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We study the dynamics of pure phase decoherence for a particle hopping around an N -site ring, coupled both
to a spin bath and to an Aharonov-Bohm flux which threads the ring. Analytic results are found for the dynamics
of the influence functional and of the reduced density matrix of the particle, both for initial single wave-packet
states, and for states split initially into two separate wave packets moving at different velocities. We also give
results for the dynamics of the current as a function of time.
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I. INTRODUCTION

The dynamics of phase decoherence is central to our under-
standing of those physical systems whose properties depend
on interference. This is particularly evident when particles are
forced to propagate around closed paths; phase coherence then
makes all physical properties depend on the topology of these
paths [1]. For this reason the quantum dynamics of particles
on rings has been extremely important in our understanding
of quantum phase coherence. Examples at the microscopic
level include the energetics and response to magnetic fields
of molecules [2], as well as charge transfer dynamics in a
vast array of solid-state and biochemical systems. There is
evidence now for coherent transport around ring structures
even in some large biomolecules [3]. At the nanoscopic and
mesoscopic scale many ringlike structures, both conducting
and superconducting [4], show coherent transport around the
rings, along with interesting Aharonov-Bohm-style interfer-
ence phenomena. We also note the importance of closed loop
structures in quantum information processing [5].

The interference around loops in all of these systems is very
sensitive to phase decoherence. Questions about the mecha-
nisms and dynamics of this decoherence are subtle and have led
to major controversies, notably in the discussion of mesoscopic
conductors [6]. A quantitative understanding of decoherence
processes in metallic systems and in superconducting “qubits”
has yet to be attained (in both cases local defect modes
clearly make the major contribution to phase decoherence at
low temperature T [7,8]). These controversies are examples
of a wider problem: typically in solid-state systems, low-T
decoherence rates are far higher in experiments than theoretical
estimates based on the dissipation rates in these systems.

These problems are complex because both decoherence
and dissipation rates depend strongly on which environmental
modes are causing the decoherence [9,10]. Delocalized modes
(electrons, phonons, photons, spin waves, etc.) can typically be
modeled as “oscillator bath” modes [11–13]. In such models,
decoherence goes hand in hand with dissipation [14,15], in
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accordance with the fluctuation-dissipation theorem. However,
localized modes (defects, dislocations, dangling bonds, nu-
clear and paramagnetic impurity spins, etc.), which can be
mapped to a “spin bath” representation of the environment
[9,10], behave quite differently; indeed they often give deco-
herence with almost no dissipation. This is because although
their low characteristic energy scale means they can cause little
dissipation, nevertheless their phase dynamics can be strongly
affected when they couple to some collective coordinate—this
then causes strong decoherence in the dynamics of this
coordinate [10,16]. The fluctuation-dissipation theorem is then
not obeyed [9], and often these localized modes are rather far
from equilibrium.

To understand how such nondissipative decoherence pro-
cesses work, it is then useful to look at models in which the en-
vironment causes pure phase decoherence, with no dissipation.
As noted above, such models become particularly interesting
when the decoherence is acting on systems propagating in
“closed loops.” Models of rings coupled to oscillator baths
have already been studied [17]. However, such models, in
which decoherence is inextricably linked to dissipation, do not
capture the largely nondissipative decoherence processes that
dominate many solids at low T . On the other hand, pure phase
decoherence has been studied in many articles [18–20], but
not, as far as we know, the rather unique phenomena occurring
on a ring.

In this article we study a model which embodies in a simple
way both the “closed path” propagation which is generic to
quantum interference processes and which involves pure phase
decoherence coming from a spin bath. The model describes a
particle propagating around a ring of N discrete sites, while
coupled to a spin bath; we assume hopping between nearest
neighbors. The model becomes particularly interesting if we
also have a flux � threading the ring (see Fig. 1). The spin
bath variables are assumed to be two-level systems (TLS);
these are ubiquitous in solid-state systems and are the main
cause of decoherence at low T in these systems.

One can also study the problem of a continuous ring,
but the discrete model is simpler and is easily related to
diverse problems like quantum walks with phase decoherence
[21,22] or the dynamics of electrons in rings of quantum
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FIG. 1. At left, an eight-site ring with nearest-neighbor hopping
between sites. At right a potential U (R) with eight potential wells
(shown here symmetric under rotations by π/4), depicted as a contour
map (with lower potential shown darker). When truncated to the eight
lowest eigenstates, this is equivalent to the eight-site model.

dots [23]. The Hamiltonian we will study has the general
form

Hφ =
∑
〈ij〉

[
�oc

†
i cj e

i(Ao
ij +
∑

k α
ij

k ·σ k ) + H.c.
]
. (1)

The operator c
†
j creates a particle at site j ; we assume a

single particle only. The phase factors {Ao
ij } result from the

flux � threading the ring. In writing (1), we have assumed a
symmetric ring, with N sites, and assumed that the hopping
matrix elements tij between sites i and j have simplified
to a nearest-neighbour amplitude �o (here

∑
〈ij〉 denotes a

sum over nearest neighbors). This also means we can ignore
any diagonal site energies, since symmetry under rotations by
angles 2π/N means these energies are all the same. The spin
bath variables {σ k} are Pauli spin-1/2 operators for the TLS,
with k = 1,2, . . . ,Ns . We emphasize immediately that these
bath spins are, in real situations, often not spins but instead the
two lowest levels of localized modes in a solid (for example,
as noted above, they could be defects or dangling bonds).

The article is organized as follows. In Sec. II we discuss
the derivation of model Hamiltonians like (1) from more
microscopic models, and the approximations which allow us
to drop other terms that can also appear in the coupling of
a ring particle to a spin bath. In Sec. III we discuss the
dynamics of the particle in the absence of the bath; this
establishes a number of useful mathematical results. In Sec. IV
we show how the dynamics of the reduced density matrix for
the particle is derived in the presence of the bath and give
some results for this dynamics. In Sec. V we analyze the
dynamics of a pair of interfering wave packets moving around
the ring, showing how pure phase decoherence destroys the
interference between them. Finally, in Sec. VI, we summarize
our conclusions—since some of the calculations are quite
extensive, readers may want to look first at this section for
a guide to the main results. The more technical details of the
derivations in Secs. III and IV are given in an appendix.

II. DERIVATION OF MODEL

Consider first an N -site ring system without a bath. In
site representation, this typically has a “bare ring” model
Hamiltonian

Ho =
∑
〈ij〉

[
tij c

†
i cj eiAo

ij + H.c.
]+

∑
j

εj c
†
j cj . (2)

This “one-band” Hamiltonian is the result of truncating, to low
energies, a high-energy Hamiltonian of form

HV = 1

2M
[P − A(R)]2 + U (R), (3)

where a particle of mass M moves in a potential U (R)
characterized by N potential wells in a ring array (see again
Fig. 1). Then εj is the energy of the lowest state in the j -th
well, and tij is the tunneling amplitude between the i-th and
j -th wells (which we take here to be nearest neighbors). In
path integral language, this tunneling is over a semiclassical
“instanton” trajectory Rins(τ ), occurring over a time scale
τB ∼ 1/�0 (the “bounce time” [24]). Here �0 (the “bounce
frequency”) is roughly the small oscillation frequency of the
particle in the potential wells. In a semiclassical calculation,
the phase Ao

ij is that incurred along the semiclassical trajectory
by the particle, moving in the gauge field A(R). For a
symmetric ring the site energy εj → ε0,∀j , and we henceforth
ignore it.

Consider now what happens when we couple the particle
to a spin bath. The spin bath itself, independent of the ring
particle, has the Hamiltonian

HSB =
∑

k

hk · σ k +
∑
k,k′

V
αβ

kk′ σ
α
k σ

β

k′ (4)

in which each TLS has some local field hk acting on it, and
the interactions V

αβ

kk′ are typically rather small because the
TLS represent localized modes in the environment. The most
general coupling between the ring particle and the bath has the
form

Hint =
Ns∑
k

⎡
⎣∑

j

Fk
j (σ k)ĉ†j ĉj +

∑
〈ij〉

(
Gk

ij (σ k)ĉ†i ĉj + H.c.
)⎤⎦ ,

(5)

in which both the diagonal coupling Fk
j and the nondiagonal

coupling Gk
ij are vectors in the Hilbert space of the k-th bath

spin. We shall see below, when considering the origin of these
terms from microscopic models, that very often we can write
the total Hamiltonian as

H = Hband + HSB, (6)

where Hband = Ho + Hint takes the form

Hband =
∑
ij

[
tij c

†
i cj e

iAo
ij +i

∑
k (φij

k +α
ij

k ·σ k ) + H.c.
]

+
∑

j

(
εj +

∑
k

γ
j

k · σ k

)
c
†
j cj (7)

in which the diagonal couplings to the spin bath assume a
“Zeeman” form, of strength |γ j

k |, linear in the {σ k}, and the
nondiagonal couplings appear in the form of extra phase factors
in the hopping amplitude between sites.

Before we consider the microscopic origins of this model,
let us note how it simplifies when we assume the symmetry
under rotations by 2π/N noted above (so that the site energy
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εj is dropped, and tij → �o, with nearest-neighbor hopping
only). It is then natural to write Ao

ij as

Ao
ij = e

2
H · Ri × Rj = �/N (8)

for j = i + 1 (we now use MKS units, and put h̄ = 1). Here,
H is the magnetic field, and Ri is the radius-vector to the i-th
site; in cylindrical coordinates

Rj = (Ro,�j )
(9)

�j = 2πj/N

for a ring of radius Ro. Fourier transforming from the site
basis to a momentum basis for the couplings, we define
quasimomenta kn = 2πn/N , with n = 0,1,2, . . . ,N − 1, for
the particle on the ring, and define operators

c
†
j =

√
1

N

∑
kn

eiknj c
†
kn

,

c
†
kn

=
√

1

N

∑
�

e−ikn�c
†
�, (10)

kn = 2πn

N
, n = 0,1, . . . ,N − 1.

