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Photon correlations in positron annihilation
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The two-photon positron annihilation density matrix is found to separate into a diagonal center-of-energy
factor implying maximally entangled momenta, and a relative factor describing decay. For unknown positron
injection time, the distribution of the difference in photon arrival times is a double exponential at the para-Ps
decay rate, consistent with experiment [V. D. Irby, Meas. Sci. Technol. 15, 1799 (2004)].
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I. INTRODUCTION

When an electron and a positron with opposite spin annihi-
late, two correlated photons with total energy 2 × 0.511 MeV
are created. These annihilation γ rays cannot be manipulated
using optical beam splitters and mirrors, so interference
experiments and applications in quantum information are
not practical. However, positron annihilation is important
in medicine and material science [1]. In medical imaging,
coincident detection of the annihilation photons is the basis
for positron emission tomography (PET). In material science,
positron annihilation spectroscopy (PAS) gives information on
electron density and the distribution of electron momenta.

Positrons are created by the decay of radioactive nuclei
such as 22Na or 18F imbedded in the sample of interest. For
example, the 1.275 MeV nuclear γ ray emitted immediately
following the positron emission from 22Na determines the time
of positron injection. In positron lifetime (PAL) measurements
the arrival time difference between the nuclear photon and
one of the annihilation photons is measured. Positron anni-
hilation in condensed matter proceeds through bound states
of positrons with electrons, atoms, molecules, and various
defects [1]. The annihilating positron and electron form a free
or bound hydrogenlike positronium (Ps) atom. In vacuum,
singlet, or para-Ps decays into two γ rays with a lifetime of
125 ps. In α−SiO2 the para-Ps lifetime is increased to 156 ps

due to modification of the dielectric constant and electron mass
relative to vacuum [2].

Recently it has been suggested that measurement of the
arrival time difference between paired annihilation photons
will improve signal to noise in medical imaging applications,
leading to time of flight (TOF) PET [3]. This is plausible
because the most widely accepted viewpoint is that the
minimum quantum uncertainty in time is zero due to detection-
induced nonlocal collapse [4]. Irby measured the time interval
between detection of the annihilation photons from a 22Na
source and obtained 123 ± 22 Ps [4]. This is a surprising result
since, in his experiment, the annihilation photons originate in
a source a few millimeters thick and a photon travels almost
4 cm in air in this time.

To explain these observations, Irby generalized the Einstein,
Podolsky, and Rosen (EPR) [5] example of position and
momentum as elements of reality to include time and energy
dependence [6]. Using entangled spins as an illustration, he
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showed that restriction of one observable leads to reduced
nonlocality of its conjugate. He attributed his experimental
results to maximally restricted photon momenta, leading
to the elimination of nonlocality in the conjugate position
observables. However, a complete explanation requires a
theory of the 123-ps wide distribution of time differences that
he observed. Here we give a quantitative explanation of his
observations by performing a detailed analysis of Ps decay.

II. THEORY

This section is based on Sakurai’s theory of positron
annihilation [7], summarized in Sec. II A, transformed to
relative and center of energy coordinates in Sec. II B, and
modified to explicitly include exponential decay in Sec. II C.
Natural units in which h̄ = c = 1 are used, the electron-
positron mass is denoted as m, and the positron charge is e. The
dimensionless fine-structure constant is then α = e2/4π =
1/137. The subscript + refers to the positron and − to an
electron. We consider a relativistic expansion in powers of
the Fermion speeds, β+ and β−, denoted β± where, to first
order in β±, the annihilation photons are counterpropagating.
To simplify the equations it is assumed that the photon pulses
are well separated from the positron source when they reach
the detectors.

