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Entanglement dynamics of nonidentical oscillators under decohering environments
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We study the evolution of entanglement for a pair of coupled nonidentical harmonic oscillators in contact with
an environment. For both cases of a common bath and of two separate baths for each of the oscillators, a full master
equation is provided without rotating-wave approximation. The entanglement dynamics is analyzed as a function
of the diversity between the oscillators’ frequencies and their positive or negative mutual coupling and also the
correlation between the occupation numbers. The singular effect of the resonance condition (identical oscillators)
and its relationship with the possibility of preserving asymptotic entanglement are discussed. The importance of
the bath’s memory properties is investigated by comparing Markovian and non-Markovian evolutions.
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I. INTRODUCTION

Coupled harmonic oscillators are the first approximation
for a broad class of extended systems not only in different
fields of physics, but also in chemistry and biology. Within
the quantum formalism, they are the basis of the description
of electromagnetic-field interactions in quantum optics and
approximate lattice systems in different traps in atomic
physics [1,2]. Moreover, in the last few years, there has
been impressive progress toward the cooling and back-action
evasion measurement of macroscopic—in terms of number
of atoms—harmonic oscillators, by allowing the observation
of their quantum behavior. Two main classes of systems
experimentally realized are nanoelectromechanical structures
(NEMS) [3,4] and different types of optomechanical systems
[5] where nano- and micromechanical devices, cavities, or sus-
pended mirrors, respectively, are coupled to single electrons or
light. As an example, the observation of NEMS extremely near
to the ground state of motion, with an occupation factor of just
3.8 [4], has recently been reported. These experiments would
allow the observation of coherent quantum-superposition
states, entanglement, and the study of decoherence processes
in a controllable manner on massive solid-state objects.

Phenomena associated with the coupling of these quantum
oscillators have been revisited within the context of quantum
information in many theoretical studies during the last decade
[6–12]. Entropy and entanglement in extended systems with
many degrees of freedom (harmonic chains or lattices) [6]
have been characterized in fundamental and thermal states
by exploring scaling laws and connections with phase tran-
sitions [7]. An important advantage is that these systems
admit Gaussian-state solutions having a well-defined [13]
computable [14] measure of entanglement, the logarithmic
negativity [15]. The question of the generation of entanglement
has also been addressed by considering oscillators whose
parameters are modulated in time [8,9]. In these studies,
losses were generally neglected, while recently, the effects
of decoherence on a pair of entangled oscillators have been
considered in the presence of dissipation through baths of
infinite oscillators [10–12]. Our aim, in this paper, is to
analyze a rather unexplored aspect of this problem, that is, the
effect of the diversity on the entanglement between coupled
harmonic oscillators in different situations. Indeed, instead

of considering identical oscillators, we look at the effects of
detuning between their frequencies ω1 and ω2.

The interest about diversity effects on entanglement is both
theoretical and related to experimental issues. We mention, for
instance, the effect of diversity of frequencies for two photons
entering a beam splitter. This leads to a completely different
output with respect to the case of indistinguishable photons
[16,17].1 Coupling between different harmonic modes has also
been extensively studied in quantum optics in the presence of
nonlinear interactions and parametric coupling, by allowing,
for instance, generation of entanglement between photons
pairs and intense light beams [19,20] of different colors. In
that context, however, the frequency diversity of each pair of
oscillators is compensated by a third mode and is, in general,
not relevant, while here we focus on pairs of mechanical
oscillators off-resonance and with constant couplings. The
main expected consequence is indeed an effective decoupling
of the oscillators due to fast rotation of their interaction term,
and we will show the effects on the robustness of entanglement.

It is clear that the identity of the oscillators, in general, is
a very peculiar and strong assumption, which is not always
justified and introduces a symmetry into the system with
extreme consequences. It is indeed important to clarify the
effects of relaxation of this symmetry by introducing some
diversity. In an extension from two coupled oscillators to an
array, this will imply a break in the translational symmetry.
Apart from the fundamental interest, we point out that, in
experimental realization of engineered arrays of massive
quantum oscillators, some diversity between them might
actually be unavoidable. Coupled oscillators with different
frequencies have also been suggested for quantum-limited
measurements [21]. Finally, in many experiments, coupled
oscillators actually model different physical entities (for
instance, radiation and a moving mirror in optomechanics), and
a symmetric Hamiltonian would describe only a very special
case [22].

Our analysis of entanglement evolution encompasses both
diversity between harmonic oscillators and dissipation. Once

1Notice that the robustness of equal light modes or quantum inter-
ference has recently been tested against another kind of diversity—on
states—, which is dissimilar to the source that is considered [18].
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the oscillators are prepared in some entangled state (for
instance, through a sudden switch of their coupling), we look
at its robustness for increasing diversity and coupling strength.
It is well known that an object whose degrees of freedom are all
coupled to an environment will decohere into a thermal state
with the same temperature as the heat bath [2]. The thermal
state, unless temperatures are very low, is separable and
highly entropic so that after thermalization, all entanglement
shared between the coupled oscillators disappears [23]. As
the dissipating oscillators reach a separable state in a finite
time, and not asymptotically, the name of sudden death has
been suggested [24]. Still, under certain conditions on the
ways in which the oscillators dissipate, entanglement can
survive asymptotically [25]. The transition from a quantum
to a classical behavior in these systems does not only convey
fundamental interest, but it is also important in view of
applications of harmonic systems that operate at the quantum
limit, which include quantum information processing and not
shot-noise-limited measurements of displacement, forces, or
charges [26]. These phenomena have generally been studied
for identical oscillators and, in particular, previous works
provided a master equation description in the case of a fully
symmetric Hamiltonian [10,11]. Off-resonance oscillators, in
the presence of a common bath, have recently been considered
in Ref. [12] in the case of vanishing asymptotic coupling,
by showing that lower temperatures are needed to asymptoti-
cally maintain entanglement. In this work, we systematically
analyze the role of diversity on the entanglement dynamics
and provide the full master equations for ω1 �= ω2: (i) both
for common and for separate baths for the two oscillators,
(ii) without the approximation of rotating waves, which is
generally assumed when modeling light fields, and (iii) by
comparing results to the non-Markovian case.

