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Single-nuclear-spin cavity QED
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We constructed a cavity QED system with a diamagnetic atom of 171Yb and performed projective measurements
on a single nuclear spin. Since Yb has no electronic spin and has 1/2 nuclear spin, the procedure of spin
polarization and state verification can be dramatically simplified compared with the pseudo-spin-1/2 system.
By enhancing the photon emission rate of the 1S0-3P1 transition, projective measurement is implemented for
an atom with the measurement time of Tmeas = 30 µs. Unwanted spin flip and dark counts of the detector lead
to systematic error when the present technique is applied for the determination of diagonal elements of an
unknown spin state, which is δ|β|2 � 2 × 10−2. Fast measurement on a long-lived qubit is key to the realization
of large-scale one-way quantum computing.
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I. INTRODUCTION

Quantum information processing with neutral-atom qubits
is advantageous when a large number of qubits are required.
The most prominent advantage is easy production of the
large-scale cluster state [1], which is a resource state for one-
way quantum computing [2]. One-way quantum computing
consists of the following four stages: (i) preparation of an
optical lattice filled by single atoms; (ii) creation of a cluster
state among them; (iii) loading them into a measurement
region by a moving lattice [3]; and (iv) one-by-one projective
measurements and feedforward on a part of them. In the last
stage, we must keep the available number of measurements
and feedforward within the coherence time. Therefore fast
measurement on a long-lived qubit is key to the realization
of large-scale quantum computing. As a long-lived qubit,
a nuclear spin in a diamagnetic atom is promising. A
diamagnetic atom has a small magnetic moment, which is
three orders of magnitude smaller than that of a paramagnetic
atom, originating from its nuclear spin. Accordingly, the
decoherence caused by stray magnetic fields can be greatly
suppressed. As a fast measurement technique, enhanced
spontaneous emission (ESE), which is utilizable in cavity
quantum electrodynamics (QED) systems, is helpful [4–6].
ESE is a phenomenon whereby an atom in a cavity emits
photons into the output mode of the cavity faster than into free
space. Since cavity QED systems have primarily been realized
with paramagnetic atoms, one might think that clock states are
also promising [7–10]. However, other extra substates in its
ground state interrupt directly observing the clock states. Note
that cavity QED experiments performed so far have addressed
not clock states but hyperfine substates [11,12]. Mapping a
clock-state population to a cycling transitions, demonstrated
with paramagnetic ion, is inapplicable to conventional cavity
QED systems because the nuclear spins I of atoms utilized in
these experiments are not 1/2 [13].
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Here, we report the construction of a cavity QED system
with a diamagnetic atom of 171Yb and the observation of a
single nuclear spin. We have enhanced the photon emission rate
of the 1S0-3P1 transition, where the resonant wavelength is λ =
556 nm and the natural linewidth is γ = 2π × 182 kHz. The
cavity is of the Fabry-Perot type, where the maximum coupling
strength between an atom and the cavity is gmax = 2π ×
2.8 MHz. Since the optical lattice filled with single Yb atoms
has been recently demonstrated [14] and the method to produce
the cluster state for diamagnetic atoms has been proposed [15],
it should be possible to implement the nuclear-spin-based
quantum computing with 171Yb atoms.

II. EXPERIMENTAL SETUP

A single 171Yb atom is loaded into the cavity mode by free
falling from a lower magneto-optical trap (MOT) as shown
in Fig. 1. Its position is approximately H = 7 mm above the
cavity and the atoms reach the cavity after Tfall = 40 ms with a
velocity of vf = 0.3 m/s. The velocity distributions of atoms
after being released from the MOT along the z axis and x

axis are evaluated to be va = 4 × 10−2 m/s by absorption
imaging [16]. The spin can be initialized by a circularly
polarized pulse (σ±,σ⊥

