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Zeno physics in ultrastrong-coupling circuit QED
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We study the Zeno and anti-Zeno effects in a superconducting qubit interacting strongly and ultrastrongly with
a microwave resonator. Using a model of a frequently measured two-level system interacting with a quantized
mode, we predict different behaviors and total control of the Zeno times depending on whether the rotating-wave
approximation can be applied in the Jaynes-Cummings model. As an example, we show the dependence of our
results with the properties of the initial field states.
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I. INTRODUCTION

Frequent measurements of a quantum-mechanical system
may cause its evolution to change, slow down, or even freeze.
This phenomenon, known as the quantum Zeno effect [1,2],
implies in particular that an atom that is being periodically
or continuously monitored cannot decay or it will decay at
a slower rate. This suppression of spontaneous emission was
first observed in trapped ion experiments [3], followed by
observations in the suppression of Rabi oscillations in cavity
QED [4], and the decay of ultracold atoms [5]; it has been
studied in association with photodetection in circuit QED [6].

Far from being just an interesting consequence of quantum
mechanics, Zeno physics is also a useful tool in quantum
control: it can be used to protect quantum information in
certain subspaces [7], to suppress decoherence during quantum
gates [8], or even as a means of doing efficient quantum search
[9]. Interestingly, it has also been shown that frequent measure-
ments can produce the opposite effect [10,11], enhancing the
decay of a quantum system in what is known as the anti-Zeno
effect. This other possibility has potential applications for
cooling [12] and has been experimentally demonstrated [13].

Superconducting circuits are good candidates for studying
Zeno physics [14]. The equivalent of an atom interacting
with the electromagnetic field in free space or in a cavity
[3] is replaced by a superconducting qubit interacting with
an open or closed microwave transmission line [15]. By
monitoring the state of the qubit or of the cavity, one
expects to have the possibility of freezing or accelerating
the evolution. To our advantage, the time scales involved
in the circuit QED dynamics and its measurements are
now much larger as compared to the optical domain and
can be resolved with ordinary electronics. Furthermore, all
energy scales of related experiments, including couplings
and qubit and resonator frequencies, can be engineered and
tuned at will. This opens the possibility of reaching the
ultrastrong-coupling regime [16–19], where the rotating-wave
approximation (RWA) breaks down and the system cannot be
described by Jaynes-Cummings dynamics [20].

The goal of this work is indeed to study the Zeno physics in
the qubit-cavity coupling of circuit QED with and without
the RWA, that is, in the strong- and ultrastrong-coupling
regimes. We do it by using the model of a two-level system
of frequency ω0 interacting with a single-mode harmonic

oscillator of frequency ω and assuming periodic measurements
of the qubit with intervals δt. We show the two possible
regimes. First is the case where the measurement is faster than
the vacuum Rabi coupling g of the combined qubit-resonator
system, but slower than the qubit and resonator frequencies:
g � (δt)−1 � {ω,ω0}. Here, the RWA is valid and we recover
the usual slowdown of the qubit decay. Second is the case
where the qubit is measured more rapidly than any existing
energy scale, (δt)−1 � {g,ω,ω0}. Here, the RWA breaks down
and we can observe both an enhancement of the Zeno or even
an anti-Zeno effect, in which the decay of the excited state is
accelerated with respect to the RWA case.

The structure of the paper is as follows. We introduce the
model of a qubit interacting with a single-mode resonator
and derive the evolution of the system under repeated
measurements. It is shown that fast enough measurements
induce an evolution of the qubit population that is well
approximated by an exponential decay, a trace of the Zeno
physics. The rate of the effective decay is shown to be different
for a model that follows the RWA from one that does not.
We discuss the conditions for these differences and explore
their consequences using coherent and squeezed states, both
analytically and numerically. Finally, we suggest realistic
implementations of the proposed ideas in current setups of
quantum circuit technologies.

II. SURVIVAL PROBABILITY AND ZENO EFFECT

Let us consider the dynamics of a two-level system, |g〉
and |e〉, separated by a gap ω0 and coupled to a harmonic
oscillator of frequency ω. The whole system models a super-
conducting circuit coupled to a high-Q microwave resonator
and corresponds to the Hamiltonian (h̄ = 1)

H = gr(σ+a + σ−a†) + gb(σ+a† + σ−a) + ωa†a + ω0

2
σz.

