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Stabilizing open quantum systems by Markovian reservoir engineering
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We study open quantum systems whose evolution is governed by a master equation of Kossakowski-Gorini-
Sudarshan-Lindblad type and give a characterization of the convex set of steady states of such systems based on
the generalized Bloch representation. It is shown that an isolated steady state of the Bloch equation cannot be a
center, i.e., that the existence of a unique steady state implies attractivity and global asymptotic stability. Necessary
and sufficient conditions for the existence of a unique steady state are derived and applied to different physical
models, including two- and four-level atoms, (truncated) harmonic oscillators, and composite and decomposable
systems. It is shown how these criteria could be exploited in principle for quantum reservoir engineeing via
coherent control and direct feedback to stabilize the system to a desired steady state. We also discuss the question
of limit points of the dynamics. Despite the nonexistence of isolated centers, open quantum systems can have
nontrivial invariant sets. These invariant sets are center manifolds that arise when the Bloch superoperator has
purely imaginary eigenvalues and are closely related to decoherence-free subspaces.
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I. INTRODUCTION

The dynamics of open quantum systems and especially the
possibility of controlling it have attracted significant interest
recently. One of the fundamental tasks of interest is the
stabilization of quantum states in the presence of dissipation.
In recent years a large number of articles have been published
on control of closed quantum systems or, more precisely, on
systems that only interact coherently with a controller, with
applications from quantum chemistry to quantum computing
[1]. The essential idea in most of these articles is open-loop
Hamiltonian engineering by applying control theory and
optimization techniques. Although open-loop control design
is a very important tool for controlling quantum dynamics,
it has limitations. For instance, while open-loop Hamiltonian
engineering can be used to mitigate the effects of decoherence,
e.g., using dynamic decoupling schemes [2], or to implement
quantum operations on logical qubits, protected against errors
due to environmental interactions by a redundant encoding [3],
Hamiltonian engineering has intrinsic limitations. One task
that is difficult to achieve using Hamiltonian engineering alone
is stabilization of quantum states.

Alternatively, we can try to engineer open quantum dynam-
ics described by a Lindblad master equation [4,5] by changing
not only the Hamiltonian terms but also the dissipative
terms. Various ideas along these lines have been proposed
in several articles [6–11]. There are two major sources of
dissipative terms in the Lindblad equation: the interaction of
the system with its environment and measurements we choose
to perform on the system. Accordingly, we can engineer the
open dynamics by either modifying the system’s reservoir or
by applying a carefully-designed quantum measurement. In
this sense, the quantum Zeno effect is a simple model for
reservoir engineering [12]. In addition, the open dynamics can
be modified by feeding the measurement outcome (e.g., the
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photocurrent from homodyne detection) back to the controller.
This idea was first proposed in Ref. [11], where a feedback-
modified master equation was derived and it was shown in
Ref. [6] that such direct feedback could be used to stabilize
arbitrary single-qubit states with respect to a rotating frame.
More recently, there have been several attempts to extend
this work to stabilize maximally entangled states using direct
feedback [6–10]. The idea of reservoir engineering can also be
used to stabilize the system in the decoherence-free subspace
(DFS) [13]. In Ref. [14], it is illustrated that N atoms in a
cavity can be entangled and driven into a DFS. In Ref. [15],
several interesting physical examples are presented showing
how to design the open dynamics such that the system can be
stabilized in the desired dark state.

Such stabilization problems are a motivation for thorough
investigation of the properties of a Lindblad master equation.
Important questions include, for instance, which states can
be stabilized given a certain general evolution of the system
and certain resources. There are a number of classical articles
discussing the stationary states and their (asymptotic) stability,
as well as sufficient conditions for the existence of a unique
stationary state [16–21]. More recently, a detailed analysis of
the structure of the Hilbert space with respect to the Lindblad
dynamics was carried out in Refs. [22,23], implying that all
stationary states are contained in a subspace of the Hilbert
space that is attractive. Necessary and sufficient conditions
for the attractivity of a subspace or a subsystem have been
further considered in Refs. [24,25]. Nonetheless there are
still important issues that deserve further study. One is the
issue of asymptotic stability of stationary states. It is often
assumed that uniqueness implies attractivity of a steady state.
Although this turns out to be true for the Lindblad equation,
it does not follow trivially from the linearity of the master
equation, and a rigorous derivation of this result is therefore
desirable, as is a summary of various sufficient conditions
for ensuring uniqueness of a stationary state. Similarly, linear
dynamical systems can have invariant sets or center manifolds
surrounding the set of steady states. The existence of such
invariant sets usually precludes converges of the system to a
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steady state, but criteria for the existence of nontrivial invariant
sets are also of interest as they are natural decoherence-free
subspaces. Finally, many investigations of the steady states
have been based on considering the dynamics on the Hilbert
space of the system, e.g., giving criteria for the attractivity of a
subspace of the Hilbert space. However, since the steady states
are points in the convex set of positive operators on this Hilbert
space, such criteria are not always useful. For instance, only
systems with steady states at the boundary of the state space
(e.g., pure states) have (nontrivial) attractive subspaces of the
Hilbert space. While these states may be of special interest,
since the states at the boundary form a set of measure zero,
most systems will have steady states in the interior. We may not
be able to engineer a steady state at the boundary, but perhaps
we could stabilize a state arbitrarily close to it, which may
be entirely sufficient for practical purposes. Thus, complete
characterization of the steady states requires considering the
set of positive operators on the Hilbert space rather than the
Hilbert space itself.

The purpose of this article is twofold: (i) to further inves-
tigate the properties of the stationary states of the Lindblad
dynamics and the invariant set of the dynamics generated
by imaginary eigenvalues, including the relationship between
uniqueness and asymptotic stability and (ii) to present several
sufficient conditions for the existence of a unique steady state,
apply them to different physical models, and show how these
criteria could in principle be used to stabilize an arbitrary
quantum state using Hamiltonian and reservoir engineering.
In Sec. II, we introduce the Bloch representation of Lindblad
dynamics, which will be used throughout the article. In this
representation, the spectrum of the dynamics can be easily
derived and stability analysis can be conveniently presented.
In Sec. III, we characterize the set of all stationary states as
a convex set generated by a finite number of extremal points,
analyze the properties of the extremal points, and give several
sufficient conditions for the uniqueness of the stationary state.
We also state a theorem that uniqueness implies attractivity,
which is proved in the appendix. In Sec. IV these conditions
are applied to different systems, including two- and four-level
atoms, the quantum harmonic oscillator, and composite and
decomposable systems, and several useful results are derived,
including (i) if the Lindblad terms include the annihilation
operator, then the system has a unique stationary state
regardless of the other Lindblad terms or the Hamiltonian;
(ii) for a composite system, if the Lindblad equation contains
dissipation terms corresponding to annihilation operators for
each subsystem, then the stationary state is also unique;
(iii) how any pure or mixed state can be stabilized in principle
via Hamiltonian and reservoir engineering. Finally, in Sec. V,
we discuss the invariant set generated by the eigenstates of the
dynamics with purely imaginary eigenvalues, and its relation
to decoherence-free subspaces (DFS), including examples how
to find or design a DFS.

II. BLOCH REPRESENTATION OF OPEN QUANTUM
SYSTEM DYNAMICS

Under certain conditions the evolution of a quantum system
interacting with its environment can be described by a quantum
dynamical semigroup and shown to satisfy a Lindblad master

equation

ρ̇(t) = −i[H,ρ(t)] + LDρ(t) ≡ Lρ(t), (1)

where ρ(t) is positive unit-trace operator on the system’s
Hilbert space H representing the state of the system, H

is a Hermitian operator on H representing the Hamilto-
nian, [A,B] = AB − BA is the commutator, and LDρ(t) =∑

d D[Vd ]ρ(t), where Vd are operators on H and

D[Vd ]ρ(t) = Vdρ(t)V †
d − 1

2 [V †
d Vdρ(t) + ρ(t)V †

d Vd ]. (2)

In this work we will consider only open quantum systems
governed by a Lindblad master equation, evolving on a finite-
dimensional Hilbert space H � CN .