− ,σ ′
±) while or before an atom transits

the cavity mode, which is resonant with the 1S0-1P1(F ′ = 1/2)
transition (399 nm). The cavity consists of two concave mirrors
M1 and M2. Each mirror is glued to a piezoelectric transducer
(PZT) and the spacing of the mirrors is Lc = 150 µm. The
curvature radius, reflectivity, transmittance, and loss of the
mirror are Rc = 50 mm, Rm = 0.999972, Tm = 2.5 × 10−5,
and Lm = 3 × 10−6, respectively. The beam waist of the cavity
mode is wc = 19 µm. Note that the mirrors of which the
cavity consists show a relatively high transparency of 75%
at a wavelength of 399 nm. Thus by simply injecting the laser
beams into the cavity, we could accomplish polarizing the
spin state of the atom in the cavity. The resonant frequency
of the cavity, ωc, is locked by using a FM-sideband method
with locking beam. While observing photons emitted from
the cavity during Thold = 3 ms, the locking beam is turned
off by the sample-and-hold method. The cavity decay rate
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FIG. 1. (Color online) Overview of the experimental apparatus.
M: mirror; DM: dichroic mirror; PM: partially reflecting mirror.
Yb atoms are Zeeman slowed (399 nm) and are trapped in the upper
magneto-optical trap (MOT, 556 nm). The atoms released from the
upper MOT are recaptured by the lower MOT. A light beam with a
wavelength of 399 nm and a power of 100 mW is generated by second
harmonic generation using a bow-tie cavity with a Ti:sapphire laser
operated at a power of 0.6 W. A light beam having a wavelength of 556
nm and a power of 50 mW is obtained in the same manner by a fiber
laser with a power of 0.1 W. The frequencies of these lasers are locked
to two respective reference cavities built from ultra-low-expansion
(ULE) glass. The excitation beam is injected into the space between
the two mirrors M1 and M2.

is κ = 2π × 4.5 MHz. An excitation beam with frequency
ωl , power Ptotal = 0.9 µW, and beam waist wl = 24 µm is
injected into the space between the mirrors (x axis). The
polarization of the excitation beam is linear (y axis) and
can be decomposed into σ+ and σ− components for the
quantization axis (z axis). The Rabi frequency for the σ− com-
ponent at the center of the Gaussian profile is 	max = 2π ×
2.4 MHz. The transit time of an atom passing through the
cavity mode is typically Ttransit = 120 µs. In order to ensure
that the atom-cavity coupling is constant, we observe the atom
only when it is close to the mode axis within the time window
of Twin = 36 µs. The mean travel distance along the z direction
during Twin can be estimated as vaTwin = 1 µm, which is five
times as large as the period of the standing wave with λ/2
(λ = 556 nm).

III. METHOD OF SINGLE NUCLEAR SPIN DETECTION

In Fig. 2, we show the energy levels of 171Yb which is
coupled to the cavity. The hyperfine splitting of the excited
state is A = 2π × 5.9 GHz. The frequency ωa represents
the |↓〉 ↔ |3/2, − 3/2〉 transition frequency. A homogeneous
magnetic field of B = 34 G is applied along the z axis
and the resultant Zeeman shift for the |3/2, − 3/2〉 state is

 = 2π × 71 MHz. Since the vacuum chamber is enclosed by
µ-metal, the residual magnetic field is suppressed to
2 × 10−2 G. Note that the coherence time is sensitive not to
the static but to the fluctuating magnetic field [17]. In order to
induce the ESE, the frequencies are tuned to ωl = ωa = ωc.
The atom in the |↑〉 state seldom absorbs photons, because the
excitation beam is far detuned from any transition. In contrast,
the atom in the |↓〉 state can resonantly absorb a photon, and the
population oscillates between the two levels |3/2, − 3/2〉|0〉
and |↓〉|1〉, due to the coupling g between an atom and the
cavity. After the oscillation, photons leak from the cavity at

FIG. 2. (Color online) Energy-level diagram of 171Yb and the
cavity used in the present experiment. The Zeeman substates mI =
+1/2 and −1/2 of the ground state 1S0(I = 1/2) are denoted by
|↑〉 and |↓〉, respectively. The substates in the excited state 3P1 are
labeled as |F ′,mF ′ 〉. The number state of n photons in the cavity
mode is denoted by |n〉. Each energy level is denoted as the product
state of the atomic state and photon state |n〉. Here, we have omitted
unimportant excited states.

a rate of κ and the atom decays back to the ground state
|↓〉|0〉. The emitted photons are coupled to single-mode (SM)
fibers and are detected by single photon counting modules
(SPCMs, PerkinElmer SPCM-AQR-14-FC). These detection
systems are placed on both sides of the output mode and the
total detection efficiency for a photon emitted from an atom
with the two SPCMs is q = 0.3.