(1)

The couplings associated with the co-rotating Jaynes-
Cummings (denoted by a subscript r for red) and counter-
rotating anti-Jaynes-Cummings (denoted by a subscript b for
blue) are equal (g = gr = gb), but we express them separately
to trace their physical consequences. It is known that when ω

and ω0 are much larger than the coupling strength g, the RWA
applies and formally gb = 0, yielding the Jaynes-Cummings
model [20].
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We focus on the survival probability, Pe(t): the probability
of preparing the two-level system in a given state, say |e〉,
and finding it unaltered at a given time t . Consider a system
described by a qubit in an excited state and the cavity in an
arbitrary state ρf ; that is, ρ(0) = |e〉〈e| ⊗ ρf . The survival
probability of this excited state at the first measurement is a
function of time,

Pe(t) = Tr[ρ(t)|e〉〈e|]
= Tr[e−iH tρ(0)eiHt |e〉〈e|]

= Tr

[ ∞∑
n=0

(−it)n

n!
[H,ρ(0)]n |e〉〈e|

]
, (2)

where [H,ρ(0)]n := [H,[H, . . . [H,ρ(0)]]] comes from the
Baker-Campbell-Hausdorff formula.

The short-time dynamics can be determined by the lowest-
order nonvanishing contribution in the previous sum. It can
be shown that the linear term, O(t), vanishes for arbitrary
initial atomic states. Therefore, the survival probability for
short times decays at most quadratically,

Pe(t) ≈ 1 −
(

t

τZ

)2

, (3)

with a scale τZ known as the “Zeno time” [21]. If instead of
performing just one measurement, one asks for the repeated
survival probability Pe,N (Nδt), where N measurements at
regular intervals δt were made, the result is no longer a
quadratic but rather the exponential decay [22]

Pe,N (t = Nδt) =
[

1 −
(

δt

τZ

)2
]N

≈ e−γeff t . (4)

The effective decay rate, γeff, and resulting lifetime, τeff ,
depend on the Zeno time

γeff = 1/τeff = δt/τ 2
Z, (5)

and for frequent enough measurements, we observe an effec-
tive freezing of the dynamics of the measured system, the
proper quantum Zeno effect [1].

The previous general considerations can be particularized
for the Hamiltonian (1) to obtain the Zeno time:

τ−2
Z = g2

r 〈aa†〉ρf
+ g2

b〈a†a〉ρf
+ grgb〈a2 + a†2〉ρf

, (6)

where the expectation values 〈X〉ρf
= Trf[ρf X] are taken over

the initial state ρf . Let us note that the Zeno time and the
resulting decay rate are very sensitive not only to the initial
field states, ρf , but also to the precise form of the Hamiltonian.
If the RWA is valid (gb = 0), we obtain that the time depends
on the total number of photons, τ−2

Z ∝ 〈a†a〉 + 1, while in
the ultrastrong-coupling regime it also involves other field
quadrature momenta, 〈(a + a†)2〉.

The previous derivations are valid only under certain
restrictions. In particular, the interval between measurements
has to be short so that we can replace the polynomial expression
in (4) with an exponential. This can be done if the time δt

is much shorter than the relevant periods. In the case of a
strong-coupling regime with RWA, we only require that this
time period be shorter than the Rabi frequency, that is, about

δt � 1/g. However, for ultrastrong couplings in which the
RWA does not apply, we must impose faster measurements:
δt � {1/ω,1/g}.

It is also important to note that the Zeno time (6), and
thus the effective decay rate (5), depends only on the initial
field state ρf , which is assumed constant. We may confirm
this by performing a similar calculation as before. After N

observations of the internal state of the two-level system at
every δt , the field state is

ρ
(N)
f ≈ ρ

(N−1)
f + (−iδt)2

2!
Trs

[
H,

[
H,ρ

(N−1)
f ⊗ |e〉〈e|]],

where Trs denotes the trace over the two-level system. By
measuring the internal state of the two-level system and
restricting ourselves to the survival probability, the field state is
also frozen; that is, the initial field state after each measurement
is the initial field state plus some higher-order corrections, as
confirmed by the numerics.