From a mathematical point of view Eq. (1) is a complex
matrix differential equation (DE). To use dynamical systems
tools to study its stationary solutions and the stability, it is
desirable to find a real representation for (1) by choosing an
orthonormal basis σ = {σk}N2

k=1 for all Hermitian matrices on
H. Although any orthonormal basis will do, we shall use the
generalized Pauli matrices, suitably normalized, setting σk =
λrs , k = r + (s − 1)N and 1 � r < s � N , where

λrs = 1√
2

(|r〉〈s| + |s〉〈r|), (3a)

λsr = 1√
2

(−i|r〉〈s| + i|s〉〈r|), (3b)

λrr = 1√
r + r2

(
r∑

k=1

|k〉〈k| − r|r + 1〉〈r + 1|
)

. (3c)

The state of the system ρ can then be represented as a real
vector r = (rk) ∈ RN2

of coordinates with respect to this basis
{σk},

ρ =
N2∑
k=1

rkσk =
N2∑
k=1

Tr(ρσk)σk

and the Lindblad dynamics (1) rewritten as a real DE:

ṙ =
(

L +
∑

d

D(d)

)
r, (4)

where L, D(d) are real N2 × N2 matrices with entries

Lmn = Tr[iH [σm,σn]], (5a)

D(d)
mn = Tr(V †

d σmVdσn) − 1
2 Tr(V †

d Vd{σm,σn}), (5b)

{A,B} = AB + BA being the usual anticommutator. As
σN2 = 1√

N
I, we have ṙN = 0, and (5a) can be reduced to the

dynamics on an (N2 − 1)-dimensional subspace,

ṡ(t) = A s(t) + c. (6)

This is an affine-linear matrix DE in the state vector s =
(r1, . . . ,rN2−1)T . A is an (N2 − 1) × (N2 − 1) real matrix
with Amn = Lmn + ∑

d D(d)
mn and c a real column vector with

cm = LmN + ∑
d D

(d)
mN . Notice that this essentially is the

N -dimensional generalization of the standard Bloch equation
for a two-level system, and we will henceforth refer to A as the
Bloch operator. The advantage of this representation is that all
information of H and V is contained in A and c and it is easy
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to perform a stability analysis of the Lindblad dynamics in
matrix-vector form [26]. Defining Ã = L +∑

d D(d), we have
the following relation:

Ã =
(

A
√

Nc

0T 0

)
.

Since Tr(ρ2) � 1 for any physical state ρ, the Bloch vector s
must satisfy ‖s‖ �

√
(N − 1)/N , i.e., all physical states lie in

a ball of radius R = √
(N − 1)/N . Note that for N = 2 the

embedding into of the physical states into this ball is surjective,
i.e., the set of physical states is the entire Bloch ball, but this
is no longer true for N > 2.

III. CHARACTERIZATION OF THE STATIONARY STATES

A state ρ is a steady or stationary state of a dynamical
system if ρ̇ = 0. Steady states are interesting both from a
dynamical systems point of view, as well as for applications
such as stabilizing the system in a desired state. Let Ess =
{ρ|ρ̇ = L(ρ) = 0} be the set of steady states for the dynamics
given by (1). As (1) is linear in ρ, Ess inherits the property
of convexity from the set of all quantum states. Ess includes
special cases such as the so-called dark states, which are pure
states ρ = |ψ〉〈ψ | satisfying [H,ρ] = LD(ρ) = 0. For some
systems it is easy to see that there are steady states and what
these are. For a Hamiltonian system (LD ≡ 0) it is obvious
from Eq. (1), for instance, that the steady states are those that
commute with the Hamiltonian, i.e., Ess = {ρ : [H,ρ] = 0}.
Similarly, for a system with H = 0 subject to measurement of
the Hermitian observable M , the master equation (1) can be
rewritten as ρ̇ = D[M]ρ = − 1

2 [M,[M,ρ]], and we can show
that Ess = {ρ : [M,ρ] = 0}. In general, assuming s0 is the
Bloch vector associated with a particular steady state, the set of
steady states Ess for a system governed by a Lindblad master
equation (LME) (1) can be written as {s0 : A s0 + c = 0}
in the Bloch representation. This is a convex subset of the
affine hyperplane Elin

ss = {s0 + v} in RN2−1, where v satisfies
A v = 0. Moreover, using Brouwer’s fixed point theorem, we
can show that the set of steady states Ess is always nonempty
(see Appendix A) and we have:

Proposition 1. The Lindblad master equation (1) always
has a steady state, i.e., the Bloch equation A s0 + c = 0
always has a solution and rank(A) = rank(Ã), where Ã is the
matrix A horizontally concatenated by the column vector c.

As any convex set is the convex hull of its extremal points,
we would like to characterize the extremal points of Ess. A
point in a convex set is called extremal if it cannot be written
as a convex combination of any other points. See Fig. 1 for
illustration of convex sets and extremal points. To this end, let
supp(ρ) be the smallest subspace S of H such that �⊥ρ�⊥ =
0, where � is the projector onto the subspace S and �⊥ is the
projector onto the orthogonal complement of S in H.

Proposition 2. The steady state of Ess is extremal if and
only if it is the unique steady state in its support.

Proof. Since any convex set is the convex hull of its extremal
points, the rank of the extremal point is the smallest among its
neighboring points, and the rank of boundary points is smaller
than that of points in the interior. Suppose that besides the
extremal steady state ρ0, there is another steady state ρ1 in

FIG. 1. (Color online) (a) Nonconvex set as a line segment
connecting two points in the set is not contained in the set. (b) Convex
set spanned by five unique extremal points given by the vertices of
the polygon. (c) Convex set with infinitely many extremal points
comprising the entire boundary.

the subspace supp(ρ0). Then any state ρ2 which is a convex
combination of ρ0 and ρ1 must also be in supp(ρ0). However,
since ρ0 is an extremal point, the rank of ρ0, which is equal to
the dimension of supp(ρ0), must be lower than the rank of ρ2,
which is impossible. Conversely, let ρs be the unique steady
state in its support. Suppose it is not an extremal point, which
means that there exist ρ1 and ρ2 with ρs = aρ1 + (1 − a)ρ2,
a > 0. From Lemma 1 in Appendix B, ρ1 and ρ2 also lie
in supp(ρs), a contradiction to uniqueness of steady states in
supp(ρs). �

We call a subspace S invariant if any dynamical flow with
initial state in S remains in S. It has been shown that if ρss is
a steady state then supp(ρss) is invariant [23,25]. Furthermore,
Proposition 1 shows that any invariant subspace contains at
least one steady state. Thus, if ρss is an extremal point of Ess

then supp(ρss) is a minimal invariant subspace of the Hilbert
spaceH, i.e., there does not exist a proper subspace of supp(ρk)
that is invariant under the dynamics. It can also be shown that
supp(ρss) is attractive as a subspace of H, and supp(ρss) has
been called a minimal collecting subspace in Ref. [23].

Different extremal steady states generally do not have
orthogonal supports. For example, for a two level-system
governed by the trivial Hamiltonian dynamics H = 0, Ess is
equal to the convex set of all states on H, all pure states are
extremal points, and it is easy to see that two arbitrary pure
states generally do not have orthogonal supports. Just consider
the pure states ρ1 = |0〉〈0| and ρ2 = 1

2 (|0〉 + |1〉)(〈0| + 〈1|),
which are extremal states but supp(ρ1) 	⊥ supp(ρ2). However,
in this case there is another extremal steady state ρ3 =
|1〉〈1| with supp(ρ3) ⊂ supp(ρ1) + supp(ρ2) and supp(ρ3) ⊥
supp(ρ1). In general, given two extremal steady states ρ1 and
ρ2, we have either supp(ρ1) ⊥ supp(ρ2), or there exists another
extremal steady state ρ3 with supp(ρ3) ⊂ supp(ρ1) + supp(ρ2)
such that supp(ρ1) ⊥ supp(ρ3). That is to say, given an
extremal steady state ρ1, if there exist other steady states, then
we can always find another extremal steady state ρ3 whose
support is orthogonal to that of ρ1, supp(ρ1) ⊥ supp(ρ3).
Finally, let Hss be the union of the supports of all steady states
ρss. It can be shown (see, e.g., Ref. [23]) that we can choose
a finite number of extremal steady states ρk with orthogonal
supports, such that Hs = ⊕K

k=1supp(ρk). This decomposition
is generally not unique, however. In the above example, any
two orthonormal vectors of H provide a valid decomposition
of Hss = H, and no basis is preferable. Therefore, such a
decomposition ofHss is not necessarily physically meaningful,
but it does give the following useful result:

Proposition 3. If a system governed by a LME (1) has two
steady states, then there exist two proper orthogonal subspaces
of H that are both invariant.
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In addition to the characterization of Ess from the supports
of its extremal points, it is also useful to characterize the steady
states from the structure of the dynamical operators H and Vd

in the LME (1).
Proposition 4. If ρ is a steady state at the boundary, then its

support S = supp(ρ) is an invariant subspace for each of the
Lindblad operators Vd . �

Proof. A density operator ρ belongs to the boundary of
D(H) if it has zero eigenvalues, i.e., if rank(ρ) = N1 < N . In
this case, there exists a unitary operator U such that

ρ̃ = UρU † =
[

R11 R12

R
†
12 R22

]
, (7)

where R11 is an N1 × N1 matrix with full rank and R12 and
R22 are N2 × N1 and N2 × N2 matrices with zero entries and
N2 = N − N1 = dim ker(ρ) and

˙̃ρ(t) = −i[H̃ ,ρ̃(t)] +
∑

d

D[Ṽd ]ρ̃(t) (8)

with H̃ = UHU † and Ṽd = UVdU
†. Partitioning

H̃ =
[

H11 H12

H
†
12 H22

]
, Ṽd =

[
V

(d)
11 V

(d)
12

V
(d)

21 V
(d)

22

]
, (9)

accordingly, it can be verified that a necessary and sufficient
condition for ρ to be a steady state of the system is that Ṙ11 =
Ṙ12 = Ṙ22 = 0, where

Ṙ11 = −i[H11,R11] +
∑

d

D
[
V

(d)
11

]
R11, (10a)

Ṙ12 = −1

2
R11

∑
d

(
V

(d)
11

)†
V

(d)
12 + iR11H12, (10b)

Ṙ22 =
∑

d

V
(d)

21 R11
(
V

(d)
21

)†
. (10c)

Since R11 is a positive operator with full rank and hence strictly
positive, the third equation requires V

(d)
21 = 0 for all d. The

second equation is R11X = 0 for X = − 1
2

∑
d (V (d)

11 )†V (d)
12 +

iH12, which shows that it will be satisfied if and only if
the N1 × N2 matrix X vanishes identically, which gives the
equivalent conditions

0 = −i[H11,R11] +
∑

d

D
[
V

(d)
11

]
R11, (11a)

0 = −1

2

∑
d

(
V

(d)
11

)†
V

(d)
12 + iH12, (11b)

0 = V
(d)

21 ∀d. (11c)

The last equation implies that if ρ is a steady state at the
boundary, then all Vd have a block-tridiagonal structure and
map operators defined on S = supp(ρ) to operators on S, i.e.,
S is an invariant subspace for all Vd .

