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Searching via walking: How to find a marked clique of a complete graph using quantum walks
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We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a
complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental
implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle
as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle
becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster
than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and
a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency
of classical and quantum searches—the number of oracle calls.
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I. INTRODUCTION

A quantum walk is a quantum version of a classical random
walk. A classical random walk is described in terms of prob-
abilities; a particle “sitting” (localized) on a vertex of a graph
has certain probabilities to leave that vertex along different
edges. A quantum walk is described in terms of probability
amplitudes, and that means that there are interference effects
in quantum walks, which are completely absent in classical
random walks. The time evolution in these walks can either be
in discrete steps [1,2] or continuous [3]. Both types of quantum
walk have proven to be fruitful sources of quantum algorithms
[4–8]. A summary of both the properties of quantum walks and
their algorithmic applications can be found in reviews [9–11].

Recently there have been efforts, both theoretical and
experimental, to realize quantum walks in various physical
systems. In optical lattices [12,13] or with photons in
waveguide lattices in Ref. [14] the effects of decoherence
are small, which allows one to run the walk for enough
steps so that good comparisons with theory can be made.
Other realizations exploit the fact that the most important
ingredient in quantum walks is interference. To this end the
wave nature of classical light was exploited in Refs. [15,16] to
propose an analog of a quantum walk, and this analog had been
experimentally realized in Ref. [17]. The use of interferometers
to realize quantum walks has been proposed [16] and recently
experimentally implemented [18]. Quantum walks with
trapped ions have been theoretically described [19,20] and
experimentally realized as well. First, a proof-of-principle
experiment was performed in Ref. [21] and later a walk with
23 steps was reported in Ref. [22]. This last experiment opens
new possibilities for the implementation of a number of
quantum algorithms, in particular, quantum searches. Finally,
experiments in Ref. [23] provide a framework in which walks
with more than one walker could be studied.

Quantum walks on a line have many interesting properties
(see, e.g., [9]), but quantum walks on more complex graphs
provide us with a deeper understanding of quantum dynamics
and with new insights into the construction of new quantum
algorithms. In particular, quantum walks have been used to
investigate searches on a number of different graphs. In these
searches, one of the vertices is distinguished, and the objective

is to find that specific (marked) vertex. The graphs considered
so far have been grids and hypercubes of different dimensions
and the complete graph [24–26]. Alternatively, one can search
for specific topological features of a graph [27,28]. Recently
a quantum-walk search using strongly dipolar coupled spins
has been realized [29] on a set of four elements when only one
step of the search is needed.

Suppose that, instead of finding a distinguished (marked)
vertex, one is interested in finding a distinguished edge or even
a distinguished subgraph. The case of an edge can be viewed
as finding two elements in a list that have a particular relation.
More specifically, let us suppose that x and y are elements of
a set N , and that f (x,y) is a classical boolean oracle function
on N × N , such that

f (k,l) =
{

1 if k ∈ K and l ∈ K,

0 otherwise,
(1)

where K ⊂ N . This function then gives us the answer to the
question of whether the two elements, k and l, satisfy the
relation. Hence, we are interested in finding pairs (x,y) such
that f (x,y) = 1. There might be a single such pair, which
would correspond to finding a single edge, or there might be
several.

We shall pursue this study by using the formalism of
scattering quantum walks [30], which is introduced in Sec. II.
The main part of the paper then follows, where in Sec. III
we will study the time evolution of the walk and show the
advantages of the quantum search, and in Sec. IV we will
provide a different perspective on the search by constructing a
quantum circuit to implement it.

II. SCATTERING QUANTUM WALKS

In the formalism of scattering quantum walks [30], the
particle resides on the edges of a graph rather than on its
vertices. In Ref. [31] we used this formalism to study searches
on graphs with high symmetry, including complete graphs and
various versions of multipartite graphs.