Recently there have been some works focusing on memory
effects and non-Markovianity. In the case of continuous
variables, non-Markovian effects on entanglement evolution
have been discussed [10,27,28]. In Ref. [27], the authors
considered two identical oscillators coupled to separate baths
in the very high-temperature regime and analyzed how the
matching between the frequency of the oscillators and the
spectral density of the bath affects both Markovian and
non-Markovian dynamics. In Ref. [10], the non-Markovian
evolution has been compared with the case where both the
Markovian limit and the rotating-wave approximation in the
system-bath coupling are taken. Since the effects of these two
approximations are not easily separable, it is difficult to single
out non-Markovian corrections from that analysis. For the sake
of comparison, our study of entanglement dynamics in the
presence of diversity is also extended to the non-Markovian
case, by looking at both common and separate baths and by
showing that deviations are often actually negligible.

In Sec. II, we introduce the model of a pair of oscillators
with different frequencies and coupled through position
both between them and with the baths of oscillators. Non-
Markovian master equations in the weak-coupling limit with
one common and two separate baths are presented, and all
the details are provided in the Appendix. Temporal decay
of entanglement between the oscillators and the correlations
between the occupation numbers are shown in Sec. III by
analyzing the role of frequency diversity when their coupling

strength also is varied. Apart from the entanglement dynamics,
we also discuss its robustness (asymptotic entanglement for a
common bath) in the context of the symmetry of the system
in Sec. III B. Non-Markovian deviations from these results are
shown in Sec. IV, and further discussion and conclusions are
left for Sec. V.

II. MODEL AND MASTER EQUATIONS

We consider two harmonic oscillators with the same mass
and different frequencies coupled to a thermal bath. As
discussed in Ref. [29], depending on the distance between
the two oscillators, different modelizations of the system-bath
interaction can be performed. We will discuss the case of two
distant objects, which amounts to considering the coupling
with two independent baths, and compare it with the zero-
distance scenario (common bath). By analyzing the role of
diversity on the quantum features of this system, we also
generalize previous works on identical oscillators that dissipate
in common and separate baths [10]. The nonresonant problem
has been addressed by Paz and Roncaglia in Refs. [11,12],
where they studied entanglement dynamics of two uncoupled
oscillators that interact only through a common bath.

A. Separate baths

The model Hamiltonian, with each oscillator coupled to
an infinite number of oscillators (separate baths), is H sep =
HS + H

sep
B + H

sep
SB . The system Hamiltonian

HS = p2
1

2
+ 1

2
ω2

1x
2
1 + p2

2

2
+ 1

2
ω2

2x
2
2 + λx1x2 (1)

describes two oscillators with different frequencies ω1,2,
coupled through their positions, while
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is the free Hamiltonian of two (identical) bosonic baths, and

H
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∑
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encompasses the system-bath interaction.
The master equation for the reduced density matrix of the

two oscillators, up to the second order in H
sep
SB (weak-coupling

limit) is, by assuming h̄ = 1,

dρ

dt
= −i[HS,ρ] − 1

2

2∑
i,j=1

{
iε2

ij [xixj ,ρ] + Dij [xi,[xj ,ρ]]

+ i�ij [xi,{pj ,ρ}] − Fij [xi,[pj ,ρ]]
}
. (4)

In the Appendix, we give an explicit derivation of the master
equation together with the definition of the coefficients. Then,
ρ is subject to energy renormalization (εij ), dissipation �ij , and
diffusion Dij ,Fij . Coefficients in Eq. (4) depend on time. In
spite of the non-Markovianity, the master equation is known
to always be local in time within the weak coupling limit
[30]. Moreover, the exact master equation for identical coupled
oscillators with a common bath has also been shown to be local
in time [31,32].
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In Sec. III, we will consider the Markovian limit [performed
sending t → ∞ in Eqs. (A17)–(A20)]. Non-Markovian cor-
rections will be discussed in Sec. IV. We anticipate that we
will focus on the Markovian limit because corrections caused
by such an approximation turn out to be negligible in most
cases, both for equal or for different frequencies ω1 and ω2,
and for common or for separate baths.

To obtain an explicit expression for εij ,Dij ,�ij , and Fij ,
we need to know the density of states of the baths, defined for
both of them as

J (�) =
∑

k

λ2
k

�k

δ (� − �k). (5)

Here, we will explicitly consider the Ohmic environment with
a Lorentz-Drude cutoff function, whose spectral density is

J (�) = 2γ

π
�


2


2 + �2
. (6)

We learned from the master equation, Eq. (4), that the
system Hamiltonian is renormalized because of the presence
of εij , and this renormalization turns out to depend on the
frequency cutoff 
. This undesirable nonphysical effect can
be removed by adding to the initial Hamiltonian counterterms
[33], which exactly compensate the asymptotic values of εij .
This is accomplished by replacing εij (t) with εij (t) − εij (∞) in
Eq. (4). Then, in the Markovian case, we will simply drop them
from the master equation. This renormalization procedure
amounts to redefining the natural frequency in terms of the
observed frequency.

