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Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath

Xiao-Tong Ni,1 Yu-xi Liu,2,3 L. C. Kwek,4 and Xiang-Bin Wang1,3,*

1Department of Physics and the Key Laboratory of Atomic and Nanosciences, Ministry of Education, Tsinghua University,
Beijing 100084, China

2Institute of Microelectronics, Tsinghua University, Beijing 100084, China
3Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

4Center for Quantum Technologies, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore and National Institute
of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore

(Received 13 October 2009; published 23 June 2010)

Using exponential quadratic operators, we present a general framework for studying the exact dynamics of
system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To
demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature
components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied
to the system.
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I. INTRODUCTION

Coupling between system and environment is ubiquitous
in all quantum processes (e.g., in quantum information
processing). Such coupling usually results in (i) the energy
decay of the quantum system and (ii) the destruction of the
relative phases of several superposed quantum states, and thus
the linear superposition of several quantum states turn into
a classical mixture. However, the environment can also help
us; for example, entanglement between two systems can be
generated via a common environment [1].

Although it seems impossible to model the environment
exactly in many cases and thus difficult to obtain the exact
dynamics of a system-environment interaction, quantitative
analysis based on approximate description of the environ-
ment is needed in many cases: for instance, the analysis
of decoherence-suppressing methods [2–10], the discussion
of the entanglement of two systems coupled to the en-
vironment, and the study of the quantum dissipation of
systems [11,12]. An extensively adopted approach to model
the environment, which is also called a reservoir or bath,
is to introduce a set of harmonic oscillators with different
frequencies. In this case, the interaction between the system
and the environment is modeled by coupling the system to
these harmonic oscillators through an appropriate interaction
Hamiltonian. Several methods have been proposed to study the
coupling between the system and a set of harmonic oscillators.
In quantum optics (e.g., Refs. [13–15]), a frequently used
method to analyze Markovian process is either a master
equation or a Langevin equation. Another method is the path
integral approach [16], which was extensively developed in
Refs. [11,17], but this method is very complicated. Further-
more, different approximations are used in all of these methods
to make the problem tractable for either analytical or numerical
calculations.

In this article, we introduce a method to calculate the
evolution of the bosonic system coupled to the environment.
The total Hamiltonian is described by a quadratic form
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of the bosonic operators. Our method is based on some
properties of exponential quadratic operators. As shown, this
method provides a feasible way to calculate the effect of the
environment on the system. As an example, we apply our
method to study the environmental effect on the generation of
squeezed states. Moreover, we also use our method to study
the system-environment interaction when the parity kicks are
applied to the system. We find that the parity kicks can help us
to obtain a better squeezing.

II. EXPONENTIAL QUADRATIC OPERATORS

For a set of annihilation operator ai(1 � i � n), exponen-
tial quadratic operators (EQOs; see [18–20]) are expressions
of the form

Q = e
∑

i,j (cij aiaj +dij aia
†
j +eij a

†
i a

†
j ). (1)

The orders of ai and a
†
i are not important since [ai,a

†
i ] = 1, and

the exponent of a number is easy to handle. This equation can
also be written in the following way: Q = e

1
2 �T R� in which

�T = (a†
1,a

†
2, . . . ,a

†
n,a1,a2, . . . ,an) and R is a symmetric

matrix. If we define

S =
(

0 I

−I 0

)
,

then we have

Q�T Q−1 = �T e−RS, (2)

where the multiplication in Q�T Q−1 is understood to act on
each term of �.

III. COUPLING BETWEEN OSCILLATOR
AND RESERVOIR

Consider a system comprising a harmonic oscillator with
annihilation operator a and a reservoir consisting of a set of
oscillators with annihilation operator bk for each mode. The
Hamiltonian of system-reservoir is described by

H = h̄ωa†a +
∑

k

h̄ωkb
†
kbk + h̄

∑
k

γk(ab
†
k + bka

†), (3)
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where the first, second, and third terms are the system,
reservoir, and system-reservoir interaction Hamiltonians, re-
spectively. Here, γk are the coefficients representing the
coupling strength between the system and the mode k of
reservoir; these coupling constants are typically much smaller
than the other frequencies in the Hamiltonian. For simplicity,
but without loss of generality, we regard these couplings as
reals.

We calculate the evolution of a(a†) in the Heisenberg
picture by using Eq. (2). For U = e−iH t/h̄, we put �T =
(a†,b†1,b

†
2, . . . ,b

†
n,a,b1,b2, . . . ,bn) and

R =
(

P

P

)
,

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

iωt iγ1t iγ2t · · · iγnt

iγ1t iω1t

iγ2t iω2t

...
. . .

iγnt iωnt

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

Thus, to calculate the evolution of a (a†), we need only to
calculate the matrix e−RS .