A. Positron annihilation

Position annihilation according to the Dirac equation is
discussed by Sakurai. He performed a perturbation expansion
in powers of e and finds that the first nonzero term is of second
order. The Feynman diagram of such a process is sketched in
Fig. 1: An electron with four-momentum p− = (E−, p−) is
scattered to four-momentum q = (q0,q) at space-time point
x2 = (t2,x2) while emitting a photon with four-momentum
k2 = (ω2,k2). At x1, this electron annihilates with the positron
and emits a photon with four-momentum k1. If instead the
positron is scattered first, q ↔ −q, and the photons are
interchanged. Sakurai obtained a scattering cross section for
two-photon annihilation of πr2

0 /β+ where r0 = α/m. The
Bohr radius, a0 = 1/(αm) is larger than r0 by a factor α−2,
so the volume of an atom appears infinite on the length scale
r0 and the center-of-energy momentum is conserved, that is,

k1 + k2 = p+ + p−. (1)
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FIG. 1. (Color online) A two-photon Feynman diagram. An
electron, p−, emits a photon, k2, while scattering to a virtual state,
q. It then annihilates with a positron, p+, while creating a second
photon, k1.

Sakurai applied his scattering theory to Ps by setting the
electron density equal to |ψ1s |2 = 1/[π (2a0)3] and obtained
a decay rate

� = 1
2α5m, (2)

equivalent to a lifetime �−1 = 125 ps.
In Sakurai’s covariant formulation, energy and momentum

are conserved at the vertices and the state q describes a
virtual particle for which the Fermion dispersion relation is not
imposed. However, since the final and initial states describe
real particles, the dispersion relations

ωj = |kj |,
(3)

E± =
√

m2 + | p±|2,
must be satisfied. In the more usual noncovariant formulation
of perturbation theory, the dispersion relation is satisfied by the
virtual Fermion, but energy is not conserved between t1 and t2.
To zero order in β± the annihilation photon k2 has energy m,
so the excess energy of the virtual state must be greater than
m. Thus the intermediate state in Fig. 1 persists for less than
m−1 = 1.3 × 10−21 s, implying that two-photon annihilation
is effectively instantaneous.

B. Relative and center coordinates

Here the center (of energy) and relative coordinates

kc = k1 + k2, kr = 1
2 (k1 − k2),

pc = p+ + p−, pr = 1
2 ( p+ − p−), (4)

xc = 1
2 (x1 + x2), and xr = x1 − x2,

will be used. Since k1 · x1 + k2 · x2 = kc · xc + kr · xr for
the photons and p+ · x1 + p− · x2 = pc · xc + pr · xr for the
Fermions, the exponent in a Fourier transform is preserved by
this transformation, and relative momentum and position are
conjugate observables, as are center momentum and position.

For counterpropagating photons, the magnitudes of k1 and
k2 should be added (subtracted) to obtain the magnitude of the
relative (center) wave vector so that, according to (3) and (4),

ω ≡ ω1 + ω2 = 2|kr |,
(5)

�ω ≡ ω1 − ω2 = |kc|.

To second order in β± the Ps total energy is

E = 2m + p2
c

/
4m. (6)

For a positron created at time t0 contributions with different
pc rapidly get out of phase due to the factor exp[−ip2

c (t −
t0)/4m], leading to a density matrix that is diagonal in center-
of-energy momentum. The relative dynamics, described by
kr , are decoupled from the center motion, described by kc. In
relative and center coordinates conservation of momentum (1)
becomes

kc = pc. (7)

Since pc has a definite value, the momenta of the annihilation
photons are maximally restricted according k2 = pc − k1 as
observed by Irby.

C. Dynamics

Sakurai calculated the Ps decay rate so, implicitly, ω is not
exactly equal to E, but has a linewidth �. Decay as a function
of t will be considered in this section.

