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Joint measurement of two unsharp observables of a qubit
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We derive a single inequality as the sufficient and necessary condition for two unsharp observables of a
two-level system to be jointly measurable in a single apparatus and construct explicitly the joint observables
of two jointly measurable observables. By introducing a generalized distinguishability as a measure of the
unsharpness of an unsharp measurement, we derive a complementarity inequality, which generalizes Englert’s
duality inequality, from the condition of joint measurement of two orthogonal unsharp observables.
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I. INTRODUCTION

Built in the standard formalism of quantum mechanics,
there are mutually exclusive but equally real aspects of quan-
tum systems, as summarized by the complementarity principle
of Bohr [1]. Mutually exclusive aspects are often exhibited via
noncommuting observables, for which the complementarity
is quantitatively characterized by two kinds of uncertainty
relationships, namely, the preparation uncertainty relation-
ships (PUR’s) and the measurement uncertainty relationships
(MUR’s).

The PUR’s stem from the semipositive definiteness of the
density matrix describing the quantum state and characterize
the predictability of two noncommuting observables in a
given quantum state. To test PUR’s two different projective
measurements will be performed on two identically prepared
ensembles of the quantum system and these measurements
cannot be performed within one experimental setup on a single
ensemble.

On the other hand, the MUR’s characterize the trade-off
between the precisions of unsharp measurements of two
noncommuting observables in a single experimental setup. The
very first effort of Heisenberg [2] in deriving the uncertainty
relationships was based on a simultaneous measurement of the
position and momentum, with the rigorous form of the MUR
established recently by Werner [3]. In the interferometry the
wave-particle duality between the path information and the
fringe visibility of the interference pattern is characterized
quantitatively by Englert’s duality inequality [4], which turns
out to be originated from the joint measurability of two
special unsharp observables encoding the path information
and the fringe visibility [5]. To establish a general MUR the
condition for joint measurement has to be explored, which
can be turned into some kinds of MUR’s when equipped with
a proper measure of the precisions or unsharpnesses (e.g.,
distinguishability).

In this paper we shall consider the joint measurability of
two general unsharp observables of a qubit and derive a simple
necessary and sufficient condition with joint observables
explicitly constructed. We also present a MUR arising from
the condition of joint measurement that generalizes Englert’s
duality inequality. In Sec. II we shall at first formulate the
problem of the joint measurement, especially for two qubit
observables. In Sec. III we present a geometrical necessary

and sufficient condition for the joint measurability which is
essential to the derivation of our single inequality as the if and
only if condition in Sec. IV. In Sec. V we consider the joint
measurement of a special kind of pair of unsharp observables
and derive a complementarity inequality from the condition
for joint measurement. Explicit joint unsharp observables are
constructed in Sec. VI for two jointly measurable observables.
Finally, we show explicitly that our inequality provides an ana-
lytical solution to the semidefinite programming reformulation
of joint measurability. The proofs of most of our main results
and the comparisons with known results are presented in the
two Appendices.

II. THE PROBLEM OF JOINT MEASUREMENT

Via a measurement, we obtain a piece of classical in-
formation, that is, a probability distribution {pk}Kk=1 over
possible outcomes, with the number of outcomes K being
finite. Quantum mechanically, this probability is, in general,
accounted for via Born’s rule pk = Tr(ρOk) where ρ is
the quantum state and {Ok}Kk=1 is a positive-operator valued
measure (POVM), a set of positive operators summed up
to the identity (Ok � 0 and

∑
k Ok = I ). Given two pieces

of classical information obtained via measurements of two
observables there exist many joint probability distributions
with these two pieces of classical information as marginal
distributions. If there exists a joint distribution that can
also be accounted for quantum mechanically via Born’s rule
independent of the quantum state, then these two pieces of
information can be obtained in a single apparatus and two
corresponding observables are called jointly measurable.

Mathematically formulated, a joint measurement of two
jointly measurable observables {Ok} and {O ′

l } is described by
a joint observable {Mkl} whose outcomes can be so grouped
that

Ok =
∑

l

Mkl, O ′
l =

∑
k

Mkl. (1)

Here we shall consider only the qubits, any two-level systems
such as spin-half systems or two-path interferometries. A
simple observable O(x, �m) refers to a most general two-
outcome POVM {O±(x, �m)} with

O±(x, �m) = 1 ± (x + �m · �σ )

2
. (2)
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Here m = | �m| is referred to as the sharpness while |x| is
referred to as the biasedness. When |x| = 0 the observable
O(x, �m) is called unbiased, in which case the outcomes of
the measurement are purely random if the system is in the
maximally mixed state, and when |x| �= 0 the observable is
referred to as biased, in which case a priori information
can be employed to make better use of the outcomes of the
measurement. Positivity imposes |x| + m � 1.

Given two simple observables O(x, �m) and O(y,�n), it is
obvious that all possible sets of four operators satisfying the
marginal constraints in Eq. (1) are

Mµν(Z,�z) = 1 + µx + νy + µνZ + (µν�z + �qµν) · �σ
4

, (3)

with Z,�z being arbitrary and �qµν = µ �m + ν�n (µ,ν = ±1).
The problem of joint measurability becomes whether there
exist Z,�z such that Mµν(Z,�z) � 0 for all µ,ν = ±1. There
are many partial results in special cases [5–7] as well as in
general cases [8,9]. Here we shall derive a single inequality
as the sufficient and necessary condition of joint measurement
and construct explicitly the joint observables of two jointly
measurable observables.