The following theorem (proved in Appendix C)
shows furthermore that uniqueness implies asymptotic
stability:

Theorem 1. A steady state of the LME (1) is attractive,
i.e., all other solutions converge to it, if and only if it is
unique.

The fact that only isolated steady states can be attractive
restricts the systems that admit attractive steady states. In
particular, if there are two (or more) orthogonal subspaces
Hk of the Hilbert space H, which are invariant under the
dynamics, i.e., suppL(D(Hk)) ⊂ Hk for k = 1,2, . . . , then
the dynamics restricted to either invariant subspace must have
at least one steady state on the subspace, and the set of steady
states must contain the convex hull of the steady states on the
Hk subspaces. Thus we have:

Corollary 1. A system governed by LME (1) does not have
a globally asymptotically stable equilibrium if there are two
(or more) orthogonal subspaces of the Hilbert space that are
invariant under the dynamics.

The previous results we give several equivalent useful
sufficient conditions to ensure uniqueness of a steady state.

Condition 1. Given a system governed by a LME (1) with
an extremal steady state ρss, if there is no subspace orthogonal
to supp(ρss) that is invariant under all Vd , then ρss is the unique
steady state.

We compare Condition 1 with Theorem 2 in Ref. [15],
which asserts that if there exists no other subspace that is
invariant under all Vd orthogonal to the set of dark states, then
the only steady states are the dark states. To prove that a given
dark state is the unique stationay state, Theorem 2 in Ref. [15]
requires that we show (i) uniqueness of the dark state and
(ii) that there exists no other orthogonal invariant subspace.
Since the dark states defined in Ref. [15] are extremal steady
states, Condition 1 shows that (ii) is actually sufficient in that
it implies uniqueness and hence attractivity of the steady state.

Condition 2. If there is no proper subspace of S � H that
is invariant under all Lindblad generators Vd , then the system
has a unique steady state in the interior.1

Equation (11) also shows that if there are two orthogonal
proper subspaces H1 ⊥ H2 of the Hilbert space that are
invariant under the dynamics, then H = H1 ⊕ H2 ⊕ H3, and
there exists a basis such that

H =

⎡
⎢⎣

H11 0 H13

0 H22 0

H
†
13 0 H33

⎤
⎥⎦ , Vd =

⎡
⎢⎣

V
(d)

11 0 V
(d)

13

0 V
(d)

22 V
(d)

23

0 0 V
(d)

33

⎤
⎥⎦ ,

for all d, and iH13 − 1
2

∑
d (V (d)

11 )†V (d)
13 = 0, i.e., in particular

both subspaces are Vd -invariant for all Vd . Hence, if there
are no two orthogonal proper subspaces of H that are
simultaneously Vd invariant for all Vd , then the system does
not admit orthogonal proper subspaces that are invariant under
the dynamics. Thus we have:

Condition 3. If there do not exist two orthogonal proper
subspaces of H that are simultaneously Vd invariant for all Vd ,
then the system has a unique fixed point, either at the boundary
or in the interior.

The following applications show that these conditions are
very useful to show attractivity of a steady state.

1Proper subspace means we are excluding the trivial cases S = {0}
and S = H.
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IV. APPLICATIONS

A. Two and four-level atoms

Let us start with the simplest example, a two-level atom
governed by the Lindblad master equation

ρ̇ = −i�[σx,ρ] + D[σ ]ρ

with σ = |0〉〈1|. This model describes a two-level atom subject
to spontaneous emission or a two-level atom interacting with a
heavily damped cavity field after adiabatically eliminating the
cavity mode. Noting that the Lindblad operator σ corresponds
to a Jordan matrix J0(2), the previous results guarantee
that this system has a unique (attractive) steady state. More
interestingly, the previous results still guarantee the existence
of a unique steady state if the atom is damped by a bath of
harmonic oscillators

ρ̇ = [−iH,ρ] − �

2
n̄D[σ †]ρ − �

2
(n̄ + 1)D[σ ]ρ,

where n̄ = (eh̄ω/kBT − 1)−1 is the average photon number. It
suffices that one of the Lindblad termD[σ ]ρ corresponds to an
indecomposable Jordan matrix. In this simple case we can also
infer the uniqueness of the steady state directly from the Bloch
representation. We can decompose the Bloch matrix A =
AH + AD into an antisymmetric matrix AH corresponding
to the Hamiltonian part of the evolution and a diagonal and
negative-definite matrix AD . Since sT A s = sT AD s < 0 for
any s 	= 0, it follows that AD is invertible and the Bloch
equation ṡ = A s + c has a unique attractive stationary state.

On the other hand, if the atom is subjected to a continuous
weak measurement such as ρ̇ = D[σz]ρ, then we can easily
verify that the pure states |0〉 and |1〉 are steady states. Hence,
there are infinitely many steady states given by the convex
hull of these extremal points, ρss = α|0〉〈0| + (1 − α)|1〉〈1|
with 0 � α � 1. Of course, this is the well-known case of a
depolarizing channel, which contracts the entire Bloch ball to
the z axis, which is the measurement axis.

In the previous examples uniqueness of the steady state
followed from similarity of at least one Lindblad operator V to
an (indecomposable) Jordan matrix. When V is decomposable
then the last example shows that the system can have infinitely
many steady states, but similarity of a Lindblad operator to an
indecomposable Jordan matrix is only a sufficient condition,
i.e., it is not necessary for the existence of a unique steady
state. If V has two or more Jordan blocks, for example, then
each Jordan block defines an invariant subspace, but provided
these subspaces are not orthogonal to each other, Condition 3
still applies, ensuring the uniqueness of the steady state.

For instance, a system governed by a LME ρ̇ = D[V ]ρ
with V = S−1JS, J = J0(2) ⊕ J1(2) and

S =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 1 0

0 0 0 1

1 0 1 0

⎞
⎟⎟⎟⎠

has a unique steady state because, although V has two
eigenvalues 0 and 1 and two proper eigenvectors, the respective
eigenspaces are not orthogonal and there are no two orthogonal
subspaces that are invariant under V . Perhaps more interest-

γ
34

γ
23

γ
12

|1〉

|4〉

|2〉

|3〉

FIG. 2. Schematic plot of the four energy levels of one atom in
a prototype system for a laser. The atom is pumped by an external
field. The spontaneous decay rates satisfy γ34,γ12 
 γ23. On the time
scale when decay from level 3 to 2 can be ignored ρss = |3〉〈3| is the
unique steady state of the system, realizing the population inversion.

ingly, for a system with a nontrivial Hamiltonian, e.g., ρ̇ =
−i[H,ρ] + D[V ]ρ, uniqueness of the steady state can often
be guaranteed even if V has two (or more) orthogonal invariant
subspaces, if H suitably mixes the invariant subspaces.

Consider a four-level system with energy levels as illus-
trated in Fig. 2 and spontaneous emission rates γ34, γ23, and γ12

satisfying γ34,γ12 
 γ23. This is a simple model for a laser. To
derive stimulated emission we require population inversion,
a cavity, and a gain medium composed of many atoms. For
simplicity, we only consider one atom and try to describe
the dynamics in the time scale such that the spontaneous
decay 3 → 2 can be neglected. On this scale the Hamiltonian
optical-pumping term H and the spontaneous decay term are

H = α(|1〉〈4| + |4〉〈1|),
V1 = γ34|3〉〈4|,
V2 = γ12|1〉〈2|.

There are two invariant subspaces under V1 and V2: H1 =
span{|1〉,|2〉} and H2 = span{|3〉,|4〉}. Hence, when α = 0,
we have two metastable states |2〉 and |3〉 in addition to the
ground state |1〉, which is a steady state. However, for α 	= 0
the pumping Hamiltonian H mixes up those two invariant
subspaces, and through calculation we can easily find the
unique steady state: ρss = |3〉〈3|. Thus, on the time scales
considered, population inversion between states |3〉 and |2〉
can be realized, but eventually spontaneous emission from
|3〉 to |2〉 will kick in, resulting in the stimulated emission
characteristic of a laser.