A pure state will be written as a linear combination of a Ps
atom in the 1s state with definite center-of-mass momentum
pc, and the two annihilation photons described by their relative
and center momenta. If a positron is injected at time t0 the
Schrödinger picture (SP) state vector is then∣∣	kc

〉 = c1s(t)|1s,kc〉 +
∑

kr

ckr
(t)|kr ,kc〉, (8)

for t > t0 and |	kc
〉 = 0 for t < t0. We will take the volume V

to be finite so that the momenta are discrete. To second order
in e, the dynamical equations describing the relative motion
for t > t0 are [8]

ċ1s(t) = −iEc1s(t) − i
∑

kr
U (2)

r ckr
(t),

(9)
ċkr

(t) = −iωckr
(t) − iU (2)

r c1s(t),

where the dot denotes differentiation with respect to t and
U̇

(2)
f i = U (2)

r δ3(kc − pc) is the time derivative of the transition
matrix element from Ps to the two-photon state. Equation (9)
describes Weisskopf-Wigner spontaneous emission that is
exponential in time and Lorentzian in frequency. A system of
equations of the form (9) are solved in the interaction picture
in [9]. For t − t0 � �−1, decay is essentially complete so that
the photon pulse is well separated from the source and [10]
gives

ckr
(t) = AU (2)

r

exp[−iω(t − t0)]

ω − E + i�
, (10)

in the SP with ω = 2|kr | and E = 2m to first order in β±. The
factor A is a constant and (10) can be normalized using the
integral I1 in Appendix A with the result

ckr
(t) =

√
8π�

V E2

exp[−iω(t − t0)]

ω − E + i�
. (11)

A pure-state vector is of the form

|	kc
〉 = �(τ1 − t0)�(τ2 − t0)|kc〉 ⊗ |	r〉, (12)

τj ≡ t − |xj |, (13)
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where xj is the position of the j th photon, τj is its emission
time, the � functions ensure that no photons exist before the
positron is injected, and

|	r〉 =
√

8π�

V E2

∑
kr

exp[−iω(t − t0)]

ω − E + i�
|kr〉, (14)

describes the relative dynamics.
The space-time wave function is ψ(xr ,t) = 〈xr |	r〉 such

that

|	r〉 =
∫

d3xrψ(xr ,t)|xr〉, (15)

with

ψ(xr ,t) =
√

4�

E2

∑
kr

exp(iωt0)

ω − E + i�

exp(ikr xr − iωt)

(2π )3/2
. (16)

Strictly speaking, the kr amplitudes should be weighted as in
a 1s state, but � � a−1

0 , so this can be ignored. Substitution
of k = kr , r = xr and t = t − t0 in integral I2 in Appendix B
gives

ψ(|xr |,t) =
√

�

4π

1

|xr | exp

[
−(iE + �)

(
t − t0 − 1

2
|xr |

)]
,

(17)

where a similar term involving t − t0 + 1
2 |xr | has been

neglected. This wave function is normalized if it is assumed
that the photon pulse has propagated far enough so that
exp[−�(t − t0)] � 1.

For a measurement described by the operator Ô, the
expected value is

〈Ô〉 =
∑

kc

pkc
〈	kc

|Ô|	kc
〉, (18)

where |	kc
〉 given by (12) is a pure state and the probability

for center-of-mass momentum kc is pkc
. Normalization is such

that 〈xr |x′
r〉 = δ3(xr − x′

r ), 〈kc|k′
c〉 = δkc,k

′
c
, and

∑
kc

pkc
=∑

kr
|ckr

|2 = ∫
d3xr |ψ(xr ,t)|2 = 1. The � functions in (12)

limit the volume that the j th photon can occupy to V =
4
3π (t − t0)3. For finite volume conservation of momentum (7)
is approximate, with uncertainty of order π/(t − t0) in each of
its components.

III. APPLICATION TO EXPERIMENTS

In this section, Eq. (18) will be applied to Doppler
broadening (PAS experiments) and the arrival time difference
between the nuclear photon and one of the annihilation photons
(PAL experiments), and the Irby experiment will be analyzed.