If the |↑〉 atom is excited and decays to the state |↓〉, photons
will be repeatedly emitted from the spin-flipped atom, which
limits the precision of this scheme. Under the approximation
of g2 � κγ and 	2 � g2κ/γ , the intracavity photon number
is given by 〈n〉 ∼ 	2/(4g2), and the photon emission rate into
the output mode of the cavity is � = 2κ〈n〉 ∼ κ	2/(2g2) [18].
When a |↓〉 atom is located at the crossed position of the
cavity-mode axis and the center of the excitation beam profile,
these values become maximal (i.e., 〈n〉max = 0.16 and �max =
9.3 × 106 s−1). As an effective value, we adopt � = �max/2
caused by motion of single atoms along the cavity axis. The
factor 1/2 originates from the spatial dependence of g2 as
sin2(2πz/λ). The unwanted spin-flip rate is roughly estimated
to be �flip = �(free)(
) + �(free)(A − 
), where

�(free)(
) = γ

2

	2/2


2 + γ 2/4 + 	2/2
(1)

is the photon absorption rate when an atom is located in free
space illuminated by 
 detuned light. In our experimental
condition, �flip = 3 × 102 s−1. We define S/N as the achiev-
able number of photon counts from the |↓〉 atom without the
unwanted spin flip. In our experiment, S/N = q�/�flip =
5 × 103 is expected. S/N is maximized at 
 = A/2, which
gives S/N � qκA2/(2γg2). Our method is applicable for
a narrow transition linewidth which has a large hyperfine
splitting in the excited state. In the case of electric dipole
transition usually used for cavity QED experiments, S/N

usually becomes small. It is of the order of S/N � 10 even
if one assumes the detection efficiency to be perfect and the
applied magnetic field to be optimal because of small A and
large γ [11].
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IV. OBSERVATION OF AN ATOMIC TRANSIT

Typical photon counting signals obtained from SPCM2
are shown in Figs. 3(a) through 3(c). The bunch of counts
in Fig. 3(a) represents an atom transit. The average number
of photon counts for a single atom transit is approximately
10 counts/atom. This value is much larger than unity, in con-
trast to another method for single-atom detection described in
Ref. [19]. The flux of atoms is approximately F = 1 ×
103 s−1, as shown in Fig. 3(a), which is adjustable by
reducing the loading time of the upper MOT. A typ-
ical loading time is 0.3 s. The mean spacing of the
two neighboring atoms is estimated to be ya = vf /F =
0.3 mm, which is much larger than the beam waist size
of the cavity (i.e., 19 µm), as shown in Fig. 3(d). In
other words, the average atom number in the cavity mode
is much less than unity: Natom = FTtransit = 0.1. Note that
the photon count by the usual spontaneous emission from
an atom is negligible under the present experimental con-
ditions. The divergence angle of the cavity mode is θ =
1 × 10−2 rad. Therefore the detection efficiency becomes
q(free) = qθ2/4 = 8 × 10−6 and the number of counts becomes
q(free)�(free)(0)Ttransit = 5 × 10−4 for an atom transit, which is
much smaller than the observed number of counts in each
bunch of signals. An enlarged view of the first bunch is shown
in Fig. 3(b). The closer an atom approaches the mode axis,
the narrower the spacing of the two photon counts becomes.
When the spacing decreases below Tcoin = 600 ns, we judge
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FIG. 3. (Color online) (a) Typical photon counting signals (red)
and coincidence signals (green). (b), (c) Expanded views of the signal
around the time when the spacing reaches Tcoin. (d) The cavity mode
viewed from the z axis (red). The excitation beam is also shown
(green). (e) Time variation of the photon emission rate (blue dots).
The red curve is obtained by Gaussian fitting. The green area indicates
the time window of Twin.