B. Common bath

Now, we introduce the case of a common bath modeled by

Hc
B =

∑
k

(
P 2

k

2
+ 1

2
�2

kX
2
k

)
, (7)

and we consider the same spectral density in Eq. (6). The
interaction term reads

Hc
SB =

∑
k

λkXk(x1 + x2), (8)

which means that the system is coupled to the bath through
the mode x+ = (x1 + x2)/

√
2, while the mode x− = (x1 −

x2)/
√

2 is decoupled. The master equation in this case is

dρ

dt
= −i[HS,ρ] − i

2

∑
i �=j

(
ε̄2
ii − ε̄2

jj

)
xjρxi

− 1√
2

2∑
i=1

{
iε̄2

ii[xix+,ρ] + D̄ii[x+,[xi,ρ]]

+ i�̄ii[x+,{pi,ρ}] − F̄ii[x+,[pi,ρ]]
}

(9)

(see the Appendix for the definition of the coefficients).
Coupled systems that dissipate in a common bath have recently
been a subject of interest because of the possibility for
asymptotically preserving entanglement at high temperatures,
which makes this a major distinctive feature with respect
to the case of separate baths [11]. In Sec. III B, we will
study entanglement evolution with Eq. (9) by revisiting the
possibility for asymptotically maintaining entanglement in the

presence of diversity (frequency detuning). As a matter of fact,
whereas, in the case of equal frequencies, the decoupled mode
x− is an eigenmode of the isolated system, this is no longer
true once ω1 �= ω2. We will see how asymptotic entanglement
can be preserved in the presence of diversity, through a proper
choice of the system-bath coupling constants.

C. Symmetry in λ sign

A closer look at the form of the total Hamiltonian in the
presence of separate baths allows us to single out its symmetry
properties. H sep is clearly modified by the transformation
λ → −λ. However, once a canonical transformation U is
introduced such that Ux2U

† = −x2 and Up2U
† = −p2, it is

easy to show that the master equation is invariant under the
combined action of U and the flip of λ. In fact, while HS is
left unmodified, the change in H

sep
SB (that would correspond to

flip λ
(2)
k in −λ

(2)
k ) is ineffective with respect to the evolution

of the reduced density matrix, where ρ is determined only by
contributions proportional to (λ(i)

k )2. A simple consequence of
this symmetry can be observed by studying the evolution of
the two-mode squeezed state,

|�TMS〉 =
√

1 − µ

∞∑
n=0

µn/2|n〉|n〉, (10)

where µ = tanh2 r , and r is the squeezing amplitude. For this
state, the canonical transformation U amounts to changing r to
−r . Then, the same evolution must be obtained by considering
λ in H sep and by considering a given squeezing r in the initial
condition, or −λ and −r .

All these considerations are true only in the case of separate
baths. Once the common bath is taken, because of the action
of U , the mode coupled to the bath is x− instead of x+.
Therefore, in the case of separate baths, results for opposite λ

are equivalent to a change in the sign of the initial squeezing,
while this is not the case for a common bath.

III. ENTANGLEMENT AND QUANTUM CORRELATIONS

The calculation of bipartite entanglement for mixed states
is generally an unsolved task. Nevertheless, the criterion of
positivity of the partial transposed density matrix of Gaussian
two-mode states ρTB is necessary and sufficient for their
separability [13,34,35]. The amount of entanglement can be
measured through the logarithmic negativity, defined as EN =
log2 ||ρTB ||, where ||ρTB || is the trace norm of ρTB [14]. For any
two-mode Gaussian state, the logarithmic negativity is EN =
max[0, − log2 2λ−], where λ− is the smallest symplectic
eigenvalue of ρTB .

Because the system is connected to heat baths, the dissipat-
ing degree of freedom will ultimately attain the thermal state
corresponding to the system Hamiltonian. The properties of
entanglement in the thermal state are well studied, whence, it
is known that only for very low temperatures, entanglement
is present between the two oscillators [23]. Therefore, we focus
our attention on the time evolution of the decoherence process
itself, namely, how fast an initially entangled state decays
into a separable one, for separate (Sec. III A) and common
(Sec. III B) baths.
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A. Entanglement decay for separate baths

We consider, as a nonseparable initial state, the two-mode
squeezed vacuum Eq. (10), with squeezing parameter r . This
state has an amount of entanglement proportional to r and
consists of the orthogonal modes x± = (x1 ± x2)/

√
2, which

are simultaneously squeezed and stretched, respectively, by
an amount r . Such a state, for infinite squeezing, gives the
maximally entangled state for continuous variables, which has
been known for a long time because of the famous paper by
Einstein et al. [36].