A. Doppler broadening

Reports A measurement of the distribution of the Ps center
of mass momentum was reported in Ref. [11] so that Ô =
|kc〉〈kc|. Substitution in (18) gives the probability of center
wave vector kc as

〈|kc〉〈kc|〉 = pkc
. (19)

This experiment was performed using a positron source
embedded in biological tissue, and the Gaussian distribution

p(kc) = 1

(πσ 2)3/2
exp

(
−|kc|2

σ 2

)
, (20)

with σ = 2.4 keV= 0.005 m was obtained. The continuous
distribution is related to the discrete probability by p(k) =
pkc

V /(2π )3.

If these center-of-mass momenta were to add coherently,
the time uncertainty for the second photodetection event would
be very small. However, the photon momenta are maximally
correlated so, if xc were to be measured, (18) gives

〈|xc〉〈xc|〉 =
∑

kc

pkc
|〈xc|kc〉|2 = 1

V
. (21)

This implies that the photon center of energy is equally likely
to be found anywhere within the allowed volume since the
only information available about its position is a consequence
of causality and knowledge of the position and time of positron
injection.

B. PAL experiments

In PAL experiments such as the measurement of positron
lifetime in α-SiO2 [2], photons are counted at fixed x1 as
a function t − t0. It is assumed here that para-Ps forms
as soon as the positron is injected, although in reality the
situation is more complicated than this. To first order in β±
the wave vector kr has length m and arbitrary direction. The
wave vector kc has a definite value and its magnitude is
distributed according to (20). Substitution of Ô = |x1〉〈x1|,
1̂ = ∫

d3x2|x2〉〈x2|, (12), and (17) in (18) gives

〈|x1〉〈x1|〉 = �

4πV
exp[−�(t − t0)]�(t − t0 − |x1|)

×
∫

d3x2�(t − t0 − |x2|)

× |xr |−2 exp[−�(t − t0 − |xr |)]. (22)

This is just the trace of the density matrix over the unobserved
second photon. If the z-axis is chosen parallel to k1, the
distribution of k2 values is centered at θ = π and the factor
exp(�|xr |) selects solid angle � determined by � and centered
about cos θ = −1. To first order in β±

|xr | = |x1| + |x2|. (23)

In the limit |x1| � �−1, consistent with our assumption that
the pulse is well separated from the source, |xr | ≈ 2|x2| and
the probability density to count a photon at x1 a time t − t0
after positron injection reduces to

〈|x1〉〈x1|〉 = �

16πV
exp[−�(t − t0 − |x1|)]�(t − t0 − |x1|),

(24)

where V = 4
3π (t − t0)3. Thus the rate at which correlated

nuclear and annihilation photons are counted decays exponen-
tially. The coefficient of the exponential reflects our limited
knowledge of the position of the two-photon center of energy.
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FIG. 2. (Color online) Irby experiment. A positron is created in
the source S and the time difference between annihilation photons
arriving at detectors d1 and d2 is measured.

C. Irby experiment

In the Irby experiment, illustrated in Fig. 2, photons are
emitted by a source S, approximately 3 mm thick. They
are detected at the fixed positions x1 and x2 as a function
of t1 − t2 where tj is the time when a photon is counted
at detector j . Irby derived a wave function that generalizes
the example considered by Einstein, Podolsky, and Rosen
(EPR) by including time dependence and conservation of
energy [6]. He assumed zero center-of-mass motion so that
the photons have momentum p and −p. The relative position
xr corresponds to x1 − x2 and the Fourier amplitude ckr

given
by (11) corresponds to f (p) in Irby’s Eq. (13).