This is just one example of optical pumping, a technique
widely used for state preparation in quantum optics. Although
the principle of optical pumping is easy to understand intu-
itively for simple systems in that population cannot accumulate
in energy levels being pumped, forcing the population to
accummulate in states state not being pumped and not decaying
to other states, it can be difficult to intuitively understand the
dynamics in less straightforward cases. For example, what
would happen if we applied an additional laser field coupling
|3〉 and |4〉. Would the system still have a unique steady state?
If so, what is the steady state? These questions are not easy
to answer based on intuition, but we can very easily answer
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them using the mathematical formalism developed, especially
the Bloch equation. In fact, we easily verify that the system

ρ̇(t) = −i[H,ρ] + γ34D[|3〉〈4|]ρ + γ12D[|1〉〈2|]ρ
with H = α(|1〉〈4| + |4〉〈1|) + β(|3〉〈4| + |4〉〈3|) has a unique
steady state

ρss = 1

α2 + β2

⎡
⎢⎢⎢⎣

β2 0 −αβ 0

0 0 0 0

−αβ 0 α2 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

independent of γ12 and γ34, provided γ12,γ34 	= 0. For β = 0
this state becomes |3〉〈3|, as intuition suggests.

B. Quantum harmonic oscillator

The harmonic oscillator plays an important role as a
model for a wide range of physical systems from photon
fields in cavities to nanomechanical oscillators to bosons in
the Bose-Hubbard model for cold atoms in optical lattices.
Although strictly speaking the harmonic oscillator is defined
on an infinite-dimensional Hilbert space, the dynamics can
often be restricted to a finite-dimensional subspace. For many
interesting quantum processes the average energy of the system
is finite and we can truncate the number of Fock states Nmax

from ∞ to a large but finite number. In many quantum optics
experiments, for example, the intracavity field contains only
a few photons, or has a number of photons in some finite
range if it is driven by a field with limited intensity. In such
cases the truncated harmonic oscillator is a good model for the
underlying physical system provided Nmax is large enough, and
we can apply the previous results about stationary solutions
and asymptotic stability.

Consider a harmonic oscillator with H0 = h̄ωc†c, where c is
the annihilation operator of the system, which on the truncated
Hilbert space with Nmax = N , takes the form

c ∝
N−1∑
n=0

√
n + 1|n〉〈n + 1|. (12)

If there is a Lindblad term of the form D[c]ρ, then we can
infer from the previous analysis that the system has a unique
and hence asymptotically stable steady state, regardless of
whatever Hamiltonian control or interaction terms or other
Lindblad terms are present. To see this note that the matrix
representation of c is mathematically similar to the Jordan
matrix

J0(N ) =
N−1∑
n=0

|n〉〈n + 1|. (13)

It is easy to verify that J has a sole proper eigenvector whose
generalized eigenspace is all of H and thus does not admit two
orthogonal proper invariant subspaces. Hence we can conclude
from Condition 3 that for any dynamics governed by a LME
(1) with a dissipation term D[c]ρ, there is always a unique
stationary solution to which any initial state will converge. In
general, if (1) contains a Lindblad term D[V ]ρ with V similar
to a Jordan matrix Jα(N ) = αIN + J0(N ), then (1) always has
a unique stationary state, no matter what the other terms are.

For example, the Lindblad equation for a damped cavity driven
by a classical coherent field α is

ρ̇ = − 1
2 [α∗c − αc†,ρ] + D[c]ρ = D[αIN + c]ρ,

showing that the system has a unique steady state. For N = 4
the steady state is

ρss = 1

C

⎛
⎜⎜⎜⎝

1 + α2A −αA α2B −α3

−αA α2A −α3B α4

α2B −α3B α4B −α5

−α3 α4 −α5 α6

⎞
⎟⎟⎟⎠

with α real, A = α2B + 1, B = α2 + 1, and C = 4α6 +
3α4 + 2α2 + 1. When α = 0, i.e., there is no driving field, we
get ρss is the ground (vacuum) state, as one would expect for a
damped cavity, while for a nonzero driving field we stabilize
a mixed state in the interior.

C. Composite systems

Many physical systems are composed of subsystems, each
interacting with its environment, inducing dissipation. For
example, consider N two-level atoms in a damped cavity
driven by a coherent external field. Assuming the atom-atom
and atom-cavity interactions are not too strong, and the main
sources of dissipation are independent decay of atoms and the
cavity mode, respectively, we obtain the Lindblad termsD[σn],
n = 1, . . . ,N , and D[c] in the LME (1), where σn is the decay
operator σ = |0〉〈1| for the nth atom and c is the annihilation
operator of the cavity. Simulations suggest systems of this type
always have a unique steady state, and this can be rigorously
shown using the sufficient conditions derived.

A composite quantum system whose evolution is governed
by a LME containing terms involving annihilation operators
for each subsystem has a unique steady state, regardless of the
Hamiltonian and any other Lindblad terms that may be present.
This property can be inferred from Condition 3. Assume the
full system is composed of K subsystems with Lindblad terms
D[σk]ρ, k = 1, . . . ,K and let HI be an invariant subspace for
all σk . Then HI must contain the ground state |0〉 = |0〉⊗K

of the composite system as σk|0〉 = 0 for all k. Hence, any
simultaneously σk-invariant subspace must contain the state
|0〉 and there cannot exist two orthogonal proper subspaces of
H that are invariant under all σk . By Condition 3, the system
has a unique steady state.

Thus, a system of N atoms in a damped cavity subject to a
Lindblad master equation

ρ̇(t) = −i[H,ρ(t)] + γD[c]ρ +
N∑

n=1

γnD[σn]ρ

has a unique steady state, regardless of the Hamiltonian H .
The steady state need not be |0〉, however. In general, this will
only be the case if |0〉 is an eigenstate of H . Similarly, the
presence of the two dissipation terms D[σk] in the LME for
the two-atom model in [7]

ρ̇(t) = −i[J + J †,ρ(t)] + γD[J ]ρ +
∑
k=1,2

γkD[σk]ρ
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with J = σ1 + σ2 ensures that there is a unique steady state
provided γk > 0. This is no longer the case for γk = 0. In
particular, in the regime where γ1,γ2 � γ and the last two
terms can be neglected as in Ref. [7], the reduced dynamics
no longer has a unique steady state.

D. Decomposable systems

A system is decomposable if there exists a decomposition of
the Hilbert space H = ⊕M

m=1Hm such that ρ̇ = ⊕M
m=1ρ̇

(m) for
any ρ(0) = ⊕M

m=1ρ
(m)(0), where ρ(m)(0) is an (unnormalized)

density operator on Hm. Decomposable systems cannot have
asymptotically stable (attractive) steady states by Corollary 1.

One class of systems that are always decomposable, and
hence never admit attractive steady states, are systems gov-
erned by a LME (1) with a single Lindblad operator V that is
normal, i.e., [V,V †] = 0, and commutes with the Hamiltonian.
This is easy to see. Normal operators are diagonalizable, i.e.,
there exists a unitary operator U such that UV U † = D with D

diagonal, and since [H,V ] = 0, we can choose U such that it
also diagonalizes H . Thus the system is fully decomposable,
and it is easy to see in this case that every joint eigenstate of H

and V is a steady state, and therefore there exists a steady-state
manifold spanned by the convex hull of the projectors onto the
joint eigenstates of H and V . In the absence of degenerate
eigenvalues this manifold is exactly the N − 1 dimensional
subspace of D(H) consisting of operators diagonal in the joint
eigenbasis of H and V .

A more interesting example of a physical system that is
decomposable, and thus does not admit an attractive steady
state, is a system of n indistinguishable two-level atoms in
a cavity subject to collective decay, and possibly collective
control of the atoms as well as collective homodyne detection
of photons emitted from the cavity, as illustrated in Fig. 3. Let
σ = |0〉〈1| be the single-qubit annihilation operator and define
the single-qubit Pauli operators σx = σ + σ †, σy = i(σ − σ †)
and σz = −2[σx,σy]. Choosing the collective measurement
operator

M =
n∑

�=1

σ (�)

FIG. 3. Schematic diagram of an atomic system under direct
quantum feedback control. A laser beam is split to generate the local
oscillator c for homodyne detection as well as the driving field a0

which is then modulated by the feedback photocurrent I (t) to derive
the final field a + sI (t).

