3(ρAB) = 3

2
CAB

2, (46)

for any two-qubit mixed state or 2 ⊗ d pure state ρAB and its
concurrence CAB . Thus, the monogamy inequality in Eq. (45)
follows from Eqs. (32) and (46).

For 2 < q < 3, we first prove the theorem for n-qubit pure
state |ψ〉A1···An

. Note that Eq. (32) is equivalent to

CA1(A2···An) �
√
C2

A1A2
+ · · · + C2

A1An
, (47)

for any n-qubit pure state |ψ〉A1(A2···An). Thus, from Eq. (43)
together with Eq. (47), we have

Tq

(|ψ〉A1(A2···An)

) = gq

(
CA1(A2···An)

)
� gq

(√
C2

A1A2
+ · · · + C2

A1An

)
� gq

(
CA1A2

)
+ gq

(√
C2

A1A3
+ · · · + C2

A1An

)
...

� gq

(
CA1A2

) + · · · + gq

(
CA1An

)
= Tq

(
ρA1A2

) + · · · + Tq

(
ρA1An

)
, (48)

where the first equality is by the functional relation between
the concurrence and the Tsallis-q entanglement for 2 ⊗ d pure
states, the first inequality is by the monotonicity of gq(x), the
other inequalities are by iterative use of Eq. (43), and the last
equality is by Theorem 1.

For an n-qubit mixed state ρA1(A2···An), let ρA1(A2···An) =∑
j pj |ψj 〉A1(A2···An)〈ψj | be an optimal decomposition such

that Tq(ρA1(A2···An)) = ∑
j pjTq(|ψj 〉A1(A2···An)).
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Because each |ψj 〉A1(A2···An) in the decomposition is an
n-qubit pure state, we have

Tq

(
ρA1(A2···An)

) =
∑

j

pjTq

(|ψj 〉A1(A2···An)

)

�
∑

j

pj

(
Tq

(
ρ

j

A1A2

) + · · · + Tq

(
ρ

j

A1An

))
=

∑
j

pjTq

(
ρ

j

A1A2

) + · · · +
∑

j

pjTq

(
ρ

j

A1An

)
� Tq

(
ρA1A2

) + · · · + Tq

(
ρA1An

)
, (49)

where ρ
j

A1Ai
is the reduced density matrix of |ψj 〉A1(A2...An) onto

subsystem A1Ai for each i = 2, . . . ,n and the last inequality
is by definition of Tsallis-q entanglement for each ρA1Ai

. �
Now, let us consider the polygamy of multiqubit entangle-

ment using Tsallis-q entropy. We first note that the function
gq(x) in Eq. (20) can also relate CoA and TEoA of a two-qubit
state ρAB : By letting ρAB = ∑

i pi |ψi〉AB〈ψi | be an optimal
decomposition for its CoA, that is,

Ca(ρAB) =
∑

i

piC(|ψi〉AB), (50)

we have

gq(Ca(ρAB)) = gq

(∑
i

piC(|ψi〉AB)

)

�
∑

i

pigq(C(|ψi〉AB))

=
∑

i

piTq(|ψi〉AB)

� T a
q (ρAB), (51)

where the first inequality can be assured by the convexity of
gq(x) and the last inequality is by the definition of TEoA.
Because gq(x) is convex for 1 � q � 4, Eq. (51) is thus true
for this region of q. Furthermore, gq(x) satisfies the property
of Eq. (42) for 1 � q � 2 or 3 � q � 4. Thus, we have the
following theorem of the polygamy inequality in multiqubit
systems.

Theorem 3. For any multiqubit state ρA1···An
and 1 � q � 2

or 3 � q � 4, we have

Tq

(
ρA1(A2···An)

)
� T a

q

(
ρA1A2

) + · · · + T a
q

(
ρA1An

)
, (52)

where Tq(ρA1(A2···An)) is the Tsallis-q entanglement of
|ψ〉A1(A2···An) with respect to the bipartite cut between A1 and
A2 · · · An, and T a

q (ρA1Ai
) is the TEoA of the reduced density

matrix ρA1Ai
for i = 2, . . . , n.

Proof 2. We first prove the theorem for a n-qubit pure state
and generalize it into mixed states.

For the case when q tends to 1, Tsallis-q entanglement
converges to EoA in Eq. (10). It was shown that the polygamy
inequality of multiqubit systems can be shown in terms of EoA
[25]. For the case when q = 2 or 3, it is also straightforward
from Eqs. (29) and (34).

For an n-qubit pure state |ψ〉A1(A2···An) and 1 < q < 2 or 3 <

q < 4, let us first assume that (Ca
A1A2

)2 + · · · + (Ca
A1An

)2 � 1

in Eq. (34). Then we have

Tq

(|ψ〉A1(A2···An)

) = gq

(
CA1(A2···An)

)
� gq

(√(
Ca

A1A2

)2 + · · · + (
Ca

A1An

)2)
� gq

(
Ca

A1A2

)
+ gq

(√(
Ca

A1A3

)2 + · · · + (
Ca

A1An

)2)
...

� gq

(
Ca

A1A2

) + · · · + gq

(
Ca

A1An

)
� T a

q (ρA1A2 ) + · · · + T a
q (ρA1An

), (53)

where the first inequality is due to the monotonicity of the
function gq(x), the second and third inequalities are obtained
by iterative use of Eq. (42), and the last inequality is by
Eq. (51).

Now, let us assume that (Ca
A1A2

)2 + · · · + (Ca
A1An

)2 > 1. Due
to the monotonicity of gq(x), we first note that

Tq

(|ψ〉A1(A2···An)

) = gq

(
C
(|ψ〉A1(A2···An)

))
� gq(1)

= 1

q − 1

(
1 − 1

2q−1

)
, (54)

for any multiqubit pure state |ψ〉A1(A2···An), and q > 1. By
letting γ = 1

q−1 (1 − 1
2q−1 ), it is thus enough to show that

T a
q (ρA1A2 ) + · · · + T a

q (ρA1An
) � γ .