Following EPR and Irby [5,6] and using (23) in the form
|xr | = |x<| + |x>|, the wave function (17) can be written as

ψ(|xr |,t) =
∫ ∞

0
dxδ(|x<| − x)ψ(|x>| + x,t), (25)

where δ(|x<| − x) is a position eigenvector with eigenvalue x,
x<is the position while t< is the time of the first photodetection
event, and x> is the position of the second photon. When the
first photon is counted at time t< the wave function collapses to
the coefficient of the δ function in (25). To ensure propagation
at the speed of light, this one-photon exponentially decaying
pulse can be written as

ψ(|x>|,t) =
√

�

4π

1

|x<| + |x>|
× exp

[
−1

2
(iE + �)(t< − t0 − |x<|)

]

× exp

[
−1

2
(iE + �)(t − t0 − |x>|)

]
. (26)

Time and distance dependence for the undetected photon is
described by the last exponential, so the probability density is
proportional to exp[−�(t − t0 − |x>|)] or zero. If the second
photon is counted at time t>, allowing for the xc density V −1

the probability density for coincident photodetection is

P = 1

V

∣∣∣∣ψ
(

|xr |, t1 + t2

2

)∣∣∣∣2

, (27)

where |xr | is the detector separation, t< + t> = t1 + t2, and ψ

is given by (17).
Essentially the same result is obtained from the second-

order Glauber correlation function [12]

G(2)(x1,x2) = 〈E(−)(x1)E(−)(x2)E(+)(x2)E(+)(x1)〉, (28)

where xj = (tj ,xj ). For photodetection at times t1 and t2, the
positive frequency electric-field operators in G(2) result in a
factor

exp[−i(ω1t1 + ω2t2)]=exp

[
−i

(
ω

t1 + t2

2
+ �ω

2
(t1 − t2)

)]
.

(29)

Since
√

ω1ω2 = m is a constant to first order in β±

G(2)(x1,x2) ∝ 1

V

∣∣∣∣ψ
(

|xr |, t1 + t2

2

)∣∣∣∣2

, (30)

equal to P given by (27).
The probability density P is proportional to exp[−�(t1 +

t2 − 2t0)], but Irby measured the distribution of t1 − t2, and
neither (27) nor the absolute square or Irby’s wave function
in [4] gives their probabilities directly. The resolution to this
problem lies in averaging over the positron injection time t0
that is not measured but must be earlier than both τ1 and τ2.
If it is assumed that positrons are injected at a constant rate
r = 1/T , substitution of (17) in (27) gives

P = r�

4π |xr |2V
∫ T/2

−T/2
dt0 exp[−�(t1 + t2 − 2t0 − |xr |)]

×�(τ1 − t0)�(τ2 − t0). (31)

The integral (31) is evaluated as I3 in Appendix C with the
upper limit of the t0 integral is taken to be the earlier photon
emission time. The result is

P = r

8π |xr |2V exp(−�|τ1 − τ2|), (32)

where τj = tj − |xj |.
Irby fit his date to a Lorentzian curve while, according

to (32), the experimental picosecond timing analyzer (PTA)
spectrum in Figs. 4 and 5 of Ref. [4] is a double exponential.
This discrepancy is addressed in Fig. 3 that shows a comparison
of a double exponential to a Lorentzian and a Gaussian. The
double exponential gives the sharp peaks observed by Irby
while behaving like the Lorentzian that he used in his fits in
the tails. The Gaussian has an appreciably different shape and
does not fit the data as noted by Irby. Equation (32) derived
here should give an improved description of the experimental
results.

FIG. 3. Comparison of exponential of the absolute value
(2�)−1 exp(−�|x|) with a Lorentzian, (π�2)−1(x2 + �2)−1 and a
Gaussian (�π )−3/2 exp(−�2x2).
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IV. CONCLUSION

This paragraph describes the details of the present calcula-
tion in relation to the previous theoretical work: In Refs. [5]
and [6] the center-of-energy momentum is set equal to zero, the
wave function is given as a function of the relative coordinates,
and the time during which the photons interact, here t0 to
t0 + �−1 is assumed to be known. In the present calculation
the momentum of the center of energy has a wide range of
definite values consistent with the PAS experiments, and the
positron injection time is unknown. In [5] all relative momenta
are given equal weight. Since the time when the particles
interact is known, when one of the counterpropagating photons
is detected the position of the second photon is determined
exactly and nonlocally by collapse of the wave function. Here
and in [6] the relative momenta p = |kr | are restricted by a
function f (p), which we find here is a Lorentzian with center
at |kr | = m and full width at half maximum (FWHM) 2�,
resulting in exponential decay in space time.