III. DIFFERENT INITIAL STATES

Let us now study the changes in the Zeno effect that
depend on the initial resonator state, as well as the extent
of the differences between RWA and non-RWA models. We
begin with the Fock state, which has a well-defined number of
photons, |n〉, and gives an effective decay rate

(γeff)n = δt
[
g2

r (n + 1) + g2
bn

]
(7)

that gives a difference of about a factor of 2 between the RWA
and the non-RWA results.

Much more interesting is the case when the field is assumed
to be in a coherent state |α〉 [23,24], with mean photon number
n̄ and a phase θ ; that is, α = n̄1/2eiθ . The effective decay rate
becomes

(γeff)α = δt
[
g2

r (1 + |α|2) + g2
b |α|2 + 2grgb|α|2 cos 2θ

]
. (8)

Out of the two experimentally accessible regimes, we then
have that

(γeff)α = δtg2(1 + 4|α|2 cos2 θ ), (9)(
γ RWA

eff

)
α

= δtg2(1 + |α|2). (10)

Note that the Zeno effect becomes sensitive to the phase of the
coherent state only when the RWA is not applied.

Finally, we consider a field initially in a vacuum squeezed
state, |ψξ 〉; that is,

|ψξ 〉 = e
1
2 (ξ∗a2−ξa†2)|0〉, (11)

where ξ = reiθ is the squeezing parameter. The decay rates,
beyond and within the RWA, now become

(γeff)ξ = δt g2 (cosh 2r − cos θ sinh 2r) , (12)(
γ RWA

eff

)
ξ

= δt g2(cosh r)2. (13)

We have found that, for coherent and squeezed states,
the decay rate depends on the field phase. This dependence
is enhanced in the non-RWA regime, which allows us total
control of the decay rate. In the case of coherent states, we can
make the decay rate independent of the number of photons.
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FIG. 1. (Color online) Zeno effect in the strong-coupling regime,
g/ω = 0.05, for an initial state with an excited qubit and the resonator
in a coherent state, |e〉 ⊗ |α〉, with |α|2 = 9 photons on average.
The solid line is a plot of the collapses and revivals under free
evolution in the RWA. The remaining lines correspond to the survival
probability of the excited state under periodic measurements of the
qubit, repeated at intervals of δt = 0.01πg−1. If the RWA is applied,
the usual Zeno time is obtained [dashed (red) line]. If the RWA is not
applied, we can either slow down the decay, setting the phase of the
coherent state to θ = π/2 [dash-dotted (green) line] or increasing it to
θ = 0 [dotted (blue) line]. For sufficiently fast measurements, these
numerical results and those obtained from the analytical expressions
(9) and (10) are practically the same.

In the case of squeezed states, we can change the way the
decay rate depends on the squeezing, r: for the RWA or for
θ = π/2 the Zeno decay increases as 1 + r2, while for other
values of θ we may achieve γeff = 0 or make it decrease
with the squeezing parameter as 1 − 2r if θ = 0. We may
regard the latter as an example of the quantum Zeno effect
and the former as an example of the so-called anti-Zeno effect,
where the dynamics of the system is accelerated rather than
slowed down by frequent measurements. Note that this is an
acceleration with respect to the RWA result, not the natural
decay rate, since the system is not unstable. The transition
from Zeno to anti-Zeno regimes in truly unstable systems is
discussed in Ref. [25]. A possible definition of the Zeno and
anti-Zeno time scales in oscillatory systems (not unstable) is
given in Ref. [22].

The previous results can be numerically verified in both
strong- and ultrastrong-coupling regimes. In Fig. 1 we plot
the evolution of a qubit-resonator system in which the
coupling strength is small enough to satisfy the RWA in
the free-evolution case, g = 0.05ω with ω = ω0. Beginning
with a coherent state in the field and an excited state in the
qubit, the results are collapses and revivals of the excited-
state population, a phenomenon that can be described with
the Hamiltonian (1) with gb = 0. However, if we perform
measurements with a periodicity δt = 0.2πω−1 = 0.01πg−1,

we observe that the survival probability of the excited state
follows an exponential law (4) with a decay rate that is not the
one given by the RWA [dashed (red) line] but rather the one in
Eq. (9). In particular, the decay rate can be enhanced, by setting
the resonator in a coherent state with θ = 0, or decreased, by
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FIG. 2. (Color online) Zeno effect in the ultrastrong-coupling
regime, when g, ω, ω0 = 1 GHz. (top) Free evolution of the excited-
state population in the qubit and (bottom) survival probability of the
excited state for periodic measurements with δt = 0.1ω−1 = 0.1 ns
(each symbol represents a measurement). The inset shows the
comparison between both plots. The solid line corresponds to an
RWA model [solid (black) circles], while the other lines start from
a coherent state with 9 photons and either θ = 0 [dashed line with
solid (blue) squares] or θ = π/2 [dash-dotted line with solid (red)
triangles].

choosing θ = π/2. A similar result is observed for ultrastrong
couplings, g = ω = ω0, as in Fig. 2.