We can write the free particle Hamiltonian as

Ho =
∑

n

εo
kn

c
†
kn

ckn

= 2�o

∑
n

cos(kn − �/N )c†kn
ckn

. (11)

Then in this basis we can write:

Vint =
Ns∑
k

∑
n

[
Fk

n(σ k)ρ(kn) + Gk
n(σ k)ĉ†kn

ĉkn

]
, (12)

where ρ(kn) =∑n′ ĉ
†
kn+kn′ ĉkn′ is the density operator in mo-

mentum space for the particle, and the Fourier-transformed
interaction functions are

Gk
n(σ k) =

∑
ij

eikn(i−j )Gk
ij (σ k)

(13)
Fk

n(σ k) =
∑

j

eiknj Fk
j (σ k).

In this basis the band Hamiltonian Hband has a dispersion which
is a functional of the bath spin distribution:

Hband =
∑

k

∑
n

εkn
[σ k]ĉ†kn

ĉkn
+
∑
n,n′

vn[σ k]ĉ†kn+kn′ ĉkn′ (14)

and in which the “band energy” εkn
[σ k] and the “scattering

potential” vn[σ k] are now both functionals over the spin bath
coordinates {σ k}:

εkn
[σ k] = εo

kn
+
∑

k

Gk
n(σ k)

(15)
vn[σ k] =

∑
k

Fk
n(σ k).

Under many circumstances one can assume that this
symmetry under rotations also applies to the bath couplings,
so these no longer depend on site variables, i.e., Fk

j → Fk and

Gk
ij → Gk . The results then simplify a great deal; Gk

n(σ k) →
2Gk(σ k) cos kn, and Fk

n → Fk .
Now let us consider the microscopic origin of this model

(i.e., before truncation to the lowest band). The most obvious
interaction between the particle moving around the ring and a
set of bath spins has the local form [25]:

Hint(R,σ k) =
∑

k

F(R − rk) · σ k

≡
∑

k

Hk
int(R,σ k), (16)

where F(r) is some vector function, and rk is the position at
the k-th bath spin. The diagonal coupling Fk

j , or its linearized
form γ

j

k , is then easily obtained from (16) when we truncate
to the single band form. But the term (16) must also generate
a nondiagonal term, which is more subtle. We can see this by
defining the operator

T̂ k
ij = exp

[
−i/h̄

∫ τf (Rj )

τin(Ri )
dτHk

int(R,σ k)

]
, (17)

where the particle is assumed to start in the i-th potential
well centered at position Ri , at the initial time τin, and finish at
position Rj in the adjacent j -th well at time τf ; the intervening
trajectory is the instanton trajectory (which in general is
modified somewhat by the coupling to the spin bath). Now
we operate on σ k with T̂ k

ij , to get∣∣σ f

k

〉 = T̂ k
ij

∣∣σ in
k

〉 = ei(φij

k +α
ij

k ·σ k)
∣∣σ in

k

〉
, (18)

where we note that both the phase φ
ij

k multiplying the unit
Pauli matrix σ 0

k , and the vector α
ij

k multiplying the other three
Pauli matrices σx

k ,σ
y

k ,σ z
k , are in general complex. In this way

the instanton trajectory of the particle acts as an operator
in the Hilbert space of the k-th bath spin [10,26]. Note that
one important implication of this derivation is that typically
|αij

k | � 1, in fact exponentially small, since the interaction
energy scale set by |F(R − rk)| is usually much smaller than
the “bounce energy” scale h̄�o set by the potential U (R),
i.e., the tunneling of the particle between wells is a sudden
perturbation on the bath spins [10]. Detailed calculations in
specific cases [10,26,27] show that |αij

k | ∼ π |ωij

k |/2�o in this
“sudden” regime, where ω

ij

k = γ
j

k − γ i
k is the change in the

diagonal coupling acting between the particle and the k-th bath
spin when the particle hops from site i to site j (this result can
be found directly from time-dependent perturbation theory in
the sudden approximation).

From these considerations we see that, starting from a ring
with the particle-bath interaction given in (16), we will end up
with an effective Hamiltonian for the lowest band of the form
given in (7), in which the nondiagonal interaction Gk

ij (σ k)
in (5) has assumed a rather special form.

One can in fact have a more general form for Gk
ij (σ k) in

the lowest-band approximation, provided one also introduces
in the microscopic Hamiltonian a coupling

Hint(P,σ k) =
∑

k

G(P,σ k) (19)

to the momentum of the particle. This can include various
terms, including functions of P × σ k and P · σ k; a detailed
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analysis is fairly lengthy. The main new effect of these is
to generate terms in the band Hamiltonian which couple the
spins to the amplitude of tij as well as to its phase; these do
not appear in (7).

In any case, if we know U (R), F(R − rk), and G(P,σ k),
we can clearly then calculate all the parameters in the generic
model Hamiltonian, using various methods [10,27]. However,
we are not interested here in the generic case, since our main
object is to study the dynamics of decoherence in a ring model
which contains only phase decoherence. We therefore make
the following approximations:

(i) We drop the interaction V
αβ

kk′ , between bath spins (often
a very good approximation, since interactions between defects
or nuclear spins are often very weak), and also neglect the
local fields hk acting on the {σ k}. Thus we make HSB = 0.

(ii) We drop the momentum coupling G(P,σ k) entirely, and
in the band Hamiltonian (7) we drop the diagonal interaction
γ

j

k . This implies that the energy of the k-th bath spin does
not depend on whether the j -th site is occupied. We make
this approximation (in many cases not physically reasonable)
only because we wish to study phase decoherence without the
complication of energy relaxation.

(iii) We assume a symmetric ring, so εj → 0 and tij → �o

as before; and we absorb the phases φ
ij

k → φk into a renor-
malization of �o (from

∑
k Im φk) and Ao

ij (from
∑

k Reφk).
The resulting model Hφ is then just that given in (1). This

turns out to be explicitly solvable and reveals some important
properties of phase decoherence. We will usually assume the
parameters α

ij

k are small, in line with the remarks above
(although the net effect of all of them may be very large), and
we will also usually specialize to the case α

ij

k → αk , consistent
with a completely symmetric ring.

Finally, let us briefly compare with the kind of Hamiltonian
one would expect for a particle on a ring coupled to an
oscillator bath. Let us assume a set of oscillators with
Hamiltonian Ho + Hosc + Hint, where Ho is again the free par-
ticle hopping Hamiltonian, coupling to a set of No oscillators
with Hamiltonian

Hosc =
No∑
q=1

1

2

(
p2

q

mq

+ mqω
2
qx

2
q

)
. (20)

In general there will be diagonal couplings {Vj (q)} and non-
diagonal couplings {Uij (q)} between particle and oscillators.
We could also have a coupling to the oscillator momenta -
however in this case one can make a canonical transformation
[28] which transforms this back into a coupling to the {xq}.
Typically the couplings {Vj (q),Uij (q)} ∼ O(N−1/2

o ). We note
here that in many microscopic models of this kind, the
couplings {Vj (q),Uij (q)} are actually also strong functions
of temperature, either because the underlying effective Hamil-
tonian is strongly T dependent (e.g., in a superconductor [29])
or because the coupling to the oscillators is nonlinear (e.g., in
the coupling to a soliton [30]).

If we restrict the problem to rotationally invariant couplings
on the ring, then we can write

Hint =
∑

q

⎡
⎣∑

〈ij〉
(Uqĉ

†
i ĉj + H.c.) +

∑
j

Vq ĉ
†
j ĉj

⎤
⎦ xq, (21)

where Uij (q) → Uq , Vj (q) → Vq , and the sum
∑

〈ij〉 is over
nearest neighbors. It is then straightforward to go through the
same manipulations as in (12)–(15), to get a renormalized band
which is a functional of the {xq}.

In these results there is no connection between the ring sites
and the space in which the oscillators are supposed to exist.
However, in many cases the oscillator displacement field xj

can be defined at each site j of the ring; the coupling then
reduces to

V̂ =
∑

q

∑
j

vqĉ
†
j ĉj e

iq·Rj xq

≡
∑
jj ′

v(Rj − rj ′ )ĉ†j ĉj x(rj ′ ) (22)

in which Rj , rj ′ are site vectors on the ring, and xq is now the
Fourier transform of xj .

III. FREE BAND PARTICLE DYNAMICS

We first consider the dynamics of a free particle in some
initial state moving on the symmetric N -site ring described by
Ho in (11), with no bath. For this free particle the dynamics
are entirely described in terms of the bare one-particle Green
function

Go
jj ′ (t) ≡ 〈j |Go(t)|j ′〉 ≡ 〈j |e−iHot |j ′〉

= 1

N

∑
n

e−i2�0t cos(kn−�/N)eikn(j ′−j ), (23)

which gives the amplitude for the particle to propagate from
site j ′ at time zero to site j at time t . These paths are rather
simple (see Fig. 2); they can be labeled by the initial and final
sites and by the winding number of the path around the ring.