The entanglement evolution in the presence of separate
baths is shown in Fig. 1(a) for different parameter choices, by
showing the effects of increasing the coupling strength and the
detuning. Entanglement, in general, decays with an oscillatory
behavior with an oscillation amplitude that depends on the
λ strength [9]. We study the last time at which entanglement
vanishes, tF . In Figs. 2 and 3, we scan how long it takes for such
an entangled state (with r = 2) to become separable when the
oscillators’ detuning and coupling strength are varied. Indeed,
the last time tF is represented in Fig. 3 for different values
of the ratio between frequencies (ω2/ω1) and the coupling
between oscillators (λ/ω2

1).
For this choice of parameters, Fig. 2 shows that entangle-

ment is present for a few tens of periods. Due to the scaling
of temperature, time, and couplings with the frequency of the
first oscillator ω1, it is clear that results shown in Figs. 2
and 3 are not symmetric by exchange of the oscillators’ role.
In other words, even if it is physically equivalent to have the
first oscillator with half the frequency of the second one or the
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FIG. 1. (Color online) Time evolution of an entangled two-mode
squeezed initial state Eq. (10) with r = 2, in the case of (a) separate
baths and (b) a common bath. The parameters are kBT = 10ω1, γ =
0.001ω1, and cutoff frequency 
 = 50ω1. The four curves correspond
to the points in Figs. 2 and 4, namely, A (dotted black), B (solid black),
C [dotted orange (gray)], and D [solid orange (gray)]. Two features
are apparent: In the presence of a nonzero coupling λ (continuous
lines), entanglement oscillates strongly; and second, in the case of
separate baths, any initial entanglement vanishes fast, while, in the
case of a common bath, it can be made to survive by having identical
frequencies.

FIG. 2. (Color online) Parameter scan of tF (see text) as a function
of the oscillators’ coupling and frequency detuning, in the case of
separate baths. We have restricted the scan within a limited detuning
(ω2 � 2ω1) as a result of the absence of any important features outside
this region. In addition, the condition λ < ω1ω2 ensures reality of
the eigenfrequencies in the problem. The behavior of tF is basically
monotonic in ω2/ω1, with a superimposed arenalike shape, which
comes from the oscillatory nature of entanglement. See text for more
details. The dots A, B, C, and D are given in Fig. 1 as examples.

second oscillator with half the frequency of the first one, due
to the scaling, these figures are not symmetrical with respect
to the line ω2/ω1 = 1.

Figure 2 shows two main features: (i) an increase of the
survival time tF when ω2/ω1 is increased; (ii) an increase
of tF with |λ| in the absence of diversity (ω2 = ω1), while,
for ω2 >∼ 2ω1, this dependence is weakened. This can also be
appreciated in the perspective presented in Fig. 3. Both features
can be explained in terms of the eigenmodes of the system
Q± in Eq. (A10) and their eigenfrequencies �± in Eq. (A9).
Since the eigenmodes do not interact with each other, they
can be regarded as independent channels for decoherence. The
eigenmodes will only interact with near-resonant frequencies
in the bath. In addition, all variances at the thermal states they
approach are dependent upon the fraction �±/2kBT .

As far as feature (i) is concerned, in the absence of coupling
(λ = 0, implying �+,− = ω2,1) and for ω2 → ∞, the effective
temperature of the final thermal state reached by the eigenmode
Q+ will vanish, Teff,+ = kBT /ω2 → 0.

The eigenmodes will, therefore, reach a thermal
state (Teff,− = kBT /ω1) and a ground state (Teff,+ = 0),

FIG. 3. (Color online) Three-dimensional representation of
Fig. 2. Here, the arenalike shape can be better appreciated.
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respectively. Since the presence of entanglement is a com-
petition between the reduced purities of individual oscillators
and the total purity [37], just by improving the final purity
of oscillator Q+, its time evolution has an overall higher
purity, thus, making entanglement higher (and its survival
time longer). This effect is equivalent to reducing the real
temperatures of the baths (while keeping everything else
constant). While the decoherence is given by the coupling
γ and is, hence, not reduced, the reached final state is purer;
and, thus, entanglement is seen to survive longer.

As far as feature (ii) is concerned, for ω2 = ω1, the

eigenfrequencies of the system are �± =
√

ω2
1 ± |λ|. By

increasing |λ| up to ω2
1, the eigenfrequency �− vanishes,

and the amount of bath modes that have a similar frequency,
given by the spectral density, also vanishes [J (�− → 0) → 0].
That is, the amount of bath modes with which this degree of
freedom interacts tends to zero, and, therefore, the amount
of decoherence suffered. This effect, however, is partially
compensated by the fact that a vanishing �− would imply
that this mode will reach a thermal state of effective infinite
temperature. Were it not so, the entanglement would survive
asymptotically, as in the case of a common bath, where, for
ω2 = ω1, the mode �− does not decohere.

We then see that all major effects related to entanglement
decay between coupled oscillators in the presence of heat baths
can be explained in terms of: (1) eigenfrequencies (where
they lie within the spectral density of the heat baths), and
(2) effective temperatures reached by the eigenmodes after
thermalization.

A minor feature is that the increase of tF with λ and ω2 is
not completely smooth due to entanglement oscillations, and
this gives rise to the arena-shaped dependence that is clearer in
Fig. 3. In general, the dependence of the decoherence time on
the oscillation frequency of the system is negligible for optics
experiments at ambient temperatures (Teff,± = kBT /�± � 0),
but becomes extremely important in the presence of the lower
frequencies of mechanical oscillators [38].

Notice that we have restricted the coupling within the
boundary |λ| < ω1ω2 (triangle in the lower part of Fig. 2),
otherwise, one of the eigenfrequencies (�−) would become
imaginary, which means that trajectories would be unbounded
which, although not unphysical in principle, leads to leaks in
any type of experiment.

