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Non-Markovianity of the damped Jaynes-Cummings model with detuning
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The degree of non-Markovian behavior of a damped Jaynes-Cummings model with detuning is investigated.
Our attention is focused on the effects of the detuning and the width of the Lorentzian spectral density on the
degree of non-Markovian behavior. It is found that an increase of the detuning can make the information exchange
between the qubit and the reservoir more rapid, and this leads to an increase in the degree of non-Markovianity for
some cases, while an increase of the spectral width always leads to a decrease in the degree of non-Markovianity.
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I. INTRODUCTION

All realistic quantum systems are open to essentially
uncontrollable environments that act as sources of decoherence
and dissipation. Therefore the study of open quantum systems
taking into account the effect of the environment on the
dynamical evolution of the system of interest has become more
and more interesting [1,2]. According to the character of the
environment, the quantum dynamical processes can be simply
classified into Markovian processes with no memory effect
and non-Markovian ones with pronounced memory effect.

For memoryless Markovian open systems, the environment
acts as a sink for the system information. Because of the
system-reservoir interaction, the system of interest loses
information into the environment, and this lost information
plays no further role in the system dynamics. However, in
the non-Markovian case, owing to the memory effect, the
information lost by the system during the interaction with
the environment will return to the system at a later time.
This shows much more complicated behaviors than in the
Markovian case.

Most of the results on open system dynamics are based
on the Markovian approximation [1,2]. Recent studies have
shown that the limits of Markovian and non-Markovian
quantum processes play an increasingly important role in
many fields of physics, such as quantum optics [2–4], solid
state physics [5], and quantum information science [6,7].
Recently, non-Markovian dynamics has been investigated in
many works [8–12].

In order to study non-Markovian dynamics quantitatively,
following the first computable measure of Markovianity for
quantum channels introduced in Ref. [13], some measures for
the degree of non-Markovianity have been introduced [14–17].
Reference [14] shows that the difference between Markovian
and non-Markovian processes can be measured through the
continuous increment of the state distinguishability. The
increment can be interpreted as the revival of information flow
from the reservoir to the system.

When we consider particular models such as the damped
Jaynes-Cummings model with detuning, the following main
questions arise: What are the major determinants for the
non-Markovianity and how does the non-Markovianity depend
on them? The object of this paper is to study the degree
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of non-Markovian behavior of a damped Jaynes-Cummings
model with detuning. We mainly focus on the effects of the
detuning � and the width of the Lorentzian spectral density λ

on the degree of non-Markovian behavior. We find that there
exists a transition point of λ at which the process is divided
into Markovian and non-Markovian regimes; the value of the
transition point is determined by the value of the detuning
�. We also give the physical origin of the nonmonotonic
behavior of the non-Markovianity in the case of short reservoir
correlation time.

The paper is organized as follows. In Sec. II, we present
the model and its analytical solution. In Sec. III, we review
briefly the measure for the degree of non-Markovian behavior
and give the non-Markovianity of the model. Section IV is
devoted to studying the effects of the detuning � and λ on the
non-Markovianity. Finally, we give our conclusions in Sec. V.

II. THE MODEL

In this paper we consider a qubit with excited state |e〉 and
ground state |g〉 that interacts with a reservoir formed by the
quantized modes of a high-Q cavity. The total Hamiltonian of
this typical model reads

H = 1

2
ω0σ+σ− +

∑
k

ωkb
†
kbk + (σ+B + σ−B†) (1)

with B = ∑
k gkbk , where ω0 is the transition frequency of the

qubit, and σ+ and σ− are the system raising and lowering
operators, respectively; the index k labels the field modes
of the reservoir with frequencies ωk; b

†
k and bk are respectively

the modes’ creation and annihilation operators; and gk denote
the coupling constants. At zero temperature, this Hamiltonian
represents one of the few open quantum systems amenable to
an exact solution [1,18,19].