The one-particle Green function can be evaluated in various
ways (see the appendix); the result can be usefully written as

Go
jj ′ (t) =

+∞∑
p=−∞

JNp+j ′−j (2�ot)e
−i(Np+j ′−j )(�/N+π/2), (24)

where
∑

p is a sum over winding numbers. The “return
amplitude” Go

00(t) is then given by

Go
00(t) =

∑
p

e−ip�(−i)|Np|J|Np|(2�ot)

=
∑

p

e−ip�INp(−2i�ot), (25)

where in the last form we use the hyperbolic Bessel function.

t

j

3

0

0

2

1

3

2

1

FIG. 2. (Color online) A particular path in a path integral for the
particle, shown here for an N = 3 ring. This path, from site 0 to site
1, has winding number p = 1.
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It is often more useful to have expressions for the density
matrix; even though these depend trivially for a free particle
on the Green function, they are essential when we come
to compare with the reduced density matrix for the particle
coupled to the bath. One has, for the “bare” density matrix
operator of the system at time t ,

ρ̂o(t) = e−iHot ρ̂o(0)eiHot . (26)

Thus, suppose we have an initial density matrix ρ
(in)
ll′ =

〈l|ρ(t = 0)|l′〉 (where l and l′ are site indices), then at a later
time t we have

ρo
jj ′ (t) ≡ 〈j |ρ̂o(t)|j ′〉 = 〈j |e−iHot |l〉ρ(in)

ll′ 〈l′|eiHot |j ′〉
= ρ

(in)
ll′ Go

jl(t)G
o
j ′l′(t)

†, (27)

where we use the Einstein summation convention (summing
over l,l′). This equation defines the propagator Ko

jj ′,ll′ (t) for
the free particle density matrix, as

Ko
jj ′,ll′ (t) = Go

jl(t)G
o
j ′l′ (t)

†. (28)

In the main text of this article we will almost always quote
results for the special case where the particle begins at t = 0
on site 0. In the case of the free particle, this means that
ρ

(in)
ll′ = δ0lδl′0, and only the propagator matrix Ko

jj ′,00(t) enters
the results; then we have

〈j |ρ̂o(t)|j ′〉 → Ko
jj ′,00(t) = Go

j0(t)Go
j ′0(t)†. (29)

In the appendix we give the results for an arbitrary initial
density matrix.

The evaluation of the time-dependent density matrix for the
free particle turns out to be quite interesting mathematically.
As discussed in the appendix, one can evaluate ρo

jj ′ (t) as a
sum over pairs of paths in a path integral to give a double sum
over winding numbers or else as a single sum over winding
numbers. Consider first the double sum form; again, for the
special case where ρ

(in)
ll′ = δ0lδl′0 (the particle starts at the

origin), this can be written as

ρo
jj ′ (t) =

∑
pp′

ei(p−p′)�ei�(j−j ′)/N (−i)Np+j (i)Np′+j ′

× JNp+j (2�ot)JNp′+j ′ (2�ot), (30)

where p,p′ are the winding numbers (see the appendix for the
derivation for a general initial density matrix). This form has
a simple physical interpretation (the particle propagates along
pairs of paths in the density matrix, one finishing at site j

and the other at site j ′) and the order of each Bessel function
simply gives the total number of sites traversed in each path,
with appropriate Aharonov-Bohm phase multipliers for each
path.

If one instead writes the answer as a single sum over
winding numbers, again assuming ρ

(in)
ll′ = δ0lδl′0, we get:

ρo
jj ′ (t) = 1

N

N−1∑
m=0

∞∑
p′=−∞

JNp′+j ′−j [4�ot sin(km/2)]

× ei�[p′+(j ′−j )/N]−ikm(j+j ′−Np′)/2, (31)

where as before the {km} are the momenta of the particle
eigenfunctions. The physical interpretation of this form is less

obvious, but the sums are much easier to evaluate since they
only contain single Bessel functions instead of pairs of them.
Thus wherever possible we reduce double sum forms to single
sums. Notice that for these finite rings, the bare density matrix
is of course strictly periodic in time. Note also that the diagonal
elements of ρ(t) are generally periodic in �. However, the
off-diagonal elements are only periodic in �/N . In contrast,
ei�(j−j ′)/N 〈j |ρ(t)|j ′〉 is periodic in �, with period 2π . This
latter is the quantity needed for calculating the currents, as we
will see below.

From either Go
jj ′ (t) or ρo

jj ′ (t) we may immediately compute
two useful physical quantities. First, the probability P o

j0(t) to
find the particle at time t at site j , assuming it starts at the
origin, and, second, the current I o

j,j+1(t) between adjacent sites
as a function of time.

Looking first at the probability P o
j0(t), one has

P o
j0(t) = 〈j |ρ̂o(t)|j 〉 = ∣∣Go

j0(t)
∣∣2, (32)

which from above can be written in double sum form as

P o
j0(t) =

∑
pp′

JNp+j (2�ot)JNp′+j (2�ot) e−iN(p′−p)(�/N+ π
2 )

(33)

or in single sum form as

P o
j0(t) = 1

N

N−1∑
m=0

∞∑
p=−∞

eip(�+Nkm/2)JNp[4�ot sin(km/2)].

(34)

One may also compute moments of these probabilities.
These are not terribly meaningful for a small ring, because
any wave packet will be spread around the ring. However, for
a large ring they can be useful, for example, the second moment∑

j j 2P o
j0(t) tells us the rate at which an initial density matrix

spreads in time, provided the spatial extent of the density
matrix is much smaller than the ring circumference. Coherent
dynamics will then manifest itself as ballistic propagation of
an initial wave packet.

From these general expressions it is hard to see what is
going on. To give some idea of how the probability density
behaves, it is useful to then look at these results for a small
three-site ring, where the oscillation periods are quite short.
One then has, for the case where the particle starts at the origin,
that

P o
j0(t) = 1

3

⎛
⎝1 + (3δj,0 − 1)

⎡
⎣J0(2�o

√
3t)

+ 2
∞∑

p=1

J6p(2�o

√
3t) cos(2p�)

⎤
⎦+ (δj,1 − δj,2)2

√
3

×
∞∑

p=1

J6p−3(2�o

√
3t) sin((2p − 1)�)

⎞
⎠ . (35)

In Fig. 3 the return probability P o
00(t) is plotted for the case

N = 3, using (35). From the results one striking feature im-
mediately emerges: we see that the periodic behavior depends
strongly on the flux �. This flux dependence illustrates the
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FIG. 3. (Color online) Results for the free particle for N = 3 and
for a particle initially on site 1. (Left) The probabilities to occupy
site 1 (full line), 2 (large dashes), and 3 (small dashes). (Right) The
current from site 1 to site 2. (Top) � = 0. (Bottom) � = π/2.

way in which the flux controls the particle dynamics by acting
directly on the particle phase. In Sec. V we will see how this
also happens when one looks at interference between two wave
packets; and in Secs. IV and V we will see how decoherence
washes out the flux dependence of the particle dynamics. Thus
the flux dependence of the particle dynamics very effectively
measures how coherent its dynamics may be.

Turning now to the current I o
j,j+1(t) from site j and site

j + 1, this is given from elementary quantum mechanics by

I o
j,j+1(t) = 2 Im

[
�oe

−i�/Nρo
j,j+1(t)

]
= i�o

(
ei�/Nρo

j+1,j (t) − e−i�/Nρo
j,j+1(t)

)
, (36)

where the flux per link appears in each contribution. Again,
one can write this expression as either a double sum over pairs
of winding numbers or as a single sum (see the appendix for the
general results and derivation). For the case where the particle
starts from the origin, these expressions reduce to

I o
j+1,j = 2�o

∑
pp′

JNp+j (2�ot)JNp′+j+1(2�ot)

× cos

[(
π

2
N + �

)
(p′ − p)

]

= 2�o

N

N−1∑
m=0

∑
p

JNp+1

(
4�ot sin

km

2

)

× e−ikm( Np+1
2 +j )iNp+1 cos

[(
π

2
N + �

)
p

]
(37)

for the double and single sum forms, respectively.
Again, the currents across any links must be strictly periodic

in time for this free particle system; and again, it is useful to
show the results for a three-site system. For this case N = 3,
and assuming that the particle begins at the origin, we find

I o
0,1 = 2�o

3
Im

2∑
m=1

∑
p

J3p+1

(
4�ot sin

mπ

3

)

× e−imπ(3p+1)/3i3p+1 cos

[(
3π

2
+ �

)
p

]
(38)

which we can also write in the form

I o
0,1 = 2�o

3
Im
∑

p

J3p+1(2
√

3�ot) cos

[(
3π

2
+ �

)
p

]

× i3p+1
2∑

m=1

(e−iπ(3p+1)/3 + e−i2π(3p+1)/3). (39)

Now let us write (e−iπ(3p+1)/3 + e−i2π(3p+1)/3) =
(−1)pe−iπ/3 + e−2iπ/3. If p is even, this becomes −i

√
3 and

cos[( 3π
2 + �)p] = (−1)3p/2 cos(�p); If p is odd, it becomes

−1 and cos[( 3π
2 + �)p] = (−1)3(p−1)/2 sin(�p). Therefore,

we have

I o
0,1 = 2

3
�o

∞∑
p=−∞

J3p+1(2�o

√
3t)K(p,�),

K(p,�) = sin(p�), if p = odd, (40)

K(p,�) =
√

3 cos(p�), if p = even.

These results are also shown in Fig. 3. Notice that in this
special case the result is periodic in �; this is not, however,
true for a general initial density matrix ρ

(in)
ll′ , when the result is

periodic in �/N .