Having a graph G = (V,E) on which the walk is defined,
with V being the set of vertices and E the set of edges, the

1050-2947/2010/81(6)/062324(5) 062324-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.062324
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Hilbert space is defined as

H = �2({|m,l〉|m,l ∈ V,ml ∈ E}).
This definition implies that the Hilbert space is given by the
span of all edge states, that is, position states |m,l〉 interpreted
as a particle going from vertex m ∈ V to vertex l ∈ V , with
ml ∈ E being an edge of the graph G. These edge states form
an orthonormal basis of the Hilbert space, which we shall call
the canonical basis.

In this Hilbert space the unitary evolution is given by a set of
local unitary evolutions defined for each vertex. If we specify
(for every m ∈ V ) Am = �2({|m,l〉|l ∈ V,ml ∈ E}), the set of
all edge states originating on vertex m, and �m = �2({|l,m〉|l ∈
V,lm ∈ E〉), the set of all edge states ending on vertex m, then
local unitary evolutions act as Û (m) : �m → Am. The overall
unitary step operator, Û , acting on the system is represented
by the combined action of the local unitary evolutions, that is,
the restriction of Û to �m is just Û (m). Given the initial state of
the system is |ψinit〉, the state after n steps is |ψn〉 = Ûn|ψinit〉
and the probability of finding the particle (walker) in state |k,l〉
is then |〈k,l|ψn〉|2.

III. SEARCH FOR EDGES

Let us consider a walk on a complete graph with vertices
given by the set V = N containing N elements. The initial
state is taken to be the equal superposition of all the edge
states

|ψinit〉 = 1√
N (N − 1)

∑
l∈N

∑
m∈N
m�=l

|l,m〉. (2)

This choice of initial state is motivated by the fact that we
have no a priori knowledge about which edges are marked.
The local unitary evolution associated with vertices that are
not attached to any of the marked edges is given by

Û (l)|k,l〉 = −r|l,k〉 + t
∑
m∈N
m�=l,k

|l,m〉, (3)

where r and t are reflection and transmission coefficients
whose values are t = 2/(N − 1) and r = 1 − t . This choice
of local unitary operators for the scattering walk is analogous
to the choice of the Grover coin (see Ref. [32]) in a coined
quantum walk.

The target edges are marked by placing “phase shifters”
on both ends. These have the effect of modifying the local
unitary operations associated with the vertices to which the
edge is attached. A particle entering or leaving the edge
picks up a phase factor of eiφ , and one that is reflected
back into the edge (or transmitted to another target edge)
picks up a factor of e2iφ . In more detail, if the edge between
vertices j and k is the only marked edge in the graph, we
will have

U |j,k〉 = −re2iφ|k,j 〉 + teiφ
∑
l∈N
l �=j,k

|k,l〉,

U |m,j 〉 = −r|j,m〉 + teiφ|j,k〉 + t
∑
l∈N

l �=j,m,k

|j,l〉.
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FIG. 1. An example of a complete graph with N = 7 vertices out
of which v = 3 are special (white ones). The edge between two such
vertices is considered to be special and it performs a phase shift for
the particle either entering or leaving it (gray bars).

Let us now consider a specific type of relation, R, between
vertices [see Eq. (1)]. We specify a subset of vertices, and
two vertices satisfy R if they are both in the specified subset.
These vertices, and the edges connecting them, will form a
complete subgraph. Consequently, we consider the problem of
a scattering quantum walk on a complete graph with a marked
complete subgraph (see Fig. 1). In particular, let the set of N

vertices of the complete graph be N , and the set of K vertices
connected by marked edges and forming a complete subgraph
be K. A quantum walk on this graph starting from the initial
state given in Eq. (2) will take place in a small subspace of
the overall Hilbert space of the walk. This phenomenon, the
reduction of the effective dimension due to the symmetry of
the graph, has been analyzed in detail for coined walks by
Krovi and Brun [33] and for the scattering walk in Ref. [31].
We begin by defining four vectors:

|w1〉 = 1√
K(N − K)

∑
j∈N \K

∑
k∈K

|j,k〉,

|w2〉 = 1√
K(N − K)

∑
j∈K

∑
k∈N \K

|j,k〉,

|w3〉 = 1√
(N − K)(N − K − 1)

∑
j∈N \K

∑
k∈N \K

k �=j

|j,k〉,

|w4〉 = 1√
K(K − 1)

∑
j∈K

∑
k∈K
k �=j

|j,k〉.