that the position of the atom is close enough to the mode
axis. This threshold is valid because Tcoin ∼ (q�)−1 � wc/vf

is satisfied, where (q�)−1 is the time scale of the photon
anti-bunching. We refer to this event as “coincidence.” After
coincidence, the circuit outputs a logic pulse of duration Twin =
36 µs, which we refer to as a “coincidence signal.” The timing
and the duration of a coincidence signal generated by the pho-
ton counting signals are also shown in Figs. 3(a) through 3(c).

Figure 3(e) shows a typical time variation of the photon
emission rate, where the time is set to t = 0 at the rising
edge of the coincidence signal. The observed signal can
be fitted well by a Gaussian distribution. The peak occurs
t0 = 15 µs after the coincidence, and the half-width at 1/

√
e

maximum is 20 µs. These findings indicate that the atom is well
coupled to the cavity mode during Twin. We have confirmed
that the signals during Twin originate from single atoms by
checking the antibunching of photons [20]. The area of the
offset from t1 to t2, say Soffset(t1,t2), is 0.6 times as large as
the Gaussian area during the same time interval, Sgauss(t1,t2),
where we set t1 = t0 − Ttransit/2 and t2 = t0 + Ttransit/2. In
contrast, the probability that more than one atom enter the
cavity is 0.06 times smaller than the probability that one
atom enters, where we assume that the atom number has a
Poissonian distribution with an average number of Natom. The
atom number fluctuation cannot create such a large offset. The
offset can be understood as a result of accidental coincidences
caused by ESEs of different atoms weakly coupled to the
cavity. It does not affect the precision of the projective
measurements but affects the success probability unless the
ratio of η(t1,t2) = Sgauss/(Sgauss + Soffset) remains constant. In
our experimental conditions, η(6 µs,36 µs) = 0.8.

V. PROJECTIVE MEASUREMENTS ON
A SINGLE NUCLEAR SPIN

Next, we demonstrate projective measurements on a single
nuclear spin. The procedure is shown in Fig. 4(a) as a time
chart. After we confirmed that a |↓〉 atom exists in the cavity
mode by the coincidence, we turned off the excitation beam
for 6 µs and injected a spin polarization pulse having a
duration of 2 µs. The alignments of the spin polarization pulses

 0

 0.5

 1

σ- σ- σ+

|β
|2

(b)(a)

FIG. 4. (Color online) (a) Time chart for the projective measure-
ment. (b) Measurements of the diagonal elements |β|2 = |〈↓|ψ〉|2
for the spin states prepared by {σ−, σ⊥

− , σ+} pulses.
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{σ−, σ⊥
− , σ+} are shown in Fig. 1. The spin states prepared by

{σ−, σ⊥
− , σ+} pulses are expected to be {|↓〉, (|↓〉 + |↑〉)/√2,

|↑〉}, respectively. After initialization of the spin state, we
turned on the excitation beam again and measured the number
of counts, Ncount, during Tmeas = 30 µs. If the number of
photon counts observed is greater than zero (Ncount � 1), pro-
jection from an unknown spin state |ψ〉 to the |↓〉 state is suc-
cessful. The measured value Ncount for |ψ〉 = |↓〉 is N

|↓〉
count = 4

on average. Note that in the case of Ncount = 0 the spin might
be |↑〉 due to the failure of the projective measurement. Such
a readout error probability is 0.02, estimated from Poissonian
statistics for a given average of N

|↓〉
count. The diagonal element

of the unknown spin state can be estimated by repeating the
preparation of an unknown spin state. When we prepare the |ψ〉
state Nin times, the number of successful projections becomes
Nsuc = η0|β|2Nin, where |β|2 = |〈↓|ψ〉|2 and η0 corresponds
to the success probability of the projective measurement for
a coincidence. The readout error of 0.02 is included in η0.
Therefore, the |↓〉 state can be automatically prepared by
taking the coincidence condition without any spin polarization
pulse at the success probability of η0. The values of |β|2
initialized by {σ−, σ⊥