IV. COUPLING BETWEEN SYSTEM AND RESERVOIR
DURING A SQUEEZING PROCESS

To see the power of the technique, let us consider a
Hamiltonian for degenerate parametric amplification with a
classical pump under the influence of a reservoir in a squeezing
process. The Hamiltonian can be expressed as

H = h̄ωa†a + 1

2
ih̄ε[e2iωta2 − e−2iωt (a†)2]

+
n∑

j=1

h̄ωjb
†
j bj + h̄

⎛
⎝a†

n∑
j=1

γjbj + h.c.

⎞
⎠. (5)

In order to remove the time dependence in the Hamiltonian, we
transfer the Hamiltonian into a rotating reference frame with
U = exp(iH0t/h̄) with H0 = h̄ω(a†a + ∑n

j=1 b
†
j bj ). Thus, in

the rotating reference frame, the Hamiltonian in Eq. (5)
becomes

HI = −1

2
ih̄ε[(a†)2 − a2] +

n∑
j=1

h̄(ωi − ω)b†j bj

+ h̄

⎛
⎝a†

n∑
j=1

γjbj + h.c.

⎞
⎠ . (6)

Note that the first term is the usual squeezing Hamiltonian.
We can easily find the matrix R corresponding to −iHI t/h̄.
By analyzing e−RS , numerically if necessary, we obtain the
evolution of a†(t) and a(t) and thus the solution of all quantities
associated with a squeezing process. The most important one
among them is 〈[�(a(t) + a(t)†)]2〉 = 〈(�X)2〉.

V. PARITY KICKS IN THE SQUEEZING PROCESS

Using appropriate time-varying control fields, it is well
known that one could alleviate decoherence effects through
a sequence of frequent parity kicks. However, earlier papers
discuss only how to protect an initial state of the system. Here,
with the calculation tools presented previously, we can do
something. We can study how to protect the state engineering,
in particular, how to produce an enhanced squeezed state.
Without the environment noise, HI finally will drive the system
into a highly squeezed state. However, with the environmental
noise, the noise and the decoherence compete. We study such
competing process with parity kicks on and find the time when
the system is maximally squeezed. As in Ref. [4], we introduce
an extra Hamiltonian (in the rotating reference frame).

H ′
I = HI + Hkick(t),

where Hkick(t) = Hkick for ti � t � ti + τ and Hkick = 0
otherwise. We require ti+1 − ti = τ0 for all i. Moreover, we
assume τ � τ0 and Hkick(t) is strong enough during the
kick periods that we can neglect the effect of HI , which is
e−iHI τ/h̄ ≈ e−iHkickτ/h̄. Under these conditions, we model parity
kicks as unitary operators P = e−iHkickτ/h̄ acting on system at
a set of time ti . Since we want to eliminate the influence
of coupling between system and reservoir, we require P to
have following properties: PHsystemP = Hsystem, PHbathP =
Hbath, and PHintP = −Hint. The three Hamiltonians are
defined in Eq. (6). It is easy to verify that P = e−iπa†a sat-
isfies these equations. Thus, the unitary operator correspond-
ing to two such periods would be Pe−iHI τ0/h̄P e−iHI τ0/h̄ =
e−(iτ0/h̄)(Hsystem+Hbath−Hint)e−(iτ0/h̄)(Hsystem+Hbath+Hint) .= Y. Intuitive-
ly, it shows that the interaction between system and reservoir
of different periods cancel each other out. In fact, it has been
proved that when τ0 → 0, the system and the reservoir are
totally decoupled.

We use numerical computation to verify this effect in the
squeezing process. To this end, we calculate the evolution of
a†(t) and a(t). We have

a†(2nτ0) = Y †na†Yn.

To use the EQO method shown in Eq. (2) to solve this
expression, we note that if

eY1�T e−Y1 = �T P1,

eY2�T e−Y2 = �T P2,

then

eY2eY1�T e−Y1e−Y2 = �T P2P1.

Thus, we know that we need only to calculate the M in

Y †�T Y = �T M,

and Mn would be the desired transforming matrix. Again, we
use this property and see that we only need to calculate

e(iτ0/h̄)(Hsystem+Hbath±Hint)�T e−(iτ0/h̄)(Hsystem+Hbath±Hint). (7)

For simplicity, we consider the ground-state situation.
The procedure is entirely general and applies for the case
of T > 0K. We compute the variance 〈(�X)2〉 with two
types of coupling: namely, the Lorentzian spectrum and
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FIG. 1. (Color online) The variance 〈(�X)2〉 vs rescaled time εt

when parity kicks are on and off respectively. Panel (a) refers to a
Lorentzian spectrum and panel (b) refers to an Ohmic spectrum. We
find that a better squeezing can be obtained when parity kicks are
applied to the system.

the Ohmic spectrum. For the Lorentzian spectrum γj =
g(ωj ) = η	/

√
(ωj − ω)2 + 	2, as an example of numerical

calculations, we assume 	 = 2 × 109 Hz, η = 5 × 107 Hz,
the squeezing parameter ε = 108 Hz, and the kick period
τ0 = 1.67 × 10−9 s. For the Ohmic spectrum γj = g(ωj ) =√