B. Common bath

Now, let us compare the previous results with the oscil-
lators’ evolution with dissipation through a common bath,
Eq. (9). This model can be considered a limit case while
separate baths would model the opposite case, when baths
are completely uncorrelated. The presence of asymptotic
entanglement in this situation has been studied in Refs.
[10,11,25], by showing that entanglement can survive for
sufficiently low temperatures (or conversely, for high enough
initial squeezing). In the case in which there are different
frequencies, Paz and Roncaglia noticed in Ref. [12] that this
asymptotic behavior disappears as the detuning is increased,
which means that it is highly dependent on the frequency
matching between oscillators and the fact that each oscillator’s

FIG. 4. (Color online) Parameter scan of tF (see text) as a function
of the oscillators’ coupling and frequency detuning, in the case of a
common bath. As seen here, tF is huge whenever the detuning is
small and on the order of tens of periods for high detuning. As
expected, at resonance, one of the eigenmodes decouples from the
baths, which leads to an infinite tF . We have truncated the plot at
heights of ω1tF = 210, otherwise, this mountain riff is infinitely high
(but only strictly infinite when ω1 = ω2).

bath can be regarded as perfectly correlated to the other one. In
physical realizations, these two conditions will hardly be met,
and it will be interesting to discover the effect of deviations
from it. We have then studied the effects of frequency diversity
in the case of a common bath, by looking again at the
robustness of entanglement in terms of the decay time tF
[Fig. 1(b)]. In Figs. 4 and 5, we show results equivalent to those
represented in Figs. 2 and 3 but for a common bath. There, we
see that, in the resonant case, entanglement never vanishes, and
so the survival time in that case is infinite. In Fig. 5, diverging
times tF are recognized along the line ω1 = ω2.

When the oscillators’ frequencies begin to differ, survival
diminishes fast to values similar to the uncorrelated bath’s case.
This phenomenon can be determined from the master equation,
Eq. (9). The fact that the coupling to the bath is γ (x1 + x2)
establishes that the mode x− remains decoupled at all times,
thus, by keeping its coherence and by contributing positively
to a nonzero entanglement. If the frequencies are different, that
mode gets coupled to x+, which is itself coupled to the bath,
and its decoherence is transferred to x−. This way, both modes

FIG. 5. (Color online) Three-dimensional representation of
Fig. 4. Apart from the riff at equal frequencies, the shape is very
similar to the case of separate baths, with an arenalike bowl shape.
We have drawn a mesh to guide the reader’s eye. Again, heights over
tF = 210/ω1 have been truncated (yellow region).
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are decohered and end up in a thermal state, with no presence
of entanglement. Hence, the survival time is finite. Because of
this, it is necessary to stress the fact that even if the frequency
difference is infinitesimal, decoherence will eventually appear,
although it does so in a time inversely proportional to the
infinitesimal. Thus, increasing the difference in frequencies
just exacerbates the transfer velocity of decoherence from
mode x+ to mode x−. This argument shows how artificial
the equal frequencies assumption is.

We point out that asymptotic entanglement can also be
found in the presence of frequency diversity and is not related
to the symmetry that is present for ω1 = ω2. As a matter
of fact, if the couplings to the common bath are different
for each oscillator (i.e., γ1 �= γ2), we can restore asymptotic
entanglement even off-resonance, for ω1 �= ω2. By noticing
the relation between x1,2 with the eigenmodes of the system
Q±, we see that the mode Q+ can be uncoupled from the bath
when the angle θ fulfills

cos θ = γ1√
γ 2

1 + γ 2
2

, (11)

with θ = θ (ω1,ω2,λ) given in the Appendix. Thus, half of
the system is kept in a pure state, and we can show that
entanglement survives asymptotically exactly in the same
fashion as it did for equal frequencies before. In other words,
with different couplings to the baths together with different
frequencies, the system can retain asymptotic entanglement
if Eq. (11) is fulfilled. In any case, this phenomenon is as
unique as the equal frequencies phenomenon, and requires
fine-tuned parameters (by tuning bath couplings or frequency
difference) in order to be observable. It should then be regarded
as exceptional as well. Our argument clarifies that asymptotic
entanglement is not a consequence of a symmetry in the
system, but comes from a finely tuned decoherent-free degree
of freedom of the system.

C. Twin oscillators

We have considered entanglement as an indicator of the
quantumness of our system, measurable for the family of
(Gaussian) states considered here. The discrimination between
the predictions of classical and quantum theories for coupled
harmonic oscillators has also been mainly studied in optics.
In that context, there have been many theoretical predictions
experimentally confirmed, focusing on the violation of differ-
ent classical inequalities or the positivity of variances [39].
An example is the variance of the difference of the occupation
numbers:

d = 〈: (n1 − n2)2 :〉, (12)

where, as usual, ni is the occupation number operator of each
oscillator. d has been considered in a two-mode squeezed state
generated by parametric oscillators in optics to characterize
twin beams [1]. The quantum character of the correlations
in the occupation numbers comes from the negativity of
the variance d and can only follow from the negativity of
the corresponding quasiprobability, the Glauber-Sudarshan
representation in this case. Here, in analogy with the optical
case, we consider twin oscillators by looking at the temporal
dynamics of d. The correspondent fourth-order moments can
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FIG. 6. (Color online) Comparison between the time evolutions
of entanglement (black) and the correlation measure max[0, − 〈:
(n1 − n2)2 :〉] [orange (gray)], for the case of (a) separate baths
and (b) a common bath. We have used equal frequencies, coupling
λ = 0.1ω2