If we restrict ourselves to the case of a single excitation in
the whole system, we can expand the state of the total system
at any time t as

|φ(t)〉 = c1(t)|e〉S |0〉R +
∑

k

ck(t)|g〉S |1k〉R, (2)

where |0〉R denotes the vacuum state of the reservoir and |1k〉R
is the state of the reservoir with only one excitation in the kth
mode. Letting t = 0, we obtain an initial state of the form

|φ(0)〉 = c1(0)|e〉S |0〉R +
∑

k

ck(0)|g〉S |1k〉R. (3)
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The time evolution of these probability amplitudes is governed
by a series of differential equations that is easily derived from
the Schrödinger equation:

ċ1(t) = −i
∑

k

gk exp[i(ω0 − ωk)t]ck(t), (4)

ċk(t) = −ig∗
k exp[−i(ω0 − ωk)t]c1(t). (5)

Assuming that there are no photons in the initial state, that
is, ck(0) = 0, we solve Eq. (5) and substitute the solution into
Eq. (4) to obtain a closed equation for c1(t):

ċ1(t) = −
∫ t

0
dt1f (t − t1)c1(t). (6)

The correlation function f (t − t1) is related to the spectral
density J (ω) of the reservoir by

f (t − t1) =
∫

dωJ (ω) exp[i(ω0 − ω)(t − t1)]. (7)

The exact form of c1(t) thus depends on the particular choice
of the spectral density of the reservoir. Here, we investigate
the detuning case of a Lorentzian spectral density [1]

J (ω) = 1

2π

γ0λ
2

(ω0 − ω − �)2 + λ2
, (8)

where � = ω0 − ωc is the detuning of ωc and ω0, and ωc

is the center frequency of the cavity. It is worth noting that
the effective coupling between the qubit and its environment
decreases when the value of the detuning � increases. The
parameter λ defines the spectral width of the reservoir and is
connected to the reservoir correlation time τR = λ−1. On the
other hand, the parameter γ0 can be shown to be related to the
decay of the excited state of the qubit in the Markovian limit
of a flat spectrum. The relaxation time scale τS over which the
state of the system changes is then related to γ0 by τS = γ −1

0 .
In order to compute the exact probability amplitude c1(t), we
evaluate the reservoir correlation function f (t − t1) using the
spectral density J (ω):

f (t − t1) = 1

2
γ0λ exp[−(λ − i�)(t − t1)]. (9)

For this f (t − t1), the differential equation (6) for the prob-
ability amplitude c1(t) can be easily solved to give the exact
solution by Laplace transform,

c1(t) = c1(0)h(t), (10)

where

h(t) = e−(λ−i�)t/2

[
cosh

(
dt

2

)
+ λ − i�

d
sinh

(
dt

2

)]
(11)

with d =
√

(λ − i�)2 − 2γ0λ.
The time-dependent decay rate is

γ (t) = Re

{
2γ0λ sinh(dt/2)

d cosh(dt/2) + (−i� + λ) sinh(dt/2)

}
, (12)

where Re(z) denotes the real part of z. For the resonance case,
namely, � = 0, Eq. (12) reduces to

γ (t) = 2γ0λ sinh(d ′t/2)

d ′ cosh(d ′t/2) + λ sinh(d ′t/2)
(13)

with d ′ =
√

λ2 − 2γ0λ. This is the very time-dependent decay
rate Eq. (10.47) of Ref. [1]. We should note that Eq. (13)
holds for all cases except λ = 2γ0. When λ = 2γ0, the time-
dependent rate reduces to γ (t) = 2γ0; when λ > 2γ0, γ (t) > 0
for all t > 0; when λ > 2γ0, γ (t) < 0 for some time intervals.

III. THE DEGREE OF NON-MARKOVIANITY

The measure for non-Markovianity defined in Ref. [14] is

N = max
ρ1,2(0)

∫
σ>0

dtσ (t,ρ1,2(0)), (14)

where σ (t,ρ1,2(0)) is the rate of change of the trace distance,
which can be defined as

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t)). (15)

D(ρ1,ρ2) = 1
2 |ρ1 − ρ2| is the trace distance of the quantum

states ρ1 and ρ2, describing the distinguishability between
the two states and satisfying 0 � D � 1. For convenience,
we abbreviate σ (t,ρ1,2(0)) to σ (t). We should note that
σ (t) � 0 for all dynamical semigroups and all time-dependent
Markovian processes, while, if there exists a pair of initial
states and a certain time t such that σ (t) > 0, the process is
non-Markovian. Physically, this means that for non-Markovian
dynamics the distinguishability of the pair of states increases at
certain times. This can be interpreted as a flow of information
from the environment back to the system, which enhances the
possibility of distinguishing the two states.