IV. RING PLUS BATH: PHASE AVERAGING

We now wish to solve for the dynamics of the particle
once it is coupled to the bath, via the Hamiltonian (1). This is
done in general by integrating out the bath spins to produce
expressions for the reduced density matrix of the particle. In
this section we first show how this is done and then give results
for physical quantities [in particular, the probability Pj0(t) and
the current Ij,j+1(t)]. Finally, we briefly compare the results
to the behavior one expects for a ring coupled to an oscillator
bath.

A. General results

As shown in the appendix, the reduced density matrix for
the particle obeys the equation of motion

ρjj ′ (t) =
∑
l,l′

Kjj ′,ll′ (t)ρ
(in)
l,l′ , (41)

where Kjj ′,ll′ (t) is the propagator for the reduced density
matrix. The latter can be written in the form of a double sum
over winding numbers

Kjj ′,ll′ (t) =
∑
pp′

Ko
jj ′,ll′ (p,p′; t)F ll′

jj ′(p,p′), (42)

where the function Ko
jj ′,ll′ (p,p′; t) is the free particle prop-

agator for fixed winding numbers p,p′ [so Ko
jj ′,ll′ (t) =∑

pp′ K
o
jj ′,ll′ (p,p′; t); see the appendix, Eq. (A8) et seq.]. All

effects from the spin bath are then contained in F ll′
jj ′(p,p′),

which we will call the “influence function.” The remarkable
thing is that this function depends only on the initial and final
states, and on the winding numbers—all other aspects of the
two paths involved in the density matrix propagation have
disappeared. As explained in the appendix, this is a particular
feature of the pure phase decoherence being treated here.
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The form the influence function takes depends on what kind
of averaging we do over the bath. To discuss this, let us first
discriminate between two different ways of averaging over the
bath, as follows:

(i) The first and most obvious case is where the αmn
k are

considered to be a set of fixed couplings, for a specific single
ring. In this case the average is only over the bath states; we will
denote this bath average by 〈· · · ·〉. Often it will only involve a
thermal average over the bath states.

(ii) However, it is often the case that one is either interested
in an ensemble of rings, all having the same free particle
Hamiltonian but with the αk possibly varying from one ring to
another or a single ring in which the values of the couplings
αk are indeterminate. In this case it makes sense to define a
probability distribution P (α) over a coupling variable α. One
then must average not only over the bath states themselves,
but also over the bath couplings. We will denote this double
average by 〈〈· · · · · ·〉〉 to signify the average over both the
bath states and the probability distribution; and the influence
function for this case will be written as F̄ ll′

jj ′(p,p′), with the bar
over the F signifying that an average over couplings is being
done as well.

In general the results for the dynamics of the density
matrix and the current, and their dependence on the influence
function, may be quite complicated. Thus, before we begin
quoting results, it is useful to note what are the important
parameters in the problem. We will only consider here the
simplest completely symmetric case where αmn

k → αk for all
links {mn}; and we will assume that |αk| � 1 for all k, as
discussed in Sec. II. Now in the previous literature for this
case of pure phase decoherence, it has been usual to define a
“topological decoherence” parameter [10,26]

λ = 1

2

∑
k

|αk|2, (43)

which provides a measure of the strength of the pure phase
decoherence [10]. If the number Ns of bath spins is large,
then we can have λ � 1; this is the limit of strong phase
decoherence.

However, we shall see in what follows that on a ring it is
often more useful to define a parameter F0(p̄) that also depends
on a winding number p̄. The form of this parameter depends
on which of the two bath averages is performed. In the case
where only an average over the bath states is performed, we
have

F0(p̄) =
∏
k

cos(Np̄|αk|), (44)

which defines a rather complicated function of the fixed bath
couplings. The strong decoherence limit for this case is defined
by the parameter λ defined above.

In the case where we also perform an average over the bath
couplings, we have

F̄0(p̄) =
∏
k

∫
dαkP (αk) cos(Np̄|αk|). (45)

The result then depends on what form one has for the
distribution function P (αk). In what follows we will use, as an
example, a Gaussian distribution, given by

P (|αk|) = e−|αk |2/2λo/
√

2πλo (46)

so

F̄0(p̄) = e−λN2p̄2/2, λ = Nsλo. (47)

The limit λ → ∞ is the “strong decoherence” limit for
this distribution, where we have F̄0(p̄) → δp̄,0. However, we
will see below that it is convenient to think of the strong
decoherence regime for the present problem as that for which
the particle dynamics is independent of flux—we will see that
this happens already for quite small values of λ.

We can see why these functions enter by considering the
forms for F ll′

jj ′(p,p′) and F̄ ll′
jj ′(p,p′) that enter into physical

quantities. In the appendix the full expressions for these are
derived; but here we will again only use them for the case
where ρ

(in)
l,l′ = δ0lδl′0, i.e., the particle starts at the origin, and

so only the function Fjj ′(p,p′) ≡ F 00
jj ′(p,p′) comes in. We will

also again assume the purely symmetric case where α
ij

k → αk

for every link.
Let us first consider the case of fixed bath couplings. In

this case the form of the influence function reduces to (see the
appendix):

Fjj ′(p,p′) = 〈e−iN[(p−p′)+(j−j ′)]
∑

k αk ·σ k 〉. (48)

Note that Fjj ′(p,p′) is a function only of the distance j − j ′
between initial and final sites and of the difference p̄ = p −
p′ in winding numbers. Writing this now as Fjj ′(p̄), let us
evaluate it by assuming the usual thermal initial bath spin
distribution. Since all the bath states are degenerate, then at
any finite T all states are equally populated; we then get:

Fjj ′(p̄) =
∏
k

cos((Np̄ + j − j ′)|αk|). (49)

Other initial nonthermal distributions for the spin bath states
are also easily evaluated from (48).

B. Physical quantities

From expressions like (49) one can now write down
expectation values of physical quantities as a function of time.
The simplest example is the probability for the particle to end
up at some site after a time t , having started at another. Thus,
e.g., the probability Pj0(t) to move to site j from the origin in
time t is now given by

Pj0(t) = ρjj (t)

=
∑
pp′

JNp+j (2�ot)JNp′+j (2�ot)

× e−iN(p′−p)(�/N+ π
2 )F0(p,p′), (50)

which is a simple generalization of the free particle result
in (33); we note that only the term

F0(p,p′) =
∏
k

cos(N (p − p′)|αk|) (51)
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in the influence function survives in this expression. Since this
function depends only on the difference p − p′, it is identical
to the function F0(p̄) defined in (44) above (letting p = p̄).
We shall see below that the ring current is also controlled by
this same function. Note that it has a complex multiperiodicity,
as a function of the Ns different parameters Np̄|αk|; we do not
have space here to examine the rich variety of behavior found
in the system dynamics as we vary these parameters.

Now let us consider the case where we also average over
the bath couplings. One then finds (see appendix) that

F̄jj ′(p̄) =
∏
k

∫
dαkP (αk)〈e−iN[p̄+(j−j ′)]αk ·σ k 〉. (52)

In the symmetric case we can treat each bath spin in the same
way and simply use a distribution function P (|α|), the same
for all the different {σ k}. Then we can treat everything in terms
of this single average, over a single representative spin σ from
the bath. Then, e.g., for an initial thermal ensemble for the
bath spins, this gives

F̄jj ′(p̄) =
[∫

dαP (α) cos[(Np̄ + j − j ′)|α|]
]Ns

. (53)

To give something of the flavor of this case, we use the
Gaussian distribution for the P (|α|), given by (46) above.
Then, for the thermal ensemble just given, we have

F̄jj ′(p̄) = exp[−λ(Np̄ + j ′ − j )2/2]. (54)

It is then immediately obvious that the result for the probability
for the particle to go from site 0 to site j in time t is the same
expression as (50) above but now with F̄0(p̄) instead of F0(p̄).

To see how this behaves, let us take the specific case where
N = 3 again. Then for this three-site ring one has, for example,
that

P10(t) = 1

3

⎛
⎝1 + 2

⎡
⎣J0(2�o

√
3t)

+ 2
∞∑

p=1

J6p(2�o

√
3t) cos(2p�)F̄0(6p)

⎤
⎦
⎞
⎠ . (55)

To analyze this result, note that for x � (6p)2, we can use
J6p(x) ≈ (−1)p

√
2/(πx) cos(x − π/4). The function F̄0(p̄)

decays with p̄ and becomes negligible for large enough p̄. For
example, Eq. (47) implies that F̄0(6p) < e−10 for p̄ > pmax,
with pmax = √5/9λ. Neglecting these terms in the sum in
Eq. (55) we conclude that for 2�o

√
3t � (6pmax)2 we have,

e.g.,

P10(t) ≈ 1

3

[
1 + 2A√

π�o

√
3t

cos(2�o

√
3t − π/4)

]
,

(56)

A = 1 + 2
∞∑

p=1

(−1)p cos(2p�)F̄0(6p).

The sum in the amplitude A reduces to
∑

(−1)pF̄0(6p) for
� = 0 and to

∑
F̄0(6p) for � = π/2. Clearly, switching from

� = 0 to � = π/2 causes a large increase in A. Note that the
inverse Fourier transform of the amplitude A(φ) can be used
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FIG. 4. (Color online) Plot of Pj0(t) for a three-site ring, for a
particle initially on site 1, in the intermediate decoherence limit, with
λ = .02. (Left) The probability to occupy site 0 (full line), 1 (large
dashes), and 2 (small dashes). (Right) The current from site 0 to site
1. (Top) � = 0. (Bottom) � = π/2.

to measure the decoherence function F̄0(6p). Results for this
low decoherence regime are shown in Fig. 4.