1, damping γ = 0.001ω1, temperature kBT /ω1 = 10, and
initial squeezing parameter r = 0.5. The envelope of the correlation
measure seems to be closely related to the entanglement, except for
a delay of half a period.

be obtained from the covariance matrix because the states we
are dealing with are Gaussian. In Fig. 6, we plot two examples
that compare the evolution of this variance and entanglement
for the common and separate baths cases. We have taken only
the negative part of this correlation—identifying quantum
behavior—and inverted it [by plotting max(0,−d)] for ease
of comparison with entanglement. For the initial entangled
state in Eq. (10), d = −2µ/(1 − µ) is always negative.
In other words, for squeezed states, the occupation number
of one oscillator determines the other occupation number.
We observe that, by starting from this value, d decays with
large oscillations and that the sudden deaths of entanglement
and of this correlation coincide up to a fraction of a period.
Still, entanglement evolution is smoother, and twin oscillators
temporarily lose their quantum correlations even for entangled
oscillators.

IV. NON-MARKOVIAN EVOLUTION

Until now, we have considered the Markovian master
equation, in the sense that the time-dependent coefficients
related to the heat bath have been replaced by their asymptotic
value, obtained by integrating up to infinite time. This implies
a complete absence of memory in the bath, which does not
retain instantaneous information on the dynamics of the two
oscillators. However, this simplification can be dropped, and
we are left with a complete non-Markovian description within
the weak-coupling approximation. In this section, we analyze
how these corrections affect the entanglement evolution we
discussed so far.

In Ref. [27], a comparison has been made by considering
temperatures 2 orders of magnitude greater than the frequency
cutoff. The authors found that, when the frequency of the
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oscillators falls inside the bath-spectral density, entanglement
persists for a longer time than in a Markovian channel. When
there is no resonance between reservoir and oscillators, non-
Markovian correlations accelerate decoherence and generate
entanglement oscillations.

As is known, when all the important frequencies are much
lower than the cutoff, the density of states of Eq. (6) is
expected to generate almost memoryless friction [40]. Then, by
taking ω1 	 
, we compared Markovian and non-Markovian
entanglement dynamics for different choices of the parameters
of the system and the bath (ω2/ω1,λ/ω2

1,γ /ω1,kBT /ω1,r).
The following considerations are valid for separate baths
as well as for a common environment. In the case of very
small coupling (γ ∼ 10−3ω1), non-Markovian corrections are
practically unobservable, independent of the value of the
system parameters up to relevant temperatures. To observe
some appreciable deviations, we need to reach temperatures on
the order of 10ω1. This result is understood by considering that,
for small values of the system-bath coupling, the role played
by the bath itself is highly reduced. Since non-Markovian
corrections on the values of the coefficients are relevant only
during the first stage of the evolution, it can also be predicted
that if the initial state is robust enough (as, for instance, in the
case of squeezing r = 2 discussed in the previous sections),
non-Markovianity will have marginal effects. It is, in fact, true
that, in the case of γ ∼ 10−3ω1 and T ∼ 10ω1, a correction to
the entanglement decay time can only be observed by assuming
low initial squeezing (r <∼ 0.1). When γ starts to increase, it is
possible to deal with cases where some observable corrections
due to non-Markovianity also emerge in the low-temperature
regime. In particular, the case of equal frequencies turns out
to be the most sensitive one. To give an example, in Fig. 7,
we compared the two evolutions for two different values of
r . Starting from r = 2, non-Markovian corrections are almost
negligible, by giving corrections of a few percent to the value
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FIG. 7. (Color online) Comparison between Markovian [orange
(gray)] and non-Markovian (black) entanglement dynamics. The
system parameters are ω1 = ω2, λ = 0.2ω2

1, γ = 0.01 × 2/πω1,

 = 20ω1, and kBT = 10ω1. The initial squeezings are (a) r = 2
and (b) r = 0.

of tF found within the Markovian approximation. In order to
observe a noticeable difference, we must start with a factorized
state (r = 0). As can be observed in Fig. 7, in this case, while
memoryless baths are able to support a very small quantity
of entanglement, the initial kick given by non-Markovian
coefficients enhances entanglement generation, its maximum
amount is amplified for about 1 order of magnitude, and its
death time is increased. It is, however, worth noting that the
absolute value reached is, in any case, very low.

V. DISCUSSION AND CONCLUSION

During the past few years, a series of papers has investigated
entanglement dynamics of coupled harmonic oscillators in
contact with thermal environments. Nevertheless, an analysis
concerning the role played by the diversity of the two
oscillators was missing, with a few exceptions [11,12,41].
Here, we have studied nonidentical oscillators from a broad
perspective, by considering the effects of common and separate
baths, oscillators’ detuning and coupling strength, as well as
non-Markovianity.