These vectors form a basis of a subspace of the Hilbert
space H, which we shall denote by S, which is invariant
under the action of the unitary operator Û that advances the
walk one step. The action of Û on the basis vectors of S is
given by

Û |w1〉 = [r − (k − 2)t]|w2〉 + teiφ
√

(k − 1)(N − k)|w4〉,
Û |w2〉 = [(k − 1)t − r]|w1〉 + t

√
k(N − k − 1)|w3〉,

Û |w3〉 = t
√

k(N − k − 1)|w1〉 + [r − t(k − 1)]|w3〉,
Û |w4〉 = teiφ

√
(k − 1)(N − k)|w2〉 + [t(k − 2) − r]e2iφ|w4〉.
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For the evolution to remain entirely within S the initial state
must be in this subspace as well. Our initial state [see Eq. (2)]
can be expressed as

|ψinit〉 =
√

k(N − k)

N (N − 1)
(|w1〉 + |w2〉) +

√
k(k − 1)

N (N − 1)
|w4〉

+
√

(N − k)(N − k − 1)

N (N − 1)
|w3〉,

and is therefore in S. Consequently, to determine how this
particular walk evolves, we need to only consider a four-
dimensional problem. One simply finds the eigenvalues, λµ

and eigenstates |µ〉, where µ = 1, . . . , 4, of Û restricted to S,
and finds the state after n steps by exploiting expansion

|ψn〉 = Ûn|ψinit〉
= Ûn

∑
µ

〈µ|ψinit〉|µ〉

=
∑

µ

λn
µ〈µ|ψinit〉|µ〉.

We now need to specify the value of φ. For localizing the
particle on the marked edges, we employ phase shift φ = π/2.
In the case N � k the expression for the vector after n steps
reads

|ψn〉 	

⎛
⎜⎜⎝

0
0

cos 2xn

i sin 2xn

⎞
⎟⎟⎠ ,

where the first entry is the |w1〉 component, the second is
the |w2〉 component, and so on. In this expression, x =√

K(K − 1)/(N − 1), and the terms that have been neglected
are O(

√
x) or smaller. We see that after n = π/(4x) =

O(N/K) steps, the particle is in the state |w4〉, which means
it is localized on the marked edges. After running the walk the
proper number of steps to localize the particle on the marked
edges, we complete the search by measuring the position of
the walker to see on which edge it is located.

If we are searching for a single edge (i.e., K = 2) then
the quantum search represents a quadratic speedup over what
is possible classically. Classically we would just check each
edge to see whether it is marked or not, and we would have
to check O(N2) edges to find the marked one (this will be
made more precise shortly). This quantum advantage remains
for small subgraphs. For example, if the subgraph is a triangle,
our probability of finding all three vertices after running the
quantum search twice is 2/3 and the probability of finding all
three vertices after no more than three runs of the search is 8/9.
The expectation value of the number of searches necessary to
find all three vertices is 5/2. Things become more complicated
if the subgraph is a complete graph on four vertices because
there are more alternatives. After two runs of the search, the
probability that we have found all four vertices is 1/6 and the
probability that we have found three out of four of them is
2/3. If we go to three runs, the probability of finding all four
vertices becomes 19/36 and the probability of finding three out
of four becomes 4/9. Therefore, for small subgraphs, a small

number of runs of the walk will allow us to find all vertices of
the subgraph with high probability.

IV. CIRCUIT IMPLEMENTATION OF THE SEARCH

To provide a different perspective on the proposed evolution
unitary Û , we rephrase the quantum walk in terms of a
quantum circuit in which the procedure of checking an edge
to see whether it is marked is a call to a quantum oracle,
corresponding to the classical oracle given by Eq. (1). The
quantum oracle can be interpreted as a unitary operation acting
on a tripartite system as

CÛf |k〉 ⊗ |l〉 ⊗ |m〉 = |k〉 ⊗ |l〉 ⊗ |m ⊕4 f (k,l)〉, (4)

for k,l ∈ N , where the first two subsystems are both N -
dimensional, the last one is from a four-dimensional Hilbert
space and ⊕4 is the addition modulo four. In this formulation,
it becomes clearer what resources are being compared in the
quantum and classical cases—the particular resource we are
focusing on is the number of oracle calls. To find one pair
marked by the oracle from Eq. (4), we would classically (when
we are not allowed to use the interference) need to query the
oracle O[(N/K)2] times. In the quantum case, however, we
have seen that only O(N/K) queries are needed to find the
pair with high probability because that is the number of steps
a quantum walk would need to localize the particle on the
marked edge, and as we shall see, the oracle is called only
twice per step.