From Eq. (14) we find that to obtain the degree of
non-Markovianity we should take the maximum over all
initial states ρ1,2(0), which is difficult to obtain because of
optimization. However, by drawing a sufficiently large sample
of random pairs of initial states, Breuer et al. [14] have shown
by strong numerical evidence that for the off-resonant case the
maximum is attained for the initial states ρ1(0) = |0〉〈0| and
ρ2(0) = |1〉〈1|. For other cases, any observed growth of the
trace distance is a clear signature of non-Markovian behavior
and leads to a lower bound for N .

For these two initial states, the trace distance has a simple
expression,

D(ρ1(t),ρ2(t)) = |h(t)|2. (16)

From Eq. (16) we can find a direct link between the time
behavior of the single-qubit excited-state population |h(t)|2
and the trace distance D(ρ1(t),ρ2(t)). This relation shows that
for the off-resonant case a return of information from the
reservoir back into the system is always accompanied by a
feedback of energy.

After some calculations, we finally obtain the rate of change
of the trace distance,

σ (t) = e−λt {µ[cosh(at) − cos(bt)] + ν sinh(at) − ξ sin(bt)},
(17)

where a and b denote the real and the imaginary parts
of d, respectively; µ = (1/2|d|2)(λa2 − λb2 − λ�2 − λ3 −
2ab�); ν = (1/2|d|2)(a3 + ab2 − λ2a + a�2 + 2b�λ); ξ =
(1/2|d|2)(b3 + ba2 + λ2b − b�2 + 2a�λ); and |d| stands for
the absolute value of d. Having Eqs. (14) and (17) in mind,
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FIG. 1. Non-Markovianity N as a function of λ for two different
values of �.

we can study the non-Markovianity of the model for different
parameters.

IV. THE EFFECTS OF � AND λ ON THE
NON-MARKOVIANITY

In this section, we consider the effects of the detuning and
the width of the Lorentzian spectral density. Figure 1 shows
the non-Markovianity N as a function of λ for � = 0 (the
resonance case) and � = 20γ0 (the detuning case). From Fig. 1
we see that for both cases the non-Markovianty decreases with
increasing λ. This can be understood as follows. The parameter
λ is connected to the reservoir correlation time τR = λ−1. The
increase of λ indicates a decrease of the reservoir correlation
time, and hence the non-Markoviantity becomes weaker.

Another intriguing aspect is how the non-Markovianity
depends on the detuning � for certain λ. Figure 2(a) shows
the non-Markovianity N as a function of � for λ = 0.01γ0,
namely, the case of long reservoir correlation time. From
Fig. 2(a) we see that in this case the non-Markovianty
decreases with increasing �. This can be illustrated as follows.
The parameter � is the detuning between the center frequency
of the cavity and the qubit transition frequency. When the
value of the detuning � increases, the effective coupling
between the qubit and the reservoir decreases, and thus the
amount of information exchanged between the qubit and the
reservoir is reduced. This leads to a decrease of the reversed

FIG. 2. Non-Markovianity N as a function of � for two different
values of λ.

FIG. 3. Dynamics of the change rate of the trace distance for
different values of λ and �.

information flow from environment to system. and hence the
non-Markovianity becomes weaker.

Is this a general property for all values of λ? The answer is
no. Figure 2(b) shows the non-Markovianity N as a function
of � for λ = 100γ0, namely, short reservoir correlation
times. Figure 2(b) exhibits a nonmonotonic behavior: when
� < 380γ0, the non-Markovianity is nearly zero, and then
increases with increasing �; after it reaches a maximum value,
it decreases with further increase of �. We note that similar
behavior can be found in Ref. [14] but its physical origin is not
exactly known.