σ (�) being the n-fold tensor product whose �th factor is σ , all
others being the identity I2, and the collective local control
and feedback Hamiltonians

Hc = uxJx + uyJy + uzJz, F = λHc,

where Ja = ∑n
�=1 σ (�)

a for a ∈ {x,y,z}, the evolution of the
system is governed by the feedback-modified Lindblad master
equation [11]

ρ̇(t) = −i[H0 + Hc + M†F + FM,ρ] + D[M − iF ]ρ,

assuming local decay of the atoms is negligible. It is easy to see
from the master equation above that the system decomposes
into eigenspaces of the (angular momentum) operator

J = J 2
x + J 2

y + J 2
z ,

i.e., both the measurement operator M and the control and
feedback Hamiltonians Hc and F (and hence M†F + FM) can
be written in block-diagonal form with blocks determined by
the eigenspaces of J . Therefore, the system is decomposable
and we cannot stabilize any state, no matter how we choose
u = (ux,uy,uz,λ). For n = 2 this system was studied in
Ref. [27] in the context of maximizing entanglement of a
steady state on the J = 1 subspace using feedback, although
the question of stability of the steady states was not considered.
Although the system does not admit an attractive steady state
in the whole space, we can verify that Ess contains a line
segment of steady states that intersects both the J = 0 and
J = 1 subspaces in a unique state. Thus J = 1 subspace has
a unique steady state determined by u, to which all solutions
with initial states in this subspace converge.

E. Feedback stabilization

An interesting possible application of the criteria for the
existence of unique, attractive steady states is the possibility
of engineering the dynamics such that the system has a
desired attractive steady state by means of coherent control,
measurements, and feedback. An special case of interest
here is direct feedback. Systems subject to direct feedback
as in the previous example, can be described by a simple
feedback-modified master equation [11]:

ρ̇(t) = −i[H,ρ(t)] + D[M − iF ]ρ(t), (14)

where H = H0 + Hc + 1
2 (M†F + FM) is composed of a

fixed internal Hamiltonian H0, a control Hamiltonian Hc,
and a feedback correction term 1

2 (M†F + FM). This master
equation is of Lindblad form, and hence all of the previous
results are directly applicable. Setting

V = M − iF, (15a)

M = V + V †, (15b)

F = i(V − V †), (15c)

Hc = H − H0 − 1
2 (M†F + FM), (15d)

we see immediately that if the control and feedback Hamil-
tonian, Hc and F , and the measurement operator M are
allowed to be arbitrary Hermitian operators, then we can
generate any Lindblad dynamics. This is also true for a
non-Hermitian measurement operator M as arises, e.g., for
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homodyne detection, since the anti-Hermitian part of M can
always be canceled by the effect of the feedback Hamiltonian
F in D[M − iF ]. Given this level of control, it is not difficult
to show that we can in principle render any given target state
ρss, pure or mixed, globally asymptotically stable by choosing
appropriate H and V or, equivalently, by choosing appropriate
Hc, F , and M .

To see how to do accomplish this in principle, let us first
consider the generic case of a target state ρss is in the interior
of the convex set of the states with rank(ρss) = N . A necessary
and sufficient condition for ρss to be an attractive steady state
is (i) −i[H,ρss] + D[V ]ρss = 0 and (ii) no (proper) subspace
of H is invariant under (1).

The first condition ensures that ρss is a steady state, and the
latter ensures that it is the only steady state in the interior by
Corollary 2. It is easy to see that choosing V and H such that

V = Uρ−1/2
ss , [H,ρss] = 0, (16)

where U is unitary, ensures that (i) is satisfied as

D[V ]ρss = Uρ−1/2
ss ρssρ

−1/2
ss U † − 1

2

{
ρ−1

ss ,|n〉〈n|}
= UU † − 1

2

{
ρ−1

ss ,ρss
} = I − I = 0.

To satisfy (ii) we must choose U such that V has no
orthogonal invariant subspaces or, equivalently, H mixes
up any two orthogonal invariant subspaces V may have.
If ρss = ∑

k wk�k , where �k is the projector onto the kth
eigenspace, then the invariance condition implies that U

must not commute with any of the projection operators �k ,
or any partial sum of �k such as �1 + �2. To see this,
suppose U commutes with �n = |n〉〈n|, a projector onto an
eigenspace of ρss. Then |n〉 is a simultaneous eigenstate of
U and ρss with U |n〉 = eiφ|n〉 and ρ|n〉 = α|n〉, where α

must be real and positive as ρss is a positive operator, and
we have [H,|n〉〈n|] = 0, {ρ−1

ss ,|n〉〈n|} = 2α−1|n〉〈n|, |n〉 is an
eigenstate of V

V |n〉 = Uρ−1/2|n〉 = Uα−1/2|n〉 = α−1/2eiφ|n〉,
and thus V |n〉〈n|V † = α−1|n〉〈n| and D[V ]|n〉〈n| = 0, i.e.,
|n〉〈n| is a steady state of the system at the boundary. Hence,
the steady state is not unique, and ρss cannot be attractive. In
practice almost any randomly chosen unitary matrix U such
as U = exp(i(X + X†)), where X is a random matrix, will
satisfy the above condition, and given a candidate U it is easy
to check if it is suitable by calculating the eigenvalues of the
superoperator A in (6). Of course, choosing H and V of the
form (16) is just one of many possible choices for condition
(i) to hold. It is possible to find other suitable sets of operators
(H,V ) in terms of (Hc,F,M) when the class of practically
realizable control and feedback operators or measurements is
restricted. For example, we can easily verify that ρss is the
unique attractive steady state of a two-level system governed
by the LME (1) with

H =
[

0 1

1 0

]
, V =

[
1 (

√
3 − 1)i

(3 − √
3)i 1

]
,

ρss =
[

1
4 0

0 3
4

]
,

even though H and V do not satisfy (16). Thus, there are
generally many possible choices for the control, measurement,
and feedback operators that render a particular state in the
interior asymptotically stable.

If the target state ρss is in the boundary of the convex set of
the states, i.e., rank(ρss) < N , then the proof of Proposition 4
shows that we must have

0 = −i[H11,R11] + D[V11]R11, (17a)

0 = − 1
2V

†
11V12 + iH12, (17b)

0 = V21. (17c)

with Vk� and Hk� defined as in Eq. (9) to ensure that ρ is a steady
state. To ensure uniqueness we must further ensure that there
are no other steady states. This means, by Corollary 3, that
(a) we must choose H11 and V11 such that R11 is the unique
solution of (17a), and thus no subspace of S = supp(ρss) is
invariant, and (b) we must choose the remaining operators H12

and V12 and V22 such that (17b) is satisfied and no subspace of
S⊥ is invariant, because if such a subspace S2 exists, then S1

and S2 will be two proper orthogonal invariant subspaces and
ρss will not be attractive.

One way to construct such a solution is by choosing H11

such that [H11,R11] = 0 and setting V11 = U11R
−1/2
11 , where

U11 is a suitable unitary operator defined on S as discussed in
the previous section. Then we choose V22 such that no proper
subspace of S⊥ is invariant. Finally, we must choose V12 and
H12 such that (17b) is satisfied and S⊥ is itself not invariant.
Although these constraints appear quite strict, in practice there
are usually many solutions.

For example, suppose we want to stabilize the rank-3
mixed state ρss = 1

8 diag(1,3,4,0) at the boundary. Then we
partition ρ, V , and H as above, setting V11 = UR11 with
R11 = 1

8 diag(1,3,4) and U a suitable unitary matrix such as

U =

⎡
⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎦ .

Then we choose H11 such that [H11,R11] = 0, e.g., we could
set H11 = V

†
11V11, a choice, which ensures that ρss is the unique

steady state on the subspace S = supp(ρss). Next we choose
V12 such that S⊥ is not an invariant subspace. Any choice other
than V12 = (0,0,0) will do in this case, e.g., set V12 = (1,0,0).
Finally, we set H12 = − i

2V
†

11V12, V21 = (0,0,0)T and V22 	= 0
to ensure that ρss is the unique globally asymptotically stable
state.

Note that the Hamiltonian, which was not crucial for
stabilizing a state in the interior and could have been set
to H = 0, does affect our ability to stabilize states in the
boundary. We can stabilize a mixed state in the boundary only
if H12 	= 0. If H12 = 0, then Eq. (17b) implies V

†
11V12 = 0,

and there are two possbilities. If V12 	= 0 but V11 has a zero
eigenvalue, then the system restricted to the subspace S has a
pure state at the boundary and thus R11 cannot be the unique
attractive steady state on S. Alternatively, if V12 = 0, then V is
decomposable with two orthogonal invariant subspaces S and
S⊥, and ρss cannot be attractive either, consistent with what
was observed in Ref. [28].
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Target states at the boundary include pure states. S in this
case is a one-dimensional subspace of H, and Eq. (17a) is
trivially satisfied as H11 and V11 have rank 1, and the crucial
task is to find a solution to Eq. (17b) such that no subspace
of S⊥ is invariant. If H12 = 0, then this is possible only if
V11 = 0 and thus if V has a zero eigenvalue, as was observed
in Ref. [28], but again, if H 	= 0, then there are many choices
for H and V12, V22 that stabilize a desired pure state. For
example, we can easily check that the pure state ρss = |1〉〈1|
is a steady state of the system ρ̇ = −i[H,ρ] + D[V ]ρ if V

is the irreducible Jordan matrix Ja(N ) with eigenvalue a and
H12 = − i

2a∗|1〉〈2|.