IV. EXPERIMENTAL IMPLEMENTATION

The main question that arises when looking for an experi-
mental implementation of the previous ideas is how to achieve
the regime of fast repeated measurements in superconducting
circuits. As discussed before, we need to probe both a regime
in which the time interval δt is much smaller than the vacuum
Rabi period but the RWA remains valid, and a regime in which
the measurements take place much faster than any other time
scale of our system. Given that current measurement devices,
such as superconducting quantum interference devices, need
nanoseconds to operate, we would have to relax all energy
scales, ω, ω0, and g, and risk being affected by thermal fluc-
tuations. However, this is not inconceivable because we could
design an experiment near the largest frequency, ω = 2π ×
200 MHz, which gives a vacuum Rabi period of about 5 ns. The
cavity is then populated by an average of two thermal photons,
but the features of the Zeno effect should remain visible.

Another possibility is to work in a framework of continuous
measurements, such as in fluorescence experiments with
trapped ions [3]. In that case, we suggest the use of a resonator
interacting with a phase qubit [26] whose excited state |e〉 may
decay into the continuum at a rate � (see Fig. 3). By studying
the repeated survival probability of the qubit ground state,
we should also observe a Zeno effect, where the incoherent
decay plays the role of a continuous measurement. According
to Refs. [27,28], the decay channel of the qubit excited level
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FIG. 3. A phase qubit can be used to explore the Zeno effect:
the escape rate of the unstable level |e〉 is equivalent to a continuous
measurement of that state.

gives an effective measurement interval δt = 4/�. By con-
tinuously monitoring whether the phase qubit switches to a
voltage state, we are able to determine the survival probability
of the ground state. The phenomenology should be equivalent
to the previous cases, with the advantage that now ω can be
larger, of the order of gigahertz, due to the flexibility in tuning
the decay rate �.

Arguably, the most promising setup would consist of a
superconducting qubit interacting via a tunable coupling with
the microwave resonator [29]. By controlling the interaction
we should be able not only to choose between strong and
ultrastrong couplings but also to completely deactivate the
interaction for brief periods of time in order to measure
the system. This switching on and off can be done with
subnanosecond resolution, allowing us to reach the regime
δt � {1/ω,1/ω0,1/g}, and the whole system should behave

just as if we were able to instantaneously monitor the
superconducting qubit.

V. CONCLUSION

Summing up, in this work we have shown the difference
in the Zeno dynamics between a quantum optical system that
obeys the rotating-wave approximation and one that does not.
In the RWA case, the Zeno effect only depends on the total
number of photons of the electromagnetic field that interacts
with the monitored qubit. In the non-RWA case, the Zeno
decay may be completely suppressed or enhanced (anti-Zeno)
by suitably preparing the phase of a coherent or squeezed
field. Both regimes should be observable in quantum circuits
consisting of a qubit interacting with a high-quality microwave
resonator. Note that, in contrast to previous works [30], the
choice of the physical system makes the discrimination of
RWA versus non-RWA more accessible and also avoids the
subtleties and problems associated with a continuum of modes.
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[4] J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune,

J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 101, 180402
(2008).

[5] E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley,
W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 97, 260402
(2006).

[6] F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Phys.
Rev. A 79, 052115 (2009).

[7] A. Barenco, A. E. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa,
and C. Macchiavello, SIAM J. Comput. 26, 1541 (1997).

[8] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys. Rev.
Lett. 85, 1762 (2000).

[9] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann,
and A. J. Landahl, Phys. Rev. A 66, 032314 (2002).