III. A GEOMETRICAL CONDITION

We shall at first present a geometrical condition for the
joint measurement. Consider two simple observables O(x, �m)
and O(y,�n) along two directions �m and �n and we suppose in
this section that s = |�s| > 0 where �s = �m × �n. Otherwise two
observables will be trivially jointly measurable. We denote by
P the plane spanned by two vectors �m and �n. We have

Theorem 1. Two observablesO(x, �m) andO(y,�n) are jointly
measurable if and only if four elliptical regions in the plane P
defined as (µ,ν = ±)

Eµ
x =

{
�z ∈ P

∣∣∣∣∣
∑
τ=±

|�z − �qτµ| � 2(1 − µx)

}
, (4a)

Eν
y =

{
�z ∈ P

∣∣∣∣∣
∑
τ=±

|�z − �qντ | � 2(1 − νy)

}
, (4b)

intersect (i.e., J = E+
x ∩ E−

x ∩ E+
y ∩ E−

y �= ∅).
Proof. If O(x, �m) and O(y,�n) are jointly measurable then

there exist Z and �z such that Mµν(Z,�z) � 0, that is,

|µν�z + �qµν | � 1 + µx + νy + µνZ, (5)

for all µ,ν = ±. As a result �z − (�z · �s)�s/s2 ∈ J with �s = �m ×
�n. On the other hand, if there exists �z ∈ J then Eq. (5) holds
true with Z = Z(�z) where

Z(�z) = max
µ=±1

{|�z + µ( �m + �n)| − µ(x + y)} − 1, (6)

that is, {Mµν(Z(�z),�z)} is a joint observable. Generally the
choice of Z is not unique and therefore the joint observable is
not unique either.

For later use we denote by E±
x and E±

y four elliptical
ellipses that are boundaries of four elliptical regions defined in
Eqs. (4a) and (4b) whose semimajor and squared semimi-
nor axes are denoted by Aµ = 1 − µx, Bν = 1 − νy, and
aµ = A2

µ − m2, bν = B2
ν − n2, respectively. Two neighboring

ellipses E
µ
x and Eν

y have one focus Qνµ (corresponding to the
vector �qνµ) in common.

IV. A SINGLE INEQUALITY AS THE IF AND ONLY IF
CONDITION FOR JOINT MEASUREMENT

By transforming the previous geometrical condition into
algebraic conditions we manage to prove a single inequality
as the necessary and sufficient condition for the joint measur-
ability, which is one of the main results of this paper. To this
end we denote

Fx = 1

2
(
√

(1 + x)2 − m2 +
√

(1 − x)2 − m2), (7a)

Fy = 1

2
(
√

(1 + y)2 − n2 +
√

(1 − y)2 − n2). (7b)

Theorem 2. Two observablesO(x, �m) andO(y,�n) are jointly
measurable if and only if

(
1 − F 2

x − F 2
y

) (
1 − x2

F 2
x

− y2

F 2
y

)
� ( �m · �n − xy)2. (8)

We shall delay the proof of the above theorem and all the
following theorems in Appendix A. Instead we shall discuss
some special cases in what follows. First the trivial case s =
0 is included. This is because due to the identities such as
x2/F 2

x + m2/(1 − F 2
x ) = 1 the left-hand side of Eq. (8) can

be seen to be bounded above by (mn − |xy|)2 which is no
larger than the right-hand side of Eq. (8).

Second in the case of x = y = 0, Eq. (8) becomes m2 +
n2 � 1 + ( �m · �n)2 which is exactly the if and only if condition
for unbiased observables [6] and can be rewritten as

| �m + �n| + | �m − �n| � 2. (9)

Thirdly when there is one unbiased observable, e.g., when
y = 0, the condition in Eq. (8) reads√

(1 + x)2 − m2 +
√

(1 − x)2 − m2 � 2| �m × �n|√
m2 − ( �m · �n)2

,

(10)

which becomes simply Fx � n for orthogonal observables
where �m · �n = 0 [5].

Theorem 2 is derived from the following set of conditions,
which assumes a similar form as that of Eq. (9). For
convenience we denote γ = �m · �n − xy and �g = �mα + �nβ

where

α = 1

| �m × �n|2 [(y + γ x)n2 − (x + γy) �m · �n], (11a)

β = 1

| �m × �n|2 [(x + γy)m2 − (y + γ x) �m · �n]. (11b)

Theorem 3. Two observables O(x, �m) and O(y,�n) (s �= 0)
are jointly measurable if and only if either max{|α|,|β|} � 1
or ∑

ν=±
| �m + �n + ν �g| +

∑
ν=±

| �m − �n + ν �g| � 4. (12)

From Lemma 2(iv) in Appendix A we see that the condition
in Eq. (12) in Theorem 3 can be replaced by R � 0 where

R = 1 + x2 + y2 + γ 2 − m2 − n2 − |�g|2, (13)
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FIG. 1. (Color online) (a) The union of a blue-contoured region
and a yellow-shaded region, determined by max{|α|,|β|} � 1 and
R � 0, respectively, represents the admissible �n in the case of m =
0.8, x = −0.1, and y = 0.3. The boundary lies between two circles
n = 1 − |y| and n = nc. (b) The tradeoff curve (solid black) between
sharpnesses m and n with x = −0.1, y = 0.2, and cos θ = 0.3 fixed.

which appears in an equivalent form [Eq. (55)] in [8].
Detailed comparisons with known results will be presented
in Appendix B.

Theorem 3′. Two