V. INVARIANT SET OF DYNAMICS AND
DECOHERENCE-FREE SUBSPACES

Having characterized the set of steady states, the question is
whether the system always converges to one of these equilibria.
The previous sections show that this is the case if the system
has a unique steady state, as uniqueness implies asymptotic
stability. In general, however, this is clearly not the case for
a linear dynamical system. Rather, all solutions converge to a
center manifold Einv, which is an invariant set of the dynamics,
consisting of both steady states and limit cycles [29]. Although
we have seen that the Lindblad master equation (1) does not
admit isolated centers, limit cycles often do exist for systems
governed by a LME. This is easily seen when we consider
the special case of Hamiltonian systems. In this case any
eigenstate of the Hamiltonian is a steady state but no other
dynamical flows converge to these steady states. For the Bloch
equation (6) Einv can be characterized explicitly. Consider the
Jordan decomposition of the Bloch superoperator, A = SJS−1,
where J is the canonical Jordan form. Let γ� = α� + iβ� be the
eigenvalues of A and �γ be the projector onto the (generalized)
eigenspace of the eigenvalue γ , and let I be the set of indices
of the eigenvalues of A with α� = 0.

Definition 1. Let Elin
inv be the affine subspace of RN2−1 con-

sisting of vectors of the form {s0 + w}, where s0 is a solution
of A s0 + c = 0, and w ∈ Ecc, where Ecc = ∑

�∈I �γ�
(RN2−1)

is the direct sum of the eigenspaces of A corresponding
to eigenvalues with zero real part. Then the invariant set
Einv = Elin

inv ∩ DR(H).
It is important to distinguish the invariant set Einv, which is

a set of Bloch vectors (or density operators), from the notion of
an invariant subspace of the Hilbert space H. In particular, as
Einv contains the set of steady states Ess, it is always nonempty.
Although supp(Einv), i.e., the union of the supports of all states
in Einv, is clearly an invariant subspace of H, in most cases
supp(Einv) will be the entire Hilbert space. In particular, this
is the case if Einv contains a single state in the interior, and
supp(Einv) will be a proper subspace of the Hilbert space only
if all steady states are contained in a face at the boundary. This
shows that proper invariant subspaces of the Hilbert space exist
only for systems that have steady states at the boundary, and
the maximal invariant subspace of the Hilbert space can only
be less than the entire Hilbert space if there are no steady states
in the interior.

Theorem 2. Every trajectory s(t) of a system governed by a
Lindblad equation asymptotically converges to Einv.

Proof. Let s0 be a solution of the affine-linear equation
A s0 + c = 0, which exists by Prop. 1. �(t) = s(t) − s0

satisfies the homogeneous linear equation �̇(t) = A �(t) =
SJS−1�(t), where J = diag(J�) is the Jordan normal form of
A consisting of irreducible Jordan blocks J� of dimension k�

with eigenvalue γ�. Setting x(t) = S−1�(t) gives ẋ(t) = Jx(t)
and x(t) = etJx(0), where etJ is block-diagonal with blocks

E�(t) = etα�

⎡
⎢⎢⎢⎢⎣

R� tR�
1
2 t2R�

1
6 t3R� . . .

0 R� tR�
1
2 t2R� . . .

0 0 R� tR� . . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ , (18)

where R� = 1 if β� = 0, otherwise

R� =
[

cos(tβ�) − sin(tβ�)

sin(tβ�) cos(tβ�)

]
. (19)

Since the dynamical evolution is restricted to a bounded set,
the matrix A cannot have eigenvalues with positive real parts,
i.e., α� � 0, and taking the limit for t → ∞ shows that the
Jordan blocks with α� < 0 are annihilated, and thus �(t) →
Sx∞ = w ∈ Ecc and s(t) = s0 + Sx(t) → s0 + w. �

The dimension of the invariant set, or more precisely, the
affine hyperplane of RN2−1 it belongs to, is equal to the sum of
the geometric multiplicities of the eigenvalues γ� with zero real
part, while the dimension of the set of steady states is equal
to the number of zero eigenvalues of A. Thus, in general,
the invariant set is much larger than the set of steady states
of the system. Convergence to a steady state is guaranteed
only if A has no purely imaginary eigenvalues. In particular,
if all eigenvalues of A have negative real parts, i.e., I = ∅,
then all trajectories s(t) converge to the unique steady state
sss = − A−1 c. If A has purely imaginary eigenvalues, then the
steady states are centers and the invariant set contains center
manifolds, which exponentially attract the dynamics [29]. In
either case the trajectories of the system are

s(t) = s0 + SetJS−1[s(0) − s0], (20)

and the distance of s(t) from the invariant subspace

d(s(t),Einv) = ‖Sx⊥(t)‖, (21)

where x⊥(t) = ∑
� 	∈I E�(t)�γ�

(x(0)). Equation (18) also
shows that any eigenvalue with zero real part cannot have
a nontrivial Jordan block as the dynamics would become
unbounded otherwise. Thus the geometric and algebraic
multiplicities of eigenvalues with zero real part must agree.
Moreover, the eigenvalues of the (real) matrix A occur in
complex conjugate pairs γ = α ± iβ. Thus, if A has a pair of
eigenvalues ±iα with multiplicity k, then the center manifold
(as a subset of RN2−1) is at least 2k dimensional. Finally, as a
unique steady state cannot be a center, it follows that if A has
purely imaginary eigenvalues, then it must also have at least
one zero eigenvalue, and there will be a manifold of steady
states, all of which are centers. The properties of the invariant
set are nicely illustrated by the following example.
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Consider a four-level system with ρ̇(t) = −i[H,ρ] +
D[V ]ρ, where

H =
√

5

15

⎡
⎢⎢⎢⎣

6 2 1 −2

2 −6 2 1

1 2 2 6

−2 1 6 −2

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎣

1 −2 −1 1

1 −1 −1 0

0 −1 0 1

1 −1 −1 0

⎤
⎥⎥⎥⎦ .

V is indecomposable and has two proper and two generalized
eigenvectors with eigenvalue 0. Let H0 be the subspace of H
spanned by the proper eigenvectors. H is block-diagonal with
respect to a suitable orthonormal basis of H0 ⊕ H⊥

0 , and there
is a 1D manifold of steady states

ρc(a)

= 1

10

⎡
⎢⎢⎢⎣

3 − 20 a −5 a + 1 2 − 15 a −5 a + 1

−5 a + 1 10 a + 2 −15 a − 1 10 a + 2

2 − 15 a −15 a − 1 3 −15 a − 1

−5 a + 1 10 a + 2 −15 a − 1 10 a + 2

⎤
⎥⎥⎥⎦ ,

where a ∈
√

5
15 [−1,1]. We can verify that the Bloch matrix A

has a pair of purely imaginary eigenvalues ±2i in addition to
a 0 eigenvalue and that the invariant set Einv consists of all
density matrices with support on the subspace H0 spanned by
the proper eigenvectors of V defined above. In terms of the
corresponding Bloch vectors the invariant set corresponds to
the intersection of a three-dimensional invariant subspace of
R15 with DR(H). This subspace is what we refer to as the
“face” at the boundary, although note that this face is in fact
homeomorphic to the 3D Bloch ball in this case. Figure 4(a)
shows that all trajectories converge to Einv, but Fig. 4(b) shows
that the trajectories do not converge to steady states (except
for a set of measure zero). Rather, states starting outside the
invariant set converge to paths in Einv, which in this example
are circular closed loops. It is also important to note that most
initial states, even initially pure states, converge to mixed
states (with lower purity) with support on the invariant set
[see Fig. 4(c)].

Although this example may seem rather artificial the proper-
ties of the invariant set and the convergence behavior illustrated
here are relevant for real physical systems. One important class
of physical systems with nontrivial invariant sets are those
that possess (nontrivial) decoherence-free subspaces (DFS).
By nontrivial we mean here that Einv or the DFS consists of
more than one point. A DFS HDFS is generally defined to be
a subspace of the Hilbert space H that is invariant under the
dynamics and on which we have unitary evolution. In general
this means that LD(ρ) = 0 if supp(ρ) ⊂ HDFS. Thus there
should exist a Hamiltonian H and Lindblad operators Vk such
that H |ψ〉 ∈ HDFS for any |ψ〉 ∈ HDFS and

∑
k D[Vk]ρ = 0

for any ρ with supp(ρ) ⊂ HDFS. We must be careful, however,
because the decomposition of LD is not unique and the
Lindblad terms can contribute to the Hamiltonian as we
have already seen above, so the effective Hamiltonian on the
subspace may not be the same as the system Hamiltonian
without the bath.