[10] A. G. Kofman and G. Kurizki, Nature 405, 546 (2000).
[11] K. R. Chapin and M. O. Scully, Nature 452, 705 (2008).
[12] N. Eretz, G. Gordon, M. Nest, and G. Kurizki, Nature 452, 724

(2008).
[13] M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, Phys.

Rev. Lett. 87, 040402 (2001).
[14] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, D. I.

Schuster, and S. M. Girvin, Phys. Rev. A 77, 012112 (2008).
[15] A. Wallraff et al., Nature 431, 162 (2004).
[16] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov Jr., O. Astafiev,

Y. Nakamura, and A. Blais, Phys. Rev. A 80, 032109 (2009).

[17] A. A. Abdumalikov Jr., O. Astafiev, Y. Nakamura, Y. A. Pashkin,
and J. S. Tsai, Phys. Rev. B 78, 180502 (2008).

[18] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke,
M. J. Schwarz, J. J. Garcı́a-Ripoll, D. Zueco, T. Hmmer,
E. Solano, A. Marx, and R. Gross, e-print arXiv:1003.2376.

[19] P. Forn-Dı́az, J. Lisenfeld, D. Marcos, J. J. Garcı́a-Ripoll,
E. Solano, C. J. P. M. Harmans, and J. E. Mooij, e-print
arXiv:1005.1559.

[20] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).

[21] L. Schulman, A. Ranfagni, and D. Mugnai, Phys. Scr. 49, 536
(1994).

[22] P. Facchi and S. Pascazio, in Quantum Zeno and Inverse
Quantum Zeno Effects, Progress in Optics, Vol. 42, edited by
E. Wolf (Elsevier, Amsterdam, 2001), Chap. 3.

[23] D. F. Mundarain and J. Stephany, Phys. Rev. A 73, 042113
(2006).

[24] D. Mundarain, M. Orszag, and J. Stephany, Phys. Rev. A 74,
052107 (2006).

[25] K. Modi and A. Shaji, Phys. Lett. A 368, 215 (2007).
[26] J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. Lett.

55, 1543 (1985).
[27] L. S. Schulman, Phys. Rev. A 57, 1509 (1998).
[28] J. G. Muga, J. Echanobe, A. del Campo, and I. Lizuain, J. Phys.

B 41, 175501 (2008).
[29] B. Peropadre, E. Solano, and J. J. Garcı́a-Ripoll, e-print

arXiv:0912.3456.
[30] H. Zheng, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett. 101,

200404 (2008).

062131-4

http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1088/1751-8113/41/49/493001
http://dx.doi.org/10.1103/PhysRevA.41.2295
http://dx.doi.org/10.1103/PhysRevLett.101.180402
http://dx.doi.org/10.1103/PhysRevLett.101.180402
http://dx.doi.org/10.1103/PhysRevLett.97.260402
http://dx.doi.org/10.1103/PhysRevLett.97.260402
http://dx.doi.org/10.1103/PhysRevA.79.052115
http://dx.doi.org/10.1103/PhysRevA.79.052115
http://dx.doi.org/10.1137/S0097539796302452
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevA.66.032314
http://dx.doi.org/10.1038/35014537
http://dx.doi.org/10.1038/452705a
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1103/PhysRevLett.87.040402
http://dx.doi.org/10.1103/PhysRevLett.87.040402
http://dx.doi.org/10.1103/PhysRevA.77.012112
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevA.80.032109
http://dx.doi.org/10.1103/PhysRevB.78.180502
http://arXiv.org/abs/arXiv:1003.2376
http://arXiv.org/abs/arXiv:1005.1559
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1088/0031-8949/49/5/005
http://dx.doi.org/10.1088/0031-8949/49/5/005
http://dx.doi.org/10.1103/PhysRevA.73.042113
http://dx.doi.org/10.1103/PhysRevA.73.042113
http://dx.doi.org/10.1103/PhysRevA.74.052107
http://dx.doi.org/10.1103/PhysRevA.74.052107
http://dx.doi.org/10.1016/j.physleta.2007.04.010
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevA.57.1509
http://dx.doi.org/10.1088/0953-4075/41/17/175501
http://dx.doi.org/10.1088/0953-4075/41/17/175501
http://arXiv.org/abs/arXiv:0912.3456
http://dx.doi.org/10.1103/PhysRevLett.101.200404
http://dx.doi.org/10.1103/PhysRevLett.101.200404