We started our discussion with the case of separate baths,
which seems to be more physically meaningful. As one should
expect, after a transient, unless the temperature is very low, the
initial two-mode squeezed state |�TMS〉 becomes separable. By
studying the decay time, we observed a series of interesting
features that we have qualitatively explained. First of all,
by increasing ω2/ω1 and by keeping all other parameters
unchanged, entanglement survival time increases as well. In
the limit of ω2/ω1 
 1, �+ and �− tend to ω2 and ω1,
respectively. Since the asymptotic thermal state that the system
is reaching depends on the frequencies, the purity of the final
state is enhanced together with the coherence time necessary
to reach it. On the other hand, near ω2 = ω1, entanglement
survival time can also be raised by increasing |λ|. When
|λ| → ω2

1, �− is close to zero. Here, we argue that the behavior
we observe is the result of two competing effects. If, on one
hand, the thermal equilibrium state is less pure because of
the presence of a vanishing frequency, on the other hand, the
number of decohering channels goes to zero, since �− falls in a
poorly populated region of the spectral density, and increases,
in this way, the time necessary to reach the thermal equilibrium.

If the two oscillators share a common bath, the observation
of asymptotic entanglement at relevant temperatures becomes
possible. One of the two eigenmodes of the system can result,
in fact, decoupled from the environment. As a consequence
of this decoupling, the asymptotic density matrix will result
as the direct sum of the matrix of a pure state and a thermal
state, corresponding to the mode that interacts with the bath.
When the two oscillators have identical frequencies and bath
couplings, the mode x− gets decoupled, independent of the
value of λ, giving rise to the plateau we observe in Figs. 4
and 5. It is important to stress that this regime can be achieved
not only when the oscillators are resonant, but also in the
presence of frequency detuning, through proper engineering of
the system-bath interaction. Conversely, if their bath couplings
are different γ1 �= γ2, frequencies ω1 and ω2 can be found so
that this special regime is achieved.

We also studied the dynamical evolution of the degree of
quantumness of the system by means of the quantity d, which
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was introduced in Eq. (12). The negativity of this quantity is
direct evidence of the negativity of the Glauber-Sudarshan
quasiprobability distribution of the state. The agreement
between the behavior of d and the entanglement is worth
investigating, since a strong relationship between them is not
known.

As for the Markovian versus the non-Markovian debate,
we compared the two behaviors in a wide range of parameters.
While, in Ref. [27], the authors investigated what changes
when the frequency of the oscillators goes outside the spectral
distribution of the bath in the high-temperature regime,
we tried to conduct an extensive analysis for ω1,ω2 	 
.
Our results indicate that non-Markovian corrections can be
observed, and are important, only for a reduced subset of
initial conditions. To see them, we must put a relevant coupling
between oscillators and bath, ω1 should be close to ω2, and
the initial state should be (almost) disentangled. Since the
master equation has been obtained in the weak-coupling limit,
the first of these assumptions seems, at least, questionable. If
we release only one of them, Markovian and non-Markovian
evolutions are almost identical.
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APPENDIX: DERIVATION OF THE MASTER EQUATION

A system-bath model is usually described through the
Hamiltonian H = HS + HB + V , where HS refers to the
system, HB refers to the bath, and where V is the term
containing the interaction. Generally, the coupling term can
be written as V = ∑

k Sk ⊗ Bk , where Sk denotes system
operators and Bk denotes bath operators. The master equation
for the reduced density matrix to the second order in the
coupling strength (for a general discussion, see, for instance,
Ref. [42]) is given by

dρ

dt
= −i[HS,ρ]

−
∫ t

0
dτ

∑
l,m

{Cl,m(τ )[SlS̃m(−τ )ρ − S̃m(−τ )ρSl]

+Cm,l(−τ )[ρS̃m(−τ )Sl − SlρS̃m(−τ )]}. (A1)

Here, Cl,m(τ ) are the bath’s correlation functions, defined by

Cl,m(τ ) = TrB[B̃l(τ )B̃m(0)R0], (A2)

where R0 = (e−βHB /Tre−βHB ), the equilibrium density matrix
of the bath. In Eqs. (A1) and (A2), the tilde indicates the
interaction picture taken with respect to H0 = HS + HB . For
instance, B̃l(τ ) = eiH0τBle

−iH0τ .
In the following, the correlation functions will appear

combined as CA
l,m(τ ) = Cl,m(τ ) + Cm,l(−τ ) and CC

l,m(τ ) =
Cl,m(τ ) − Cm,l(−τ ).

A. Separate baths

In our model, where the Hamiltonian is H sep, we can iden-
tify B1 = ∑

k λ
(1)
k X

(1)
k and B2 = ∑

k λ
(2)
k X

(2)
k and, correspond-

ingly, S1 = x1,S2 = x2. Their expressions in the interaction
picture are

B̃i =
∑

k

λ
(i)
k

[
X

(i)
k cos �

(i)
k t + P

(i)
k

sin �
(i)
k t

m�
(i)
k

]
, (A3)

and x̃i(τ ) = αi1x1 + αi2x2 + βi1p1 + βi2p2, with

α11 = cos2 θ cos �−τ + sin2 θ cos �+τ, (A4)

α12 = sin 2θ

2
(cos �+τ − cos �−τ ), (A5)

β11 = cos2 θ

�−
sin �−τ + sin2 θ

�+
sin �+τ, (A6)

β12 = sin 2θ

2

(
sin �+τ

�+
− sin �−τ

�−

)
, (A7)

and α22(θ ) = α11(π/2 − θ ), β22(θ ) = β11(π/2 − θ ), α21 =
α12, and β21 = β12. The coefficients appearing in Eqs. (A4)–
(A7) are defined as

θ = 1

2
arctan

(
2λ

ω2
2 − ω2

1

)
, (A8)

and

�± =

√√√√ω2
1 + ω2

2

2
±

√
4λ2 + (

ω2
2 − ω2

1

)2

2
. (A9)

The normal modes for the position are

Q+ = cos θx2 + sin θx1, (A10)

Q− = cos θx1 − sin θx2, (A11)

while, for the momentum,

P+ = cos θp2 + sin θp1, (A12)

P− = cos θp1 − sin θp2. (A13)

Notice that, for ω1 = ω2, θ = π/4. This implies α11 = α22 and
β11 = β22.