Irby attributed the unexpectedly wide range of annihilation
photon PTA detection time differences that he observed to
maximally restricted photon momenta, leading to the elimina-
tion of nonlocality in the conjugate position observables [6].
Here the pure states have definite center-of-energy momentum
and Ps decay is described in terms of the relative coordinates.
After averaging over the unobserved positron injection time,
the annihilation photon coincidence rate was found to be
proportional to exp(−�|τ1 − τ2|) where τj is the photon
emission time. This supports Irby’s observation [4] that
annihilation photon pulse width is limited by the Ps lifetime.
Only the peak of the double exponential function is determined
by the position of the positron source. This is counter to
expectations, and should be taken into account in TOF PET
imaging.

Annihilation photons have played a significant role in
the development of our understanding of quantum correla-
tions. Their polarization correlations were considered, and
discarded, as a candidate for the first experimentally realizable
test of Bell’s theorem [13]. EPR used position correlations of a
pair of counterpropagating particles as their primary example
of nonlocal collapse [5]. Irby performed a direct measurement
of annihilation photon space-time correlations and concluded
that their nonlocality is erased by maximal restriction of their
momenta. Here we find that their momenta are maximally
correlated because their center-of-energy momentum has a
well-defined value. Position entanglement is ascribed to the
relative coordinates, augmented by causality. The observed
123 ps pulse width is attributed to uncertainty in the time of
photon pair creation due to Ps annihilation.
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APPENDIX A: RELATIVE NORMALIZATION

Normalization requires the evaluation of

I1 =
∑

k

1

(ω − E)2 + �2
= V

2π2

∫ ∞

0
dkk2 1

(ω − E)2 + �2
.

Since ωc ≈ 2|kr | according to (5), we want ω = 2k. Making
a change of variables to η = 2k − E with limits −∞ to ∞
and selecting a contour that encloses the pole at η = −i� with
� � E gives

I1 = V

2π2

(
E

2

)2 2πi

4i�
= V E2

16π�
.

APPENDIX B: RELATIVE K-SPACE TO X-SPACE
INTEGRALS

To evaluate (16) we need

I2 =
√

16π�

V 2E2

∫
d3k

exp(ikr − iωt)

ω − E + i�
=

√
16π�

E2

2π

ir

×
∫ ∞

0
dkk

exp(ikr) − exp(−ikr)

2k − E + i�
exp(−i2kt)

=
√

�

4π

1

r

{
exp

[
−(iE + �/2)

(
t − 1

2
r

)]

− exp

[
−(iE + �)

(
t + 1

2
r

)]}
.

APPENDIX C: IRBY EXPERIMENT T0 INTEGRAL

We need

I3 =
∫ T/2

−T/2
dt0 exp[−�(2tc − 2t0 − |xr |)]

×�(τ1 − t0)�(τ2 − t0).

If T � �−1 the limits can be extended to ±∞ and the �

functions imply that

I3 = exp[−�(2tc − |xr |)]
∫ τ<

−∞
dt0 exp[2�t0]

= (2�)−1 exp[−�(2tc − 2τ< − |xr |)],
where τ> (τ<) is the larger (smaller) of τ1 and τ2. Since
according to (4) and (13)

2tc − 2τ< = t> + t< − 2t< + 2|x<| = t> − t< + 2|x<|,
I3 = (2�)−1 exp[−�(t> − t< − |xr | + 2|x<|)].

Equation (23) gives |xr | = |x>| + |x<|, that is, the distance
between the detectors equals the sum of the source-detector
distances, so that

I3 = (2�)−1 exp[−�(t> − t< − x> + |x<|)]
= (2�)−1 exp[−�(τ> − τ<)].
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