In order to understand the physical origin of the non-
monotonic behavior of the non-Markovianity, we investigate
the effects of � on the change rate of the trace distance to
gain insight into the physical processes characterizing the
dynamics. From a numerical calculation, we find that λ and �

determine the presence or the absence of oscillations around
the stationary value 0 of the change rate of the trace distance.
Figure 3 shows the dynamics of the change rate of the trace
distance for different values of λ and �. In the resonance
case (� = 0), when λ > 2γ0, there is no oscillation and σ (t)
converges to zero for long times [Fig. 3(a)]. This indicates that
the behavior of the system is Markovian and irreversible decay
occurs. When λ < 2γ0, oscillations are present and for some
time intervals σ (t) is larger than zero. This indicates that in
these time intervals the flow of energy and information from the
system to the environment is reversed and then non-Markovian
dynamics occurs [Fig. 3(b)]. In other words, the transition
between the Markovian and the non-Marlovian regimes occurs
at the transition point λt = 2γ0.

For the detuning case (namely � �= 0), numerical calcu-
lation shows that, for some values of λ that are larger than
2γ0, σ (t) exhibits oscillations, and for some time intervals
σ (t) is larger than zero. This indicates that the process is
non-Markovian and the transition point should be different
from that in the resonance case. Take the case � = 8γ0 as an
example; we find that the transition point is λt = 2.32γ0, that
is, when λ > 2.32γ0 there is no positive value of σ (t) [see
Fig. 3(c)], while, when λ < 2.32γ0, σ (t) is positive in some
time intervals [see Fig. 3(d)].

The numerical calculation also shows that the value of the
transition point depends on the detuning �. In Fig. 4 we give
the values of the transition point for different values of �.
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FIG. 4. The transition point for different values of �.

Figure 4 shows that the values of the transition point increase
with increasing �. This can be understood as follows. It is well
known [3] that for the Jaynes-Cummings model, the atomic
inversion exhibits Rabi oscillation as time evolves and the Rabi
frequency is determined by the detuning, that is, the larger the
detuning, the larger the Rabi frequency. We know that the
oscillations of the atomic inversion represent the exchanging
of energy between the atom and the field. When the Rabi
frequency becomes larger, the energy exchange will become
more rapid. This means that an increase of the detuning makes
the exchange between the atom and the field more rapid. From
Eq. (16), we know that there is a direct link between the
information exchange and the energy. Thus the result shown
above can be generalized to our case, that is, an increase
of the detuning makes the energy (and at the same time the
information) exchange between the qubit and reservoir more
rapid too. This will lead to a quick reversal of information from
reservoir to qubit. As a result, the non-Markovian phenomenon
occurs for a correlation time that is not long.

Then the physical origin of the nonmonotonic behavior
shown in Fig. 2(b) can be explained as follows. Remember
that the increase of the detuning has two kinds of effect on the

dynamics of the system, that is, (i) it makes the information
exchange between the qubit and the reservoir more rapid and
(ii) it makes the effective coupling between the qubit and the
reservoir decrease. The non-Markovianity is determined by
the competition between the two effects, that is, when the
former plays the dominating role, the non-Markovianity will
increase with increasing �; otherwise, the non-Markovianity
will decrease with increasing �.

V. CONCLUSION

In this paper, we have studied the effects of the detuning
� and the width of the Lorentzian spectral density λ on
the degree of non-Markovian behavior of a damped Jaynes-
Cummings model with detuning. The non-Markovianity is
measured by the the non-Markovian behavior measure given
in Ref. [14]. We find that, for the off-resonant case, a return of
information from the reservoir back into the system is always
accompanied by a feedback of energy. We also find that there
exists a transition point that divides the dynamics into Marko-
vian and non-Markovian regimes; the value of the transition
point is determined by the detuning �: the larger the detuning
�, the larger the value of the transition point. In addition,
we show that the increasing of the detuning has two kinds
of effect on the dynamics of the system, that is, (i) it makes
the information exchange between the qubit and the reservoir
more rapid and (ii) it makes the effective coupling between
the qubit and the reservoir decrease. The competition between
the two effects can lead to nonmonotonic behavior of the non-
Markovianity in the case of short reservoir correlation time.
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