Proposition 5. If a system governed by a LME has a DFS,
then HDFS ⊂ supp(Einv) and any state ρ with supp(ρ) ⊂ HDFS

belongs to Einv.
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FIG. 4. (Color online) Semilogarithmic plots of (a) the distance of
s(t) from the invariant set Einv, (b) the distance from the set of steady
states, and (c) the purity ‖s(t)‖ as a function of time for 50 trajectories
starting with 50 random initial states s0. (a) All of the trajectories
converge to the invariant set at a constant rate, indicating exponential
decay to the invariant set, but the distances of the trajectories from
the smaller set of steady states Ess ⊂ Einv in (b) do not decrease
to zero; rather they converge to different limiting values, consistent
with convergence of each trajectory to a different limit cycle inside the
invariant set. As expected considering that the set of steady states Ess

is a measure-zero subset of Einv, the limiting values of the distances
are strictly positive, i.e., none of the 50 trajectories converges to a
steady state. (c) The trajectories converge to various mixed states.
All limiting values are far below 1

2

√
3, the limiting value for a pure

state, i.e., none of the 50 trajectories converges to a pure state, again
as expected, as the set of pure states in Einv is a measure zero subset.
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Proof. If HDFS is a proper subspace of H, then
the states with support on it correspond to a face F

at the boundary of the state space of Bloch vectors
or positive unit-trace operators ρ. As HDFS is an in-
variant subspace of H, the face F must be invariant
under the dynamics, i.e., A s + c ∈ F for any s ∈ F , and thus
the face F must contain a steady state sss with A sss + c = 0.
Moreover, there exists a subspace S of RN2−1 such that for
any s ∈ F we have s = sss + v with v ∈ S. Let AH and AD

be the Bloch operators associated with the Hamiltonian H

and dissipative dynamics. We can take AH and AD to be the
antisymmetric and symmetric parts of A, respectively. If ρ is a
state with support on HDFS, then its Bloch vector s must satisfy

A s + c = A sss + A v + c = A v

= (AH + AD)v = AH v

for all v ∈ S. Due to the invariance property we have AH v ∈ S

and as AH is a real antisymmetric matrix, it has purely
imaginary eigenvalues. This shows that v must be a linear
combination of eigenvectors of A with purely imaginary
eigenvalues, i.e., v ∈ Ecc and s ∈ Einv. �

There are many examples of systems that have
decoherence-free subspaces. For instance, in the example
above we can verify that H0 is a DFS as H0 is invariant
under the Hamiltonian dynamics and for any ρ with support
on H0 we have trivially D[V ]ρ = 0 as H0 is the subspace of
H spanned by the two (nonorthogonal) eigenvectors of V with
eigenvalue 0. Hence, ρ = ∑

k=1,2 wk|ψk〉〈ψk| and V |ψk〉 = 0
for k = 1,2 implies

V |ψk〉〈ψk|V † = V †V |ψk〉〈ψk| = |ψk〉〈ψk|V †V = 0

and thus D(V )ρ = 0.
A simpler, more physical example is a three-level � system

with decay of the excited state |2〉 given by the LME with H =
diag(0,1,0) and V1 = |1〉〈2|, V2 = |3〉〈2|. The system has a
DFS spanned by the stable ground statesHDFS = span{|1〉,|3〉}
as we clearly have V1|1〉 = V1|3〉 = 0 and V2|1〉 = V2|3〉 = 0
and thus V1|ψ〉 = V2|ψ〉 = 0 for all ψ = α|1〉 + β|3〉 and thus
D[V1]ρ = D[V2]ρ = 0 for any

ρ = w1|ψ1〉〈ψ1| + w2|ψ2〉〈ψ2|, |ψk〉 ∈ HDFS, (22)

for k = 1,2, and HDFS is invariant under the Hamiltonian
H . In this case it is easy to check that the corresponding
invariant set Einv is precisely the face F at the boundary
corresponding to density operators of the form (22). In fact, as
the Hamiltonian is trivial onHDFS, all of the states with support
on HDFS are actually steady states, i.e., Einv = Ess. This would
no longer be the case if we changed the Hamiltonian to
H ′ = |1〉〈3| + |3〉〈1|, for instance, but Einv would still be an
invariant set. The requirement that HDFS be invariant under
the Hamiltonian dynamics is very important. If we change
the Hamiltonian above to H ′′ = |1〉〈2| + |2〉〈1|, for example,
then the system no longer has a DFS. In fact, it is easy to
check that the invariant set collapses to a single point, here
Einv = Ess = {|3〉〈3|}. Other choices of the Hamiltonian will
result in different steady states. As the states with support on a
DFS must be contained in the invariant set Einv, only systems
with nontrivial Einv admit DFS’s.

FIG. 5. Two atoms in separated cavities connected into a closed
loop through optical fibers. The off-resonant driving field A generates
an effective Hamiltonian Heff = Z1Z2. Atom 1 is also driven by a
resonant laser field generating a local Hamiltonian X1. In the time
scale we are interested in, only atom 1 experiences spontaneous decay.

Another example are two spins subject to the LME

ρ̇ = −iα[Z1Z2,ρ] + γ1D[σ1]ρ,

where σk is the decay operator for spin k and Zk = σkσ
†
k −

σ
†
k σk . Here we have an effective Ising interaction term and

a decay term for the first spin. This model might describe
an electron spin weakly coupled to stable a nuclear spin. The
same model was derived for two atoms in separate cavities con-
nected by optical fibers (Fig. 5) in the large-detuning regime
[30,31]. In the latter case we could achieve γ2 � γ1 by
choosing different Q factors for the two cavities so that on
certain time scale that one atom experiences spontaneous
decay while the other does not. For a system of this type
the Hilbert space has a natural tensor product structure H =
H1 ⊗ H2 and we immediately expect the invariant set to be
{ρ = |0〉1〈0|1 ⊗ ρ2} as subsystem 2 is clearly unaffected by
dissipation, D[σ1](ρ1 ⊗ ρ2) = (D[σ1]ρ1) ⊗ ρ2. It is easy to
see that H is invariant on Einv, and the states |0〉 ⊗ |ψ〉 with
|ψ〉 ∈ H2 also form a DFS. However, if atom 1 is driven by a
resonant laser field �, then the Lindblad dynamics become

ρ̇ = −iα[Z1Z2,ρ] − i�[X1,ρ] + γ1D[σ1]ρ

and the DFS disappears. The system still has a 1D manifold
of steady states but the Bloch superoperator A no longer
has purely imaginary eigenvalues ±iγ with γ > 0, i.e.,
the invariant set collapses to the 1D manifold of steady
states.

VI. CONCLUSION

We have theoretically investigated the convex set of the
steady states and the invariant set of the Lindblad master
equation, derived several sufficient conditions for the existence
of a unique steady state, and applied these to different
physical systems. One interesting result is that if one Lindblad
term corresponds to an annihilation operator of the system,
then the stationary state is unique. Another useful result is
that a composite system has a unique steady state if the
Lindblad equation contains dissipation terms corresponding
to annihilation operators for each subsystem. In both cases
the result still holds if other dissipation terms are present, and
regardless of the Hamiltonian. We also show that uniqueness
implies asymptotic stability of the steady state and hence
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global attractivity. On the other hand, if there are at least
two steady states, then there is a convex set of steady
states, none of which are asymptotically stable. Furthermore,
in this case even convergence to a steady state is not
guaranteed as there can be a larger invariant set surround-
ing the steady states, corresponding to the center manifold
generated by the eigenspaces of the Bloch superoperator
A with purely imaginary eigenvalues. The invariant set is
closely related to decoherence-free subspaces; in particular,
any state ρ with support on a DFS belongs to the invariant
set.

This characterization of the set of steady states and the
invariant set can be used to stabilize desired states using
Hamiltonian and reservoir engineering, and we illustate how
in principle any state, pure or mixed, can be stabilized this
way. This can be extended to engineering decoherence-free
subspaces. The latter are naturally attractive but attractivity
of a subspace is a weak property in that almost all initial
states will generally converge to mixed state trajectories with
support on the subspace, not stationary pure states. One
possibility of implementing such reservoir engineering is via
direct feedback, e.g., by homodyne detection, which yields a
feedback-modified master equation [11] with Lindblad terms
depending on the measurement and feedback Hamiltonians.
This dependence shows that feedback can change the reservoir
operators, and we have shown that in the absence of restrictions
on the control, measurement, and feedback operators, any
state can be rendered asymptotically stable by means of direct
feedback. It will be interesting to consider what states can
be stabilized, for example, given a restricted set of available
measurements and control and feedback Hamiltonians for
specific physical models.
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APPENDIX A: EXISTENCE OF STEADY STATES

We can use Brouwer’s fixed point theorem and Cantor’s
intersection theorem to prove that any dynamical system whose
flow is a continuous map φt from a disk Dn to itself must
have a fixed point, and the assumption that the domain is the
disk Dn can be relaxed to any simple-connected compact set.
Specifically, we have:

Theorem 3. Let ẋ = f (x) be a dynamical system with a
flow φt from a simply connected compact set D to itself. If φt

is continuous, then there exists a fixed point.
Proof. For any given T > 0, φT : D → D is a continuous

map from D to itself. Applying Brouwer’s fixed point theorem,
there exists at least one fixed point. Denote the set of fixed
points as ST and observe that as a closed subset of a compact
set ST is compact. Similarly, we can find the set of fixed
points ST/2 for φT/2, which is also compact and satisfies

S t
2

⊂ ST as a fixed point of φT/2 is also a fixed point of
φT . By iterating this procedure we can construct a sequence
of nonempty compact netting sets {ST/2k } : · · · ⊂ ST/2k ⊂
ST/2k−1 ⊂ · · · ST

2
⊂ ST . By Cantor’s intersection theorem, the

intersection of {ST/2k } is nonempty. Let x0 be one of the
points in the intersection. Then for any T ′ = nT/2k , we have
φT ′(x0) = x0. Since such T ′ is dense for [0, + ∞) and φt a
continuous flow, we know that for any time t , φt (x0) = x0, i.e.,
x0 is a fixed of the dynamical system. �

Since the set of physical states is a compact simply
connected set and the master equation clearly continuous, we
can conclude that any system governed by a Lindblad master
equation has a physical stationary state.