As λ increases, pmax decreases, and Eq. (56) applies at
shorter times. Remarkably, if λ > 0.1 the whole sum becomes
negligible, and we have already reached the strong decoher-
ence result where the result is � independent. The result is
shown in Fig. 5. Thus, if we define the “strong decoherence”
regime as that where all results are flux independent, then it is
reached for very low values of λ. We emphasize here that the
detailed form of the results, as well as the decoherence strength
required for flux-independent dynamics, depends strongly on
the form we adopt for either F0(p) or F̄ (p); we do not have
space to explore this question here.

Turning now to the current through the ring, we generalize
the free particle results in the same way as above. Quite
generally one has

Ij,j+1(t) = i〈�̃j,j+1ρj+1,j (t) − �̃j+1,j ρj,j+1(t)〉, (57)

where we average the operator

�̃j,j+1 = �oe
i�/Nei

∑
k α

j,j+1
k ·σ k (58)

over bath states, with fixed bath couplings; the case where one
also averages over an ensemble of bath couplings is a by now
obvious generalization of this. This expression is evaluated
in detail in the appendix; as noted there, the result is more
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FIG. 5. (Color online) Plot of Pj0(t) for a three-site ring, for a
particle initially on site 1, in the strong decoherence limit. (Left) The
probability to occupy site 0 (full line), 1 (large dashes), and 2 (small
dashes). (Right) The current from site 0 to site 1 (compare Fig. 3).
The results do not depend on �.
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complicated than it seems, because the density matrix depends
implicitly on both the initial state and on the full details of the
propagator for the density matrix. Here we consider only
the special case where the particle starts from the origin and
the fully symmetric case α

ij

k → αk . Then one has, for the case
of a bath state average only, that

Ij,j+1(t) = 2�o

N

N−1∑
m=0

∑
p

JNp+1

(
4�ot sin

km

2

)
e−ikm( Np+1

2 +j )

× iNp+1F0(p) cos

[(
π

2
N + �

)
p

]
(59)

with a similar result for the current Īj,j+1(t) arising in the
case where one also averages over bath couplings, with F0(p)
then replaced by F̄0(p). One can also analyze this result as a
function of time, and of the decoherence strength, the ring size,
and the flux; there is no space for this here. To nevertheless give
some flavor for the results, consider again the three-site ring,
for the coupling averaged case, in the strong decoherence limit.
Current then only flows in regions where the initial density
matrix is inhomogeneous; for some general initial density
matrix one finds

Īj,j+1(t) → 2
√

3

3
�o

(
ρ

(in)
j,j − ρ

(in)
j+1,j+1

)
J1(2�o

√
3t), (60)

where ρ
(in)
ll′ is the initial density matrix. Again we see that the

result is completely independent of the flux.

C. Comparison with oscillator bath

To gain some perspective on the results just given, it is useful
to compare with what one might expect for a ring particle
coupled to an oscillator bath. The differences are both formal
and physical, and both are important. Here we simply sketch
these—a more detailed study of this rather complex problem
will appear elsewhere [31]. To specify the formal problem
completely, one needs first to define “spectral functions” for
the couplings between the oscillator bath and the ring particle
[12]. These couplings were defined earlier, in (21); Fourier
transforming them in the same way as we did for the spin bath
couplings, we then define the spectral functions as:

J⊥
p (ω) = π

2

∑
q

U 2
q (p)

ωq

δ(ω − ωq)

(61)

J ‖
p (ω) = π

2

∑
q

V 2
q (p)

ωq

δ(ω − ωq).

In many cases the nondiagonal function J⊥
p (ω) can be

neglected compared to the diagonal J ‖
p (ω), and we will assume

this here. J
‖
p (ω) can take many forms; the most commonly

analyzed is the “Ohmic form,” where J
‖
p (ω) = ηω at low

frequency, but this form is very useful for systems coupled to an
itinerant electron bath, it is inappropriate for insulating systems
(where a more accurate low-ω form is the “superOhmic”
form J

‖
p (ω) ∼ ωk , with k > 1). In addition, there is often

significant low-energy structure in J
‖
p (ω), not describable by a

simple power-law form; and in many cases J
‖
p (ω) also depends

strongly on temperature T .

Defining the influence functionalF[�,�′] in the usual way
for general paths �(t),�′(t) [cf. Eq. (A19) of the appendix],
we can write

F[�,�′] = exp
iN2

h̄

∫
dt1

∫
dt2[ϕ̇(t1)Dp(t1 − t2)ϕ̇(t2)

+ i�p(t1 − t2)ϕ̇(t1)ψ̇(t1)], (62)

where we have defined the sum and difference angular
variables

ψ(t) = [�(t) + �′(t)]/2
(63)

ϕ(t) = [�(t) − �′(t)]/2

and the oscillator propagator Dp(t) = Dp(t) + i�p(t), with

Dp(t) = 4

N2

∫
dω

J
‖
p (ω)

ω2
(1 − cos ωt) coth

(
βh̄ω

2

)
(64)

�p(t) = 4

N2

∫
dω

J
‖
p (ω)

ω2
sin ωt.

The behavior in time of Dp(t) can be quite complex and varies
strongly with the form of Jp(ω) and with temperature; the
details of this behavior have been reviewed extensively [13,32].

In the same way as for the spin bath, we may now construct
expressions for the reduced density matrix, and physical
correlation functions derived therefrom, by summing over
all paths; this is done in a simple generalization of methods
developed for the spin-boson [32] and Schmid [33,34] models.
For example, the probability Pn0(t) takes the form

Pn0(t) =
∞∑

p=−∞

∞∑
l=|n+Np|

(−1)l−n−Npei�(p+n/N)�2l
o

∫ t

0
dt2l

×
∫ t2l

0
· · ·
∫ t1

0

∑
{qr }

∑
{σr }

F ({qr},{σr}; {tl}) (65)

written as a sum over winding numbers p and the number
of intersite hops l. In this expression the influence functional
has now become a function F ({ξr},{χr}; {tl}) of the times tl at
which the particle hops, and of two sets of “charges” {qr} =
±1, {σr} = ±1. These charges are defined in terms of the sum
and difference paths by

ψ(t) = π

N

l∑
r=1

qrθ (t − tr )

(66)

ϕ(t) = π

N

l∑
r=1

σrθ (t − tr )

so the qr describe hops in the “center of mass” part of the
density matrix, and the σr are hops in the “difference” or
off-diagonal elements of the density matrix. The general form
of F ({ξr},{χr}; {tl}) is

F ({ξr},{χr}; {tl})

= δ

(
2n −

2l∑
r=1

qr

)
δ

(
2l∑

r=1

σr

)

× exp
i

h̄

∑
r ′<r

[Dp(tr − tr ′)qrσr ′ + i�(tr − tr ′)σrσr ′] (67)
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and we get the well-known oscillator-mediated interactions
between the charges, familiar from the spin-boson and Kondo
problems. Thus from the formal point of view, for a ring
particle coupled to either an oscillator or spin bath, the
principal difference between the two cases is the existence,
in the oscillator bath case, of retarded interactions between
particle hops at different times, whose form depends on
J

‖
p (ω) and on T . Just as in the spin-boson and Schmid

models, the interactions between the charges in the Ohmic
case eventually cause a zero temperature Kosterlitz-Thouless
binding transition between the charges, which localizes the
particle at one site in the ring. This happens at a critical Ohmic
coupling strength η → ηc = h̄/2π , independent of the ring
size [31]. When η < ηc, the particle dynamics are strongly
diffusive; here we do not go into the details of how the
dynamics varies with η, with N , and with temperature T .
In the superOhmic case there is no localization transition, no
matter how strong the coupling; the analysis of this case is
very lengthy [31].

None of these features have any formal counterpart in the
coupling to a spin bath. In the present case the spin bath
results are entirely independent of T , because all bath levels
are degenerate. Even when this is not the case (i.e., when we
add back the local fields {hk}, so the decoherence becomes
temperature dependent), the only way that interactions can
be generated between different bath spins is through their
coupling to the particle itself; there is no analog to the
propagator Dp(t).

The key physical difference between this ring-oscillator
bath model and the ring coupled to a spin bath is that in the
oscillator bath system, decoherence is in a certain sense a
mere side effect of the dissipation taking place each time the
particle excites an oscillator. On the other hand, in the spin bath
model, no such dissipation occurs—only phase decoherence.
This difference is most obviously seen in the center-of-mass
dynamics of a particle wave packet—for the oscillator bath
model a wave packet initially moving around the ring will
dissipate center-of-mass momentum (formally this happens via
the interactions between qr and σr ′ in the influence function),
slowly bringing it to rest. However, as we see in the next
section, for a ring particle coupled to a spin bath, the center-
of-mass momentum of a wave packet is completely conserved,
even in the strong decoherence limit, provided the spin bath
dynamics is governed by its coupling to the ring particle (the
typical case). This leads to some counterintuitive features, as
we now see.

V. WAVE-PACKET INTERFERENCE

It is interesting to now turn to the situation where two
signals are launched at t = 0 from two different points in the
ring. The idea is to see how the spin bath affects their mutual
interference and how, by effectively coupling to the momentum
of the particle, it destroys the coherence between states with
different momenta. We do not give complete results here, only
enough to show how things work.