ξωje
−ωj /ωc , we assume ξ = 106 Hz, ωc = 109 Hz, the

squeezing parameter ε = 5 × 107 Hz, and the kick period τ0 =
2.5 × 10−9 s. For both spectra, we assume the frequencies
associated with the system and reservoir to be ω = 109 Hz
and ωj = j × 107 Hz (j = 1,2, . . . ,200) respectively. With
these parameters, the variance 〈(�X)2〉 versus rescaled time
εt is plotted in Fig. 1, which shows that a better squeezing can
be obtained if parity kicks are applied to the system. To check
the validity of our numerical calculation, we examine whether
the commutation relations between creation and annihilation
operators are satisfied, which is equivalent to whether the
transforming matrix M of a† and a is symplectic. We set

� =
(

In

−In

)

and then calculate L = MT �M − �. We find that the maxi-
mum element in L is less than 10−7 through all the time, which
indicates the transforming matrix is very close to symplectic
matrix.

VI. DISCUSSION

It is interesting to do a comparison between several
methods, including the widely used Markovian master

equation [13]. Under the Hamiltonian (3) with a Lorentzian
spectrum as shown in Ref. [21], we can obtain an exact solution

a(t) =
[
u(t)e−	t/2a +

∑
uj (t)bj

]
e−iωt

=
{[

cos(�t/2) + 	

�
sin(�t/2)

]
+

∑
uj (t)bj

}
e−iωt .

(8)

The constant � is given by � =
√

4πη2D − 	2, where D is
the density of reservoir modes and uj (t) are some complicated
functions [21]. However, the master equation, in the Markovian
approximation, can be written as

∂ρ

∂t
= −iω[a†a,ρ] + λ

2
[2aρa† − a†aρ − ρa†a]

+ λn[a†ρa + aρa† − a†aρ − ρaa†], (9)

where λ = 2πDg(ω)2 is a constant, which represents the decay
rate of the harmonic oscillator. For simplicity, we assume the
temperature of reservoir to be zero and the initial state of
system to be |1〉. We then calculate the the probability P (t) =
〈1|trR[ρ(t)]|1〉, which can be used to observe the decay of
system. We can also compute P (t) when the coupling strengths
γk are constants. For example, we assume that parameters
of the Lorentzian spectrum in Fig. 2(a) to be γj = g(ωj ) =
2.8209 × 1012/

√
(ωj − ω)2 + 1012 Hz and the flat spectrum in

Fig. 2(b) to be γj = 5.6419 × 106 Hz with j = 1,2, . . . ,200.
For the flat spectrum, we assume the frequencies associated
with the system and reservoir to be ω = 109 Hz and ωj = j ×

FIG. 2. (Color online) (a) The probability of the system being in
state |1〉 with a Lorentzian spectrum. We can see that our numerical
solution is close to the exact solution. On the other hand, we can see
master equation is not valid for this situation. (We set the reservoir to
have 200 equally distributed oscillators while getting the numerical
solution of our method.) (b) The probability of the system being in
state |1〉 when the coupling strengths γk are constant. We can see that
the lines of our numerical solution and master equation’s solution
coincide with each other.
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107 Hz (j = 1,2, . . . ,200), respectively. For the Lorentzian
spectrum, however, we change the frequencies of the reservoir
to be ωj = (50 + j/2) × 107 Hz (j = 1,2, . . . ,200) due to the
shape of the Lorentzian spectrum, which varies dramatically
at the center and is negligible at two sides. By making this
change, we can sample the spectrum better. Then we plot
Fig. 2. We can find that while the master equation leads to a
good approximate solution in some cases, it fails sometimes.
Thus, our method is more reliable, and the accuracy can be
further improved by using better numerical methods.

We also note that the parity kicks can be done by increasing
the frequency of the harmonic oscillator for a short time
interval. For example, this can be achieved in the ion trap by
changing the electric field. (Also see Refs. [22,23] for schemes
of generating squeezed states in ion traps.)

VII. CONCLUSION

We have shown that for a general Hamiltonian with bononic
quadratic forms, we can compute dynamics of a system
using exponential quadratic operators. Our method provides
substantial improvement over computation involving master

equations as we do not need to solve any differential equations,
and it provides numerical solutions for Hamiltonians that can
be written in quadratic forms of creation and annihilation
operators. Thus, this technique compares well with the
dynamics of the system under a master equation, but it is
in some sense more appealing as it could provide analytical
expressions for some cases. In particular, we analyze the
effect of reservoir in a squeezing process, and we propose
a possible scheme to improve the degree of squeezing. Our
method can be applied to study the problem on the quantization
of nanomechanical systems; further work will be presented
elsewhere.
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