APPENDIX B: EXTREMAL POINTS OF CONVEX SET
OF STEADY STATES

Lemma 1. If ρs = sρ0 + (1 − s)ρ1 is a convex combination
of the positive operators ρ0, ρ1 with 0 < s < 1, then rankρs

is constant and the support of ρ0 and ρ1 is contained in the
support of ρs .

Proof. If rank(ρs) = k, then there exists a basis such that
ρs = diag(r1, . . . ,rk,0, . . .) with r� � 0 and

∑k
�=1 rk = 1, i.e.,

the last N − k rows and columns of ρs are 0. Since ρ0 and
ρ1 are positive operators and s > 0, this is possible only if
the last N − k rows and columns of ρ0 and ρ1 are zero, and
thus the support of ρ0 and ρ1 is contained in the support of ρs .
Furthermore, the rank of all ρs on the open line segment 0 <

s < 1 must be the same. If there were two intermediate points
with rank(ρs) < rank(ρt ) and 0 < s < t < 1, then the support
of ρ0 and ρt would have to be contained in the support of ρs

by the previous argument, which is impossible as rank(ρs) <

rank(ρt ). Similarly, for 0 < t < s < 1. �
Theorem 4. Let Hs be the smallest subspace of H that

contains the support of all steady states. There exist a finite
number of extremal steady states ρk such that Ess is the convex
hull of {ρk} and Hs = ⊕ksupp(ρk).

Proof. We know that a convex set is the convex hull of
its extremal points but there may be many extremal points
with nonorthogonal supports. Thus, what we need to show
is that we can always choose a subset of the extremal points
with mutually orthogonal supports that generates the entire
convex set of steady states. Given two extremal steady states
ρ1, ρ2, either supp(ρ1) ⊥ supp(ρ2), or we can find another
steady state ρ3 with supp(ρ2) ⊂ supp(ρ1) + supp(ρ2) such that
supp(ρ1) ⊥ supp(ρ3). Assuming we have already constructed
H0 = ⊕k−1

� supp(ρ�) with supp(ρ�) mutually orthogonal, let
ρk be another extremal point with supp(ρk) not included in
H0 and define H1 = H0 + supp(ρk). By connecting ρk and a
fixed point with full rank in H0, we can find another steady
state with full rank in H1. So H1 is an invariant subspace
under the dynamics on H. Therefore, in the following, we
will restrict the dynamics H and Vk on the subspace H1.
Define P to be the projection operator of H0 and P ⊥ to
be the orthogonal projection operator of P with respect to
H1. In the block-diagonal diagonal form with respect to P

and P ⊥,

ρk =
[

ρ11 ρ12

ρ21 ρ22

]
, H =

[
H11 H12

H21 H22

]
, V =

[
V11 V12

V21 V22

]
,
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where without loss of generality we only consider one
Lindblad term. Since H0 is an invariant subspace under the
dynamics, we have

0 = V21 (B1a)

0 = −1

2

∑
j

V
†

11V12 + iH12. (B1b)

For a steady state ρk , we have 0 = ρ̇ = −i[H,ρk] +
D[V ]ρ. Since ρk is an extremal point, ρ22 has full rank.
Moreover, as ρk is stationary in H1, it is also stationary
restricted to a subspace P ⊥H1, which means

0 = −i[H22,ρ22] + D[V22]ρ22.

Substituting this as well as (B1) into ρ̇22 = 0, we find

ρ22V
†

12V12 + V
†

12V12ρ22 = 0,

which means V12 = 0 since ρ22 has full rank. Together with
(B1) we have [H,P ] = [V,P ] = 0. Hence P ⊥H1 is also
an invariant space under the dynamics restricted on H1.
Combining the condition that H1 is an invariant subspace
under the dynamics on H, we conclude that P ⊥H1 is also
an invariant subspace under the dynamics on H. There must
exist an extremal fixed point ρ̄k in P ⊥H1 with support
orthogonal to H0. We have H̄1 = H0 ⊕ supp(ρ̄k). Continuing
this process until all fixed points are included in ⊕ksupp(ρk),
we finally obtain Hs = ⊕ksupp(ρk). This construction can be
completed in a finite number of steps as the dimension of Hs is
finite. �

APPENDIX C: PROOF OF “NO ISOLATED
CENTERS” THEOREM

Suppose A has a pair of purely imaginary eigenval-
ues ±iα. Let e be an eigenvector of A corresponding to
the eigenvalue +iα with α > 0, i.e., Ltot (e) = A e = iαe. In
the Schrödinger picture, we have et Ae = eiαte. Let E be the
operator, corresponding to e, in the adjoint operator space,
with L†

tot (E) = iαE. In the Heisenberg picture, the adjoint
dynamics gives E(t) = eiαtE, and E(t)†E(t) = E†E, with
E†E always positive. We can scale E such that ‖E†E‖∞ = 1.
Thus, E†E is a positive matrix with maximum eigenvalue
λmax = 1 and |φ0〉 as the associated eigenvector. Hence,
we have E†E|φ0〉 = |φ0〉 and Tr(E†Eρ0) = Tr(λmaxρ0) = 1,
where ρ0 = |φ0〉〈φ0|. Let us consider in the Schrödinger
picture, the evolution of ρ(t) with initial state ρ(0) = ρ0. We
define the average state

ρ̄(T ) = 1

T

∫ T

0
ρ(t) dt. (C1)

Setting D = E†E, switching between the Schrödinger and
Heisenberg picture, and using the Kadison inequality D(t) �
E(t)†E(t), we obtain

Tr(ρ̄D) = 1

T

∫ T

0
Tr[ρ(t)D] dt

= 1

T

∫ T

0
Tr[ρD(t)] dt

� 1

T

∫ T

0
Tr[ρ0E(t)†E(t)] dt

= 1

T

∫ T

0
Tr[ρ0E

†E] dt

= Tr(ρ0E
†E) = ‖E†E‖∞ = 1.

On the other hand, we have Tr(ρ̄E†E) � 1 and thus
Tr(ρ̄E†E) = 1.

If the unique steady state ρss is in the interior of the convex
set of physical states, i.e., ρss has full rank, then ρ̄ must have
full rank for sufficiently large T as well, and this is possible
only if E†E = I, i.e., E is unitary. Next we calculate the term
E†L†

tot (E). From the evolution:

L†
tot (E) = [iH,E] +

∑
j

[
V

†
j EVj − 1

2
(EV

†
j Vj + V

†
j VjE)

]
,

we have

E†L†
tot (E) = E†[iH,E]

+
∑

j

(
E†V †

j EVj − 1

2
V

†
j Vj − 1

2
E†V †

j VjE

)
.

(C2)

Since E is unitary, we have E†L†
tot (E) = E†iαE = iαI .

Taking the trace at both sides in (C2),∑
j

Tr(E†V †
j EVj ) = 1

2

∑
j

[Tr(E†EV
†
j Vj ) + Tr(E†V †

j VjE)]

+ iαN

On the other hand, by Cauchy Schwartz inequality,∣∣∣∣∣
∑

j

Tr(E†V †
j EVj )

∣∣∣∣∣ �
∑

j

|Tr((E†V †
j E)(Vj ))|

�
∑

j

√
Tr(E†V †

j EE†VjE)
√

Tr(V †
j Vj )

�
∑

j

1

2
[Tr(E†V †

j VjE) + Tr(V †
j Vj )].

Therefore, we must have α = 0, which contradicts the initial
assumption that α > 0.

When the unique steady state is a mixed state at the
boundary with 1 < rank(ρss) < N , then we can partition
the Hilbert space H = H1 ⊕ H2 such that ρss vanishes
on H2. It has been shown that in this case all solutions
are attracted to states with support on H1. Thus, we can
restrict the dynamics to H1, i.e., the support of ρss, and the
same arguments as above imply that E†E must equal the
identity on the H1 subspace, E†E|H1 = IH1 , which leads to a
contradiction.

If the unique fixed point ρss happens to be a pure state at the
boundary, then it is easy to see that there cannot be any loop
paths, because the state ρ̄ averaged over one period would have
to equal the stationary state ρss, which is not possible because
a rank 1 projector cannot be written as a linear combination of
other states.
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Moreover, if sss is a center that belongs to a face
F in the boundary, then the entire center manifold it
belongs to must be contained in F as otherwise there

would be loop planes intersecting the boundary and phys-
ical states evolving into nonphysical states, which is
forbidden.
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