The oracle is incorporated into the scattering quantum walk
as shown in Fig. 2, where, in addition to the walking Hilbert
space, we make use of the three ancillary systems that the
quantum oracle acts upon. To obtain the information about the
actual vertices we use a unitary gate Ô, whose action can be
expressed as the action of two controlled operations similar to
those given in Ref. [31]. On the state |k,l〉 ⊗ |0〉 ⊗ |0〉 ⊗ |m〉,
Ô acts as

Ô|k,l〉 ⊗ |0〉 ⊗ |0〉 ⊗ |m〉 = |k,l〉 ⊗ |k〉 ⊗ |l〉 ⊗ |m〉.

Ô

Ûf

Ô†

Ĝ

Ô

Ûf

Ô†

|µ

|0

|0

|ψinit

FIG. 2. A quantum circuit (network) that implements a single
step of scattering quantum walk search, which makes use of the
quantum oracle CÛf . The first input corresponds to a quantum walker
originally prepared in the state |ψinit〉. The second and third inputs
represent the end vertices of the walker’s edge state, while the fourth
input represents an ancillary processing subsystem prepared in the
state |µ〉 given by Eq. (5).
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It is useful to prepare the last subsystem in a special state

|µ〉 = 1

2

3∑
q=0

e− iπq

2 |q〉. (5)

The usefulness can be seen from equality

CÛf |k,l〉 ⊗ |k〉 ⊗ |l〉 ⊗ |µ〉 = ei π
2 f (k,l)|k,l〉 ⊗ |k〉 ⊗ |l〉 ⊗ |µ〉.

So we see that the composed operation Ô†CÛf Ô changes the
state |k,l〉 ⊗ |0〉 ⊗ |0〉 ⊗ |µ〉 to the state ei π

2 f (k,l)|k,l〉 ⊗ |0〉 ⊗
|0〉 ⊗ |µ〉. In this way the ancillary systems assist the evolution,
but the ancillary systems do not themselves change, making it
unnecessary to express them every time. This means that this
view is isomorphic to the one where we did not make use of
the quantum oracle. As each step of the walk involves only
two oracle calls, and with the number of oracle calls being a
measure of the complexity of the problem, we conclude that
fewer oracle calls are needed in the quantum case than in the
classical for N � k � 1.

In Ref. [31] we considered scattering-quantum-walk
searches on several examples of highly symmetric (complete,
bipartite, and M-partite) graphs where some of the vertices
were special. In particular, the special vertices simply reflected
the particle with a phase factor of exp(iφ). As is the case here,
the symmetry of these graphs led to a significant reduction
in the dimensionality of the problem. For all of the types of
graphs we considered, we found a quadratic speedup over the
classical search when the phase shift of special vertices was

taken to be π . We see from our analysis here that if one wants
to find an edge, a different phase shift is required.

V. CONCLUSION

In conclusion, we introduced a novel application of quan-
tum walks. Specifically, quantum walks are used to find a
marked edge, or a marked subgraph, in a complete graph.
We proved that the quantum walk can perform the search
(quadratically) faster than it is possible classically. It also
expands the set of situations where a quantum search is
feasible.

One of the attractive features of our model is that it might
be experimentally realized because the scattering quantum
walk formalism, introduced in Ref. [30], is based on an
interferometric analogy. To actually implement this type of
walk by means of an interferometer, multiport devices are
needed. Optically these can be constructed from simpler
devices such as beam splitters [34]. This leads to the hope that
experiments on quantum searches on graphs more complex
than a line can be performed with existing technology.
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