We therefore start with two wave packets which will
initially be in a pure state and will then gradually be
dephased by the bath. In the absence of a bath, we will
assume the wave function of this state to be the symmetric

superposition

�(t) = 1√
2

(ψ1(t) + ψ2(t)), (68)

where the two wave packets are assumed to have Gaussian
form:

|ψ1(t)〉 = 1

Z

N−1∑
n=0

e−(kn−π/2)2D/2e−ij0kn−i2�0t cos(kn−�/N)|kn〉

(69)

|ψ2(t)〉 = 1

Z

N−1∑
n=0

e−(kn−π/2)2D/2e−i2�0t cos(kn−�/N)|2π − kn〉,

(70)

where we assume the usual symmetric ring with flux �, and

Z =
√∑N−1

n=0 e−(kn−π/2)2D is the wave-function normalization
factor. At t = 0, one of the packets is centered at the origin, and
the other at site jo, and they both have width D. Note that the
velocity of each wave packet is conserved, and at times such
that �ot = 2n, they cross each other. From (69) we see that the
main effect of the flux is to shift the relative momentum of the
wave packets. It also affects the rate at which the wave packets
disperse in real space; this dispersion rate is at a minimum
when �/N = π

2 .
The free-particle wave function in real space is then

|�j (t)〉

= 1

Z
√

2N

N−1∑
n=0

e−(kn−π/2)2D/2(ei(j−j0)kne−2i�ot cos (kn+�/N)

+ e−ijkne−2i�ot cos (kn−�/N))|j 〉 (71)

so the probability to find a particle at time t on site j is P (j ) =
|�j (t)|2.

Let us now consider the effect of phase decoherence from
the spin bath. Using the results for Pjj ′ (t) from the last section,
with an initial reduced density matrix

ρ
(in)
jj ′ = |�j (t = 0)〉〈�j ′ (t = 0)| (72)

we find a rather lengthy result for the probability that the site
j is occupied at time t :

Pj (t) = 1

2NZ2

N−1∑
n,n′=0

+∞∑
m=−∞

e−((kn−π/2)2+(kn′−π/2)2)D/2F0(m)

×{ei(j−j0)(kn−kn′ )Jm(4�ot sin ((kn − kn′)/2))

× eim((kn+kn′ )/2+�/N) + e−i(kn−kn′ )j

× Jm(4�ot sin ((kn − kn′)/2))eim((kn+kn′ )/2−�/N)

+ [ei((j−j0)kn+jkn′ )Jm(4�ot sin ((kn + kn′)/2))

× eim((kn−kn′ )−�/N) + H.c.]} (73)

One can also, in the same way, derive results for the
current in the situation where we start with two wave packets.
We see that expressions like (73) are too unwieldy for
simple analysis. However, in the strong decoherence limit (73)
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FIG. 6. (Color online) Plot for Pj (t) as a function of both j and
�ot in the strong decoherence limit. jo = 50 and N = 100. The
relative velocity is π

2 , in phase units. (Top) Global view. (Bottom) A
particular peak.

simplifies to:

Pj (t) = 1

2NZ2

N−1∑
n,n′=0

e−((kn−π/2)2+(kn′−π/2)2)D/2{ei(j−j0)(kn−kn′ )

× J0(4�t sin((kn − kn′)/2)) + e−ij (kn−kn′ )

× J0(4�t sin((kn − kn′)/2)) + [ei((j−j0)kn+jkn′ )

× J0(4�t sin((kn + kn′)/2)) + H.c.]} (74)

and again we see that the flux has disappeared from this
equation.

This result is shown in Fig. 6. As one might expect, the
interference between the two wave packets is completely
washed out in this strong decoherence limit. However, there
is also a more unexpected feature—each wave packet now
has portions moving in opposite directions to each other. The
explanation is to be found by noticing that as the particle hops,
at the same time causing the bath spins to make transitions,
the topological phase it exchanges with the spins also changes
the total phase around the ring seen by the particle. Thus,
from the point of view of the particle, these transitions are
forcing the total flux through the ring to fluctuate in a way
which depends on the trajectory followed by the particle. This
dependence, such that the changing phase is conditional on
the particle path, is of course why we get decoherence. Now
the changing effective flux changes the particle momentum
and velocity, and in the case of the pair of wave packets
here, it also changes their relative momentum. Indeed, given
that the transformation � → � + π completely reverses the

momentum, we see that a strong coupling to the bath spins
can even cause a part of the initial wave packets to reverse
its direction. However, we emphasize that the center-of-mass
momentum for the combined wave-packet system has not
changed; the average momentum imparted to the ring particle
is zero. Thus, as noted in the last section, the decoherence
caused by the bath is not accompanied by any net dissipation
of the particle momentum or of its energy. Indeed, if a wave
packet starts off with a net angular momentum around the
ring, this will be conserved, long after all coherence has been
lost.

Note that these results are not the same as one would get by
just adding a fluctuating noise δ�(t) to the static flux. Such an
external noise term will also cause “noise” decoherence but of
a quite different form from that of the spin bath decoherence
discussed here, since there is no correlation between the
noise and the particle dynamics. In fact, as we will discuss
elsewhere, a fluctuating flux noise acting on the particle causes
exponential decay in time of the particle correlation functions,
which differs substantially from the power law decay typical
for the present case.

VI. SUMMARY AND CONCLUSIONS

Let us first recall the main results derived in Secs. II–V. In
Sec. II we show how the basic Hamiltonian (1) we have studied
can be derived, including the fairly severe approximations
that are involved. No attempt is made to connect the model
with any specific physical system, since the main focus of
this paper is to study pure phase decoherence in a solvable
model. The most important features of the model are that (i) the
spin bath which couples to the model can cause severe phase
decoherence with no dissipation, (ii) the phase interference in
the ring (including Aharonov-Bohm oscillations) is affected
in a rather fascinating way by the decoherence, and (iii) the
model can be solved exactly. The main tasks we set ourselves
in this article were to set up a formal apparatus to solve this
model and to study some aspects of the decoherence dynamics
in it.

Before studying the decoherence, it turns out to be impor-
tant to develop the detailed solution for the dynamics of the
N -site ring without the bath in Sec. III; to our surprise, this
does not seem to have been done before. It is convenient to
develop the free particle density matrix ρ̂o(t) and its propagator
K̂o(t) as double sums over winding numbers around the ring
[see Eq. (A9) for the propagator]; but we also show how this
can be rewritten as a single sum over winding numbers [see
Eq. (A10)], a form more useful for numerical work on large
rings.

The importance of the work on the free particle problem
is seen in the result (42) for the propagator K̂(t) of the
reduced density matrix once one integrates out the spin bath;
we can find this by summing over winding numbers an
expression involving matrix elements of K̂o(t) and a weighting
function F ll′

jj ′(p,p′), the influence function. The influence
function can be found exactly (Appendix A2); we do this
both for the case where the couplings between the particle
and the bath spins are fixed, and the case where we make
an ensemble average over these couplings. This allows us to
derive a whole series of exact expressions for the propagator
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K̂(t) [see Appendix A2, Eqs. (A26) and (A30)], and thence
for the time evolution of the reduced density matrix, the
probability density, and the current (Sec. IV). In deriving
results for these physical quantities, one finds that the full
details of F ll′

jj ′(p,p′) are not required, but only certain matrix
elements [often only the element F0(p̄), produced by letting
µ = j − j ′ + l − l′ = 0, and p′ − p = p̄; see (44) et seq.].
The characteristics of the decoherence are controlled by these.

It turns out that the decoherence dynamics, and how it
affects different physical quantities, depends on the ring size
N , the flux �, the form of the function F0(p̄), and the initial
state of the system. A full exploration of this large parameter
space would take a lot of space, so we have focused on certain
questions. One of these is the flux dependence of the various
physical quantities, and how phase decoherence affects these.
How this works is shown in Sec. IV, with details given for a
three-site ring. We also look at the interference of two wave
packets on a large ring, in Sec. V. This of course depends
crucially on the flux, and as we switch on decoherence, this
flux dependence disappears, even though the wave packets still
propagate (although the coupling to the spin bath also strongly
distorts the shape of the wave packets). In all cases we find
that the detailed dynamics differ substantially from what one
would get if the decoherence was simulated by adding flux
noise to the problem; in particular, all coherence properties
show power law decay in time, instead of exponential
decay.

Because of the size of the parameter space, there is much
that is unexplored in thisarticle; in particular, we expect the
decoherence dynamics, and its dependence on flux, to depend
very dramatically on the form of F0(p̄); and we have hardly
explored the dependence on ring size. Nor have we attempted
any connection to experiment. The main reason for this is
that for a detailed comparison with experiments on most real
systems one has to add two crucial ingredients, viz. (i) we must
add back the local fields {hk} acting on the bath spins, and the
diagonal couplings {γ j

k} [compare Eqs. (4) and (7)]; and (ii) in
many physical applications there are also important couplings
to delocalized modes like phonons, which are modeled using
oscillator bath interactions. Actually one can also solve the
problem when these couplings are added, in certain parameter
ranges; this will be the subject of future articles [31].
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APPENDIX

In this appendix we derive some of the expressions for
Green functions and density matrices that are used in the text
and also explain some of the mathematical transformations
required to go from single sums over winding number to double
sums.

1. Free particle

We consider first the free particle for the N -site symmetric
ring, with Hamiltonian

Ho =
∑
〈ij〉

[�oc
†
i cj ei�/N + H.c.] (A1)

and band dispersion εkn
= 2�o cos(kn − �/N ).