Here, we note that there exists k ∈ {2, . . . ,n − 1} such that

(
Ca

A1A2

)2 + · · · + (
Ca

A1Ak

)2 � 1,
(55)(

Ca
A1A2

)2 + · · · + (
Ca

A1Ak+1

)2
> 1.

If we let

T := (
Ca

A1A2

)2 + · · · + (
Ca

A1Ak+1

)2 − 1, (56)

we have

γ = gq(1)

= gq

(√(
Ca

A1A2

)2 + · · · + (
Ca

A1Ak+1

)2 − T
)

� gq

(√(
Ca

A1A2

)2 + · · · + (
Ca

A1Ak

)2)
+ gq

(√(
Ca

A1Ak+1

)2 − T
)

� gq

(
Ca

A1A2

) + · · · + qq

(
Ca

A1Ak

) + qq

(
Ca

A1Ak+1

)
� T a

q

(
ρA1A2

) + · · · + T a
q

(
ρA1An

)
, (57)

where the first inequality is by using Eq. (42) with respect
to (Ca

A1A2
)2 + · · · + (Ca

A1Ak
)2 and (Ca

A1Ak+1
)2 − T , the second

inequality is by iterative use of Eq. (42) on (Ca
A1A2

)2 + · · · +
(Ca

A1Ak
)2, and the last inequality is by Eq. (51).

For an n-qubit mixed state ρA1(A2···An), let ρA1(A2···An) =∑
j pj |ψj 〉A1(A2···An)〈ψj | be an optimal decomposition for

TEoA such that T a
q (ρA1(A2···An)) = ∑

j pjTq(|ψj 〉A1(A2···An)).
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Because each |ψj 〉A1(A2···An) in the decomposition is an n-qubit
pure state, we have

T a
q

(
ρA1(A2···An)

) =
∑

j

pjT a
q

(|ψj 〉A1(A2···An)

)

�
∑

j

pj

(
T a

q

(
ρ

j

A1A2

) + · · · + T a
q

(
ρ

j

A1An

))
=

∑
j

pjT a
q

(
ρ

j

A1A2

) + · · · +
∑

j

pjT a
q

(
ρ

j

A1An

)
� T a

q

(
ρA1A2

) + · · · + T a
q

(
ρA1An

)
, (58)

where ρ
j

A1Ai
is the reduced density matrix of |ψj 〉A1(A2···An) onto

subsystem A1Ai for each i = 2, . . . , n and the last inequality
is by definition of TEoA for each ρA1Ai

. �
Although Theorem 3 provides the polygamy inequality of

multiqubit entanglement in terms of TEoA for 1 � q � 2 or
3 � q � 4, it is also clear that Eq. (52) is also true for q slightly
larger than 4 or less than 1 due to its continuity with respect
to q.

IV. CONCLUSION

Using Tsallis-q entropy, we have established a class of
bipartite entanglement measures, Tsallis-q entanglement, and
provided its analytic formula in two-qubit systems for 1 �
q � 4. Based on the functional relation between concurrence
and the Tsallis-q entanglement, we have shown that the
monogamy of multiqubit entanglement can be mathematically
characterized in terms of Tsallis-q entanglement for 2 � q �
3. We have also provided a polygamy inequality of multiqubit
entanglement in terms of TEoA for 1 � q � 2 or 3 � q � 4.

Besides the mathematical characterization of multipartite
entanglement, the monogamous and polygamous properties
of multipartite quantum entanglement also play an important
role in many areas of quantum information theory. Monogamy
and polygamy inequalities provide us with an efficient way to
classify multipartite entanglement. For example, it is known
that there are two inequivalent classes of genuine three-
qubit entanglement: One of them is the Greenberger-Horne-
Zeilinger (GHZ) class [26] and the other one is the W class
[27]. This classification is under stochastic local operations

and classical communication (SLOCC) [27], however, these
two inequivalent classes also show distinct properties in
monogamy and polygamy inequalities. The monogamy and
polygamy inequalities are saturated by W-class states, whereas
they are never saturated by GHZ-class states [28]. In other
words, although the classification of genuine three-qubit
entangled states is operational under SLOCC, monogamy and
polygamy inequalities can indeed provide us with an analytic
way for the classification. Thus it would also be an important
task to investigate general MoE in higher-dimensional systems
for possible classification of multiparty higher-dimensional
quantum entanglement.

As we have mentioned before, MoE can restrict the possible
correlation between authorized users and the eavesdropper,
and this can be used for the security proof in quantum
cryptography. Because higher-dimensional quantum systems
rather than qubits are preferred in some physical systems for
stronger security in quantum key distribution (QKD) [29],
this also shows the importance of characterizing MoE in
higher-dimensional systems for the security proof of high-
dimensional QKD.

The class of monogamy and polygamy inequalities of mul-
tiqubit entanglement we provided here consists of infinitely
many inequalities parameterized by q. We believe that our
result will provide useful tools and strong candidates for
general monogamy and polygamy relations of multipartite
entanglement in higher-dimensional quantum systems, which
is one of the most important and necessary topics in the study
of multipartite quantum entanglement.

Although we have provided an analytic characterization of
Tsallis-q entanglement, it would also be an interesting and
important task to find out the operational meaning of Tsallis-
q entanglement. We believe that the operational meaning of
Tsallis-q entanglement with respect to the selective choice of
q will lead us to the physical intuition about the monogamy
and polygamy inequalities: For example, the similar polygamy
property in disjoint intervals 1 < q < 2 and 3 < q < 4.
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