Since the two baths are identical and are uncorrelated, we
have C1,1(τ ) = C2,2(τ ) = C(τ ) and C1,2(τ ) = C2,1(τ ) = 0.
From the knowledge of the density of states J (�), it is possible
to obtain the explicit expression of CC(τ ) and CA(τ ):

CC(τ ) = −i

∫ ∞

0
d�J (�) sin �τ, (A14)

CA(τ ) =
∫ ∞

0
d�J (�) cos �τ coth

�

2kBT
. (A15)
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The master equation reads

dρ

dt
= −i[HS,ρ] −

∫ t

0
dτ

∑
i=1,2

{
[xi,{xi(−τ ),ρ}]C

C(τ )

2

+ [xi,[xi(−τ ),ρ]]
CA(τ )

2

}
. (A16)

By using the expressions in Eqs. (A4)–(A7), it can be written
as in Eq. (4), with

ε2
ij = −i

∫ t

0
dταijC

C(τ ), (A17)

Dij =
∫ t

0
dταijC

A(τ ), (A18)

Fij =
∫ t

0
dτβijC

A(τ ), (A19)

�ij = i

∫ t

0
dτβijC

C(τ ). (A20)

The considerations about symmetry given in Sec. II can be
understood in terms of the explicit form of the master equation.
The substitution λ → −λ is equivalent to sending θ to −θ .
Then, α12 and β12 change their sign. However, since these
coefficients multiply one operator (position or momentum) of
the first oscillator and one operator of the second operator, the
canonical transformation U compensates the change of sign,
and the evolution of ρ is unchanged.

The explicit form of εij ,Dij ,�ij , and Fij , in the Markovian
case, can be calculated using the equalities

lim
t→∞

∫ t

0
dτe−i(ω−ω0)τ = πδ(ω − ω0) + i

P

ω − ω0
, (A21)

where P denotes the Cauchy principal value, and

coth
ω

2kBT
= 2kBT

+∞∑
n=−∞

ω

ω2 + ν2
n

, (A22)

with νn = 2πnkBT .
From the master equation, a set of closed equations of

motion for the average values of the second moments can be
derived (i,j = 1,2):

d〈xixj 〉
dt

= 〈pixj + pjxi〉, (A23)

d〈pipj 〉
dt

= −1

2

(
ω2

i + ε2
ii

)〈{xi,pj }〉 − 1

2

(
ω2

j + ε2
jj

)〈{xj ,pi}〉

− 1

2

(
λ + ε2

12

) 2∑
k=1

[〈{xk,pi}〉(1 − δk,j )

+〈{xk,pj }〉(1 − δk,i)] − (�ii + �jj )〈pipj 〉

−�12

2∑
k=1

[〈pkpi〉(1 − δk,j )

+〈pkpj 〉(1 − δk,i)] + Dij , (A24)
d〈{xi,pj }〉

dt
= 2〈pipj 〉 − 2

(
ω2

j + ε2
jj

)〈xixj 〉 − 2
(
λ + ε2

12

)
× [〈

x2
i

〉
(1 − δij ) + δij 〈x1x2〉

]
−�jj 〈{xi,pj }〉 − �12〈{xi,pi}〉 + Fij . (A25)

B. Common bath

In this case, C1,1(τ ) = C2,2(τ ) = C1,2(τ ) = C2,1(τ ). Then,
the master equation can be written as

dρ

dt
= −i[HS,ρ] −

∫ t

0
dτ

∑
i,j=1,2

{
[xi,{xj (−τ ),ρ}]C

C(τ )

2

+ [xi,[xj (−τ ),ρ]]
CA(τ )

2

}
, (A26)

and, by using Eqs. (A17)–(A20), assumes the form given in
Eq. (9) with D̄ii = Dii + D12 and similarly for ε2,�, and
F . The equations of motion for the second moments read
(i,j = 1,2)

d〈xixj 〉
dt

= 〈pixj + pjxi〉, (A27)

d〈pipj 〉
dt

= −
2∑

k=1

(
ω2

k + ε̄2
kk

)
(〈xkpj 〉δik + 〈pixk〉δjk)

− 1

2

2∑
k=1

(
λ + ε̄2

ii

)
[〈{xk,pi}〉(1 − δkj )

+〈{xk,pj }〉(1 − δki)] + 1

2
(D̄ii + D̄jj )

− (�̄ii + �̄jj )〈pipj 〉 −
2∑

k=1

�̄kk[〈pipk〉(1 − δkj )

+〈pjpk〉(1 − δki)], (A28)
d〈{xi,pj }〉

dt
= 2〈p1p2〉 − 2

(
ω2

j + ε̄2
jj

)〈xixj 〉

− 2
2∑

k=1

(
λ + ε̄2

kk

)〈xixk〉(1 − δik)δij

− 2
(
λ + ε̄2

ii

)〈
x2

i

〉
(1 − δij ) − �̄jj 〈{xi,pj }〉

−
2∑

k=1

�̄kk〈{xi,pk}〉(1 − δik) + F̄ii . (A29)
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