For this free particle the dynamics is entirely described in
terms of the bare one-particle Green function

Go
jj ′ (t) ≡ 〈j |Go(t)|j ′〉 ≡ 〈j |e−iHot |j ′〉

= 1

N

∑
n

e−i2�0t cos(kn−�/N)eikn(j ′−j ), (A2)

which gives the amplitude for the particle to propagate from
site j ′ at time zero to site j at time t . This can be written as a
sum over winding numbers m, viz.,

Go
jj ′ (t) =

∞∑
�=0

�∑
m=0

(−i�ot)
�

m!(� − m)!
ei�/N(�−2m)

× 1

N

N−1∑
n=0

e−i
2πn(�−2m−j+j ′)

N . (A3)

This sum may be evaluated in various forms, the most useful
being in terms of Bessel functions:

Go
jj ′ (t) = 1

N

N−1∑
n=0

+∞∑
m=−∞

Jm(2�ot)(−i)meim(kn−�/N)+ikn(j−j ′)

=
+∞∑

m=−∞
Jm(2�ot)(−i)me−im�/NδNp,m+j−j ′

=
+∞∑

p=−∞
JNp+j ′−j (2�ot)e

−i(Np+j ′−j )(�/N+π/2). (A4)

[This last form, where we have eliminated the sum over wind-
ing numbers, is also of course directly derivable from (A2).]
We can also write this last form as

Go
jj ′ (t) =

∑
p

eip�+i �
N

(j−j ′)INp+j−j ′ (−2i�ot), (A5)

where we use the hyperbolic Bessel function Iα(x), defined as
Iα(x) = (i)−αJα(ix).

Consider now the free particle density matrix. As discussed
in the main text, we have in general some initial density matrix
ρ

(in)
l,l′ = 〈l|ρ̂o(t = 0)|l′〉 at time t = 0 (where l and l′ are site

indices). Then at a later time t we have

ρo
jj ′ (t) =

∑
l,l′

Ko
jj ′,ll′ (t)ρ

(in)
l,l′ , (A6)

where Ko
jj ′,ll′ (t) is the propagator for the free particle density

matrix. Its form follows directly from the definition of this
density matrix as ρ̂o(t) = |ψ(t)〉〈ψ(t)|, where |ψ(t)〉 is the
particle state vector at time t . One thus has

Ko
jj ′,ll′ (t) = Go

jl(t)G
o
j ′l′(t)

†. (A7)
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An obvious way of writing this propagator is then:

Ko
jj ′,ll′ (t) =

∑
pp′

Ko
jj ′,ll′ (p,p′; t), (A8)

where we have a double sum over winding numbers p,p′. The
explicit form for Ko

jj ′,ll′ (p,p′; t) is then given from (A4) as

Ko
jj ′,ll′ (t) =

∑
pp′

ei(p−p′)�ei�(j−j ′+l−l′)/N i−Np−j+l iNp′+j ′−l′

× JNp+j−l(2�ot)JNp′+j ′−l′ (2�ot)

=
∑
pp′

ei(p−p′)�ei�(j−j ′+l−l′)/NINp+j−l(−2i�ot)

× INp′+j ′−l′ (2i�ot). (A9)

However, this expression is somewhat unwieldy, particularly
for numerical evaluation, because of the sum over pairs of
Bessel functions. It is then useful to notice that we can also
derive the answer as a single sum over winding numbers, as
follows:

Ko
jj ′,ll′ (t) = 1

N2

N−1∑
n,n′=0

e−i(kn(j−l)−k
n′ (j ′−l′))+4i�ot sin[�/N−(kn+k

n′ )/2] sin[(kn−k
n′ )/2]

= 1

N2

N−1∑
n,m=0

∞∑
p=−∞

Jp[4�ot sin(km/2)]eip(�/N−kn+km/2)−ikn(j−l)+i(kn−km)(j ′−l′)

= 1

N

∞∑
p′=−∞

N−1∑
m=0

(JNp′+j ′−j+l−l′ [4�ot sin(km/2)]eikm(l+l′−j−j ′+Np′)/2)ei�/N(Np′+j ′−j+l−l′). (A10)

In the second step we replaced n′ = m − n. In the third step
we also used the identity

∑N−1
n′=0 eik

n′ � ≡∑∞
p′=−∞ Nδ�,Np′ .

The result for the density matrix then depends on what is the
initial density matrix, according to (A6). If we start with ρ̂(in) =
|0〉〈0|, the density matrix is then just ρo

jj ′ (t) = Ko
jj ′,00(t). One

then gets a much simpler expression; the density matrix at time
t is:

ρo
jj ′ (t) = 1

N

N−1∑
m=0

∞∑
p′=−∞

JNp′+j ′−j [4�ot sin(km/2)]

× eiφ(Np′+j ′−j )−ikm(j+j ′−Np′)/2. (A11)

It is useful and important to show that the double- and
single-sum expressions (A9) and (A10) are equivalent to each
other. To do this we use Graf’s summation theorem for Bessel
functions [35], in the form:

Jν

(
2x sin

θ

2

)
(−e−iθ )

ν
2 =

+∞∑
µ=−∞

Jν+µ(x)Jµ(x)eiµθ . (A12)

We set θ = 0, 2π
N

, . . . 2πm
N

, . . . 2π(N−1)
N

, which is the km in (A10)
and multiply by e−iθj on each side. We then have

Jν

(
2x sin

km

2

)
e−i(km+π) ν

2 e−ikmj =
+∞∑

µ=−∞
Jν+µ(x)Jµ(x)ei(µ−j )km .

(A13)

Noting then that
∑N−1

m=0 eikmn = N
∑

p δNp,n we then do the
sum over m; only µ − j = Np survives and thus

1

N

N−1∑
m=0

Jν

(
2x sin

km

2

)
e−i(km+π) ν

2 e−ikmj

= 1

N

∑
p

JNp+j+ν(x)JNp+j (x). (A14)

Setting ν = Np′ + j ′ − Np − j + l − l′, x = 2�ot , we then
substitute back into (A9) to get

Ko
jj ′,ll′ (t) =

∑
pp′

ei(�/N+π/2)(Np′−Np+j ′−j+l−l′)

× JNp+j−l(2�ot)JNp′+j ′−l′ (2�ot)

= 1

N

∑
p

e+i(Np+j ′−j+l−l′)( �
N

+ π
2 )

N−1∑
m=0

JNp+j ′−j+l−l′

×
(

4�ot sin
km

2

)
e−i(km+π) Np+j ′−j+l−l′

2 e−ikmj

= 1

N

∑
p

N−1∑
m=0

JNp+j ′−j+l−l′

(
4�ot sin

km

2

)

× ei(Np+j ′−j ) �
N

−ikm(j+j ′−l−l′+Np)/2. (A15)

The propagator ρ is Hermitian, i.e., Ko
jj ′,ll′ (t) = Ko

j ′j,l′l(t)
∗;

setting p′ = −p, we then have

Ko
jj ′,ll′ (t) = 1

N

∑
p′

N−1∑
m=0

J−Np′+j−j ′+l′−l

(
4�ot sin

km

2

)

× ei(Np′+j ′−j+l−l′) �
N

+ikm(j+j ′−l−l′−Np′)/2

= 1

N

N−1∑
m=0

∞∑
p′=−∞

JNp′+j ′−j+l−l′ [4�ot sin(km/2)]

× eiφ(Np′+j ′−j+l−l′)−ikm(j+j ′−l−l′−Np′)/2, (A16)

where in the last line, we set km → −km, and use the fact
that for integer order n, Jn(−x) = J−n(x). Thus we have
demonstrated the equivalence of the single and double sum
forms for the density matrix.
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2. Including phase decoherence

To calculate the reduced density matrix for the particle
in the presence of the spin bath, we need to average over
the spin bath degrees of freedom. We will do this in a path
integral technique, adapting the usual Feynman-Vernon [11]
theory for oscillator baths to a spin bath; the following is a
generalization of the method discussed previously [10]. We
can parametrize a path for the angular coordinate �(t) which
includes m transitions between sites in the form

�(m)({qi},t) = �(t = 0) +
m∑

i=1

qiθ (t − ti), (A17)

where θ (x) is the step function; we have transitions either
clockwise (with qj = +1) or counterclockwise (with qj =
−1) at times t1,t2, . . . ,tm. The propagator K(1,2) for the
particle reduced density matrix between times τ1 and τ2 is then

K(1,2) =
∫ �2

�1

d�

∫ �′
2

�′
1

d�′ e− i
h̄

(So[�]−So[�′])F[�,�′],

(A18)

where So[�] is the free particle action and F[�,�′] is the
“influence functional” [11], defined by

F[�,�′] =
∏
k

〈Ûk(�,t)Û †
k (�′,t)〉. (A19)

Here the unitary operator Ûk(�,t) describes the evolution of
the k-th environmental mode, given that the central system
follows the path �(t) on its “outward” voyage, and �′(t) on its
“return” voyage. Thus F[�,�′] acts as a weighting function
over different possible paths (�(t),�′(t)). The average 〈· · ·〉
is performed over environmental modes; its form depends on
what constraints we apply to the initial full density matrix. In
what follows we will assume an initial product state for the
full particle/environment density matrix.

For the general Hamiltonian in Eqs. (6)–(4), the environ-
mental average is a generalization of the form that appears
[10,21] when we average over a spin bath for a central
two-level system, or “qubit.” The essential result is that we
can calculate the reduced density matrix for a central system
by performing a set of averages over the bare density matrix.
For a spin bath these can be reduced to phase averages and
energy averages; and for the present case it reduces to a simple
phase average.

To see this, note that the sole effect of the pure phase
coupling to the spin bath is simply to accumulate an additional
phase in the path integral each time the particle hops. Just as for
the free particle, we can then classify the paths by their winding
number; for a path with winding number p which starts at site
l (the initial state) and ends at site j , the additional phase factor
can then be written as

exp

⎧⎨
⎩−ip

∑
k

⎛
⎝ 〈N0〉∑

〈mn〉=〈01〉
−

〈j−1,j〉∑
〈mn〉=〈l,l+1〉

⎞
⎠(αmn

k · σ k

)⎫⎬⎭, (A20)

and for fixed initial and final sites, this additional phase
depends only on the winding number.