− , σ+} pulses are expected to be {1,0.5,0},
respectively. These values agree well with the experimental
results, as shown in Fig. 4(b) [21]. The errors are caused by the
statistical errors of Nsuc, the error of η0 (η0 = 0.86 ± 0.09), and
the finite number of preparations, Nin = 102. The measured
value η0 agrees well with the expectation discussed earlier. The
slight difference between the value for σ+ initialization and the
expected value (|β|2 = 0) is probably caused by the imperfect
circularity of the σ+ light. The readout error can be suppressed
by just extending the measurement time with a moving lattice,
for example. If a single nuclear spin is observed during 60
µs, which is twice as large as these Tmeas,N

|↓〉
count will be 8 and

the corresponding readout error can be less than 10−3. This
value satisfies a typical requirement in fault-tolerant quantum
computing [22].

VI. EVALUATION OF SYSTEMATIC ERRORS

Finally, we indirectly evaluate the signal-to-noise ratio
of these projective measurements using another experiment.
After being released from the lower MOT, atoms are initialized
by {σ ′

−, σ ′
+} pulses, as shown in Fig. 1. The number of counts

during the entire measurement time Thold is accumulated with-
out taking the coincidence condition. Since atoms are exposed
to the excitation beam longer than Tmeas, the probability of
the spin flip increases compared to the procedure described by
Fig. 4(a). The lower limit of S/N can be written as S/N �
Nσ−′/Nσ+′ where {Nσ−′ , Nσ+′} is the number of counts for
{σ ′

−, σ ′
+} initialization. We measured the dependence on the

excitation beam power Ptotal of {Nσ−′ , Nσ+′}, as shown in
Fig. 5.

We find that Nσ−′/Nσ+′ = 4 × 102 at Ptotal = 0.9 µW,
which is about one order of magnitude below the estimated
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FIG. 5. (Color online) The numbers of measured photon counts
for {σ ′

−, σ ′
+} initialization denoted as {Nσ−′ (circle), Nσ+′ (triangle)}.

Nσ−′ for the weak excitation beam and Nσ+′ for the strong excitation
beam can be fitted by linear functions (red and green). The dash-dotted
line is the dark count level.

S/N . The difference is due not only to the spin flip during
the extra excitation time but also to the noise floor of Nσ+′

limited by the dark count level. The saturation of Nσ−′ at high
excitation power is due to the saturation of the photon emission
rate. Therefore, the systematic error for the projective mea-
surements is estimated as δ|β|2 � (2 + N

|↓〉
count)Nσ+′/Nσ−′ =

2 × 10−2, well below the statistical errors. To the best of our
knowledge, the state detections in electric spin cavity QED sys-
tems are typically performed with Tmeas = 100 µs and δ|β|2 =
0.52/30 = 2 × 10−2, for 2(F + 1) = 8 degenerate hyperfine
substates [11]. Our system can address nondegenerate Zeeman
substates, in other words a nuclear spin, with comparable
performance.

VII. SUMMARY

In summary, we have constructed a cavity QED system
with a diamagnetic atom of 171Yb and verified its nuclear spin
state. This can be used as a core technology for large-scale
one-way quantum computing. Our result will expand the
selection ranges of wavelength and transition strength avail-
able for atomic cavity QED experiments. Especially, cavity
QED systems with diamagnetic atoms will be interesting.
Diamagnetic atoms in a static electric field give an upper
limit for the permanent electric dipole moment of atoms, the
measurement of which can be used to test various theories
beyond the Standard Model [23,24]. The narrow transition of
diamagnetic atoms leads to a new regime of cavity QED [25].
Diamagnetic atoms in an optical lattice behave as one of the
most accurate clocks [26,27].
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