Consider now the form this implies for the reduced density
matrix of the particle, once the bath has been averaged out.
The equation of motion for the reduced density matrix will be

written as

ρjj ′ (t) =
∑
l,l′

Kjj ′,ll′ (t)ρ
(in)
l,l′ , (A21)

where Kjj ′,ll′ (t) is the propagator for the reduced density
matrix. Now the key result is that

Kjj ′,ll′ (t) =
∑
pp′

Ko
jj ′,ll′ (p,p′; t)F ll′

jj ′(p,p′), (A22)

where the function Ko
jj ′,ll′ (p,p′; t) is the free particle propaga-

tor for fixed winding numbers p,p′ [see Eq. (A8) above]. This
form follows from the argument just given, viz., that the only
effect of the spin bath is to add the extra phase factor (A20) in
each path in the path integral for the propagator. Thus the in-
fluence functional, initially over the entire pair of paths for the
reduced density matrix, has now reduced to the much simpler
weighting function F ll′

jj ′(p,p′), which we will henceforth call
the “influence function.” To evaluate this influence function,
we must specify what kind of bath average we wish to take.
We consider here the two cases discussed in the text, viz., (i) a
simple average 〈· · ·〉 over bath states and (ii) an average 〈〈· · · ·〉〉
over both the bath states and over a distribution P (αmn

k ) of
couplings to the bath spins. The results are obtained as follows:

(i) In the case of fixed bath couplings αmn
k , the average

is obtained by simply inserting the phase factors (A20) from
above into the paths of different winding number. We then get:

F ll′
jj ′ (p,p′) = 〈

e−i(p−p′)
∑

k

∑〈N−1,N〉
〈mn〉=〈0,1〉 αmn

k ·σ k e
−i
∑

k

∑〈l−1,l〉
〈mn〉=〈l′,l′+1〉 αmn

k ·σ k

× e
−i
∑

k

∑〈j−1,j〉
〈mn〉=〈j ′ ,j ′+1〉 αmn

k ·σ k
〉
. (A23)

In the symmetric coupling case where αmn
k → αk , this expres-

sion reduces to a much simpler result:

F ll′
jj ′(p,p′) = 〈ei(µ+Np̄)

∑
k αk ·σ k 〉, (A24)

where we define

µ = j ′ − j + l′ − l, p̄ = p′ − p. (A25)

If the particle is launched from the origin, this gives the even
simpler result (48) quoted in the main text.

We can now give the explicit result for the propagator of
the reduced density matrix in double sum form as

Kll′
jj ′ (t) =

∑
pp′

〈ei(µ+Np̄)
∑

k αk ·σ k 〉e−ip̄)�e−i�µ/N iNp̄+µ

× JNp+j−l(2�ot)JNp′+j ′−l′(2�ot). (A26)

Typically the average 〈· · ·〉 here will be over a set of thermally
weighted states, but this is not required; in principle one could
average with a nonthermal state of the bath (or even a definite
bath state, e.g., one which had been polarized beforehand; in
this case no bath averaging is required at all). If we do assume
a thermal state, then since all bath states are degenerate, and
hence equally populated at any finite T , Eq. (A24) reduces to

F ll′
jj ′(p,p′) = 〈ei(µ+Np̄)

∑
k αk ·σ k 〉 →

∏
k

cos((Np̄ + µ)|α|).

(A27)

These results can also be written in single sum form; we do
not go through the details here. Both forms are fairly easily
summed numerically, even for rather large rings.
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(ii) In the case where we must also average over the
distribution of bath couplings, the same phase factors appear,
but now we must average over the bath spin couplings; this
gives instead

F̄ ll′
jj ′(p,p′) =

∏
k

∫
dαmn

k P
(
αmn

k

)〈
e−i(p−p′)

∑〈N−1,N〉
〈mn〉=〈0,1〉 αmn

k ·σ k

× e
−i
∑〈l−1,l〉

〈mn〉=〈l′,l′+1〉 αmn
k ·σ k e

−i
∑〈j−1,j〉

〈mn〉=〈j ′ ,j ′+1〉 αmn
k ·σ k

〉
(A28)

where we put a bar over the influence function to signify
an extra average over bath couplings; again 〈· · ·〉 signifies
the average over bath states and P (αmn

k ) is the probability
weighting for the different bath couplings. Typically it makes
little sense, in this ensemble average, to have any dependence
of the P (αmn

k ) on the link mn, so this reduces to

F̄ ll′
jj ′(p,p′) ≡

∏
k

〈〈ei(µ+Np̄)αk ·σ k 〉〉

=
∏
k

∫
dαkP (αk)〈ei(µ+Np̄)αk ·σ k 〉, (A29)

where µ = j ′ − j + l′ − l and p̄ = p′ − p, as above, and
where we use the fact that the distribution P (αk), defined
for the individual bath couplings, reduces in an ensemble
average to a simple average over some coupling strength α,
with weighting P (α), acting on some representative spin σ

(see main text, subsection IVB). Thus our explicit result for
the propagator of the reduced density matrix is now

Kll′
jj ′ (t) =

∑
pp′

〈〈ei(µ+Np̄)α·σ 〉〉Ns e−ip̄�e−i�µ/N iNp̄+µ

× JNp+j−l(2�ot)JNp′+j ′−l′(2�ot) (A30)

To make this result more specific, let us assume the
Gaussian distribution of couplings given in the text [Eq. (45)].
If we again assume a thermal average then we can easily
evaluate this average, in the same way as in the main text, to
get

〈〈ei(µ+Np̄)α·σ 〉〉Ns → exp[−λ(Np̄ + µ)2/2]. (A31)

As before, the result (A30) can be rewritten as a single sum, and
this is again fairly easily summed numerically. We note that
the effect of the influence function is now to rapidly suppress
paths in which |Np̄ + µ| is nonzero.

Now consider the current Ij,j+1(t). Again, we may dis-
tinguish between the case where we average only over the
bath states, and the case where we average over both the bath
states and the bath couplings. In the case of a single average
over bath states, with fixed couplings, the current is given
by Eqs. (57) and (58), with the brackets in (57) replaced by
double brackets when we average over the bath couplings
as well. We see that formally everything depends only on
the phase between sites j and j + 1, via the bath-generated
phase-dependent coupling �̃j,j+1, and on the density matrix
element ρj,j+1(t) and its conjugate at time t . However, this
apparent simplicity is deceptive, because the density matrix
depends itself on the form of the initial density matrix ρ

(in)
ll′

at time t = 0 and on the propagation of this density matrix in

the interim; thus (57) contains implicitly the full propagator
Kll′

jj ′ (p,p′).
Using the results derived above for this propagator, we

can now derive expressions for Ij,j+1(t). In what follows we
only quote the results of the case of a bath average with fixed
couplings; the case where one also does an ensemble average
over the couplings is easily deduced from these expressions,
following the same maneuvers as above. The results can be
found in both single and double winding number forms. The
double Bessel function form is

Ij,j+1(t) = 2�o

∑
pp′

JNp+j−l(2�ot)JNp′+j+1−l′ (2�ot)

× Re
〈
ρ

(in)
ll′ iN(p−p′)ei[(p−p′)+ 1

N
]�

× e−i(p−p′)
∑

k

∑〈N0〉
〈mn〉=〈01〉 αmn

k ·σ k

× e
2i
∑

k

∑〈j−1,j〉
〈mn〉=〈j ′ ,j ′+1〉 α

j,j+1
k ·σ k

〉
. (A32)

Again, let us make the assumption of a completely ring-
symmetric bath, so α

ij

k → αk . Then we get

Ij,j+1(t) = 2�o

∑
pp′

∑
l,l′

JNp+j−l(2�ot)JNp′+j+1−l′ (2�ot)

×Fl,l′ (p
′,p) × Re

[
ρ

(in)
ll′ ei�[p′−p+(l−l′)/N)]

]
.

(A33)

From this we can derive the single Bessel Function summation
form as follows. Using the equation∑

p

JNp+n−l(x)JNp+n−l+ν(x)

= 1

N

N−1∑
m=0

Jk

(
2x sin

km

2

)
e−i(n−l)km−i(km−π)ν/2 (A34)

which is another form of Graf’s identity [35], we set ν =
N (p′ − p) + 1 + l − l′, x = 2�ot ; then

Ij,j+1(t) = 2�o

N

N−1∑
m=0

∑
p

∑
l,l′

JNp+1+l−l′

(
4�ot sin

km

2

)

× e−ikm[ Np+1
2 +n−(l+l′)/2]iNp+1+l−l′Fll′(p)

× Re
[
ρ

(in)
ll′ ei�[(p′−p+l−l′)/N)]], (A35)

where we define Fll′(p,0) ≡ Fll′(p).
If we make the assumption that the particle starts at the

origin, these results simplify considerably; one gets

Ij,j+1(t) = 2�o

∑
pp′

JNp+j (2�ot)JNp′+j+1(2�ot)

×F0(p′,p) cos

[(
π

2
N + �)(p′ − p

)]

= 2�o

N

N−1∑
m=0

∑
p

JNp+1

(
4�ot sin

km

2

)
e−ikm( Np+1

2 +j )

× iNp+1F0(p) cos

[(
π

2
N + �

)
p

]
(A36)

for the double and single sums over winding numbers,
respectively; and F0(p) ≡ Fjj (p,0). The latter expression is
used in the text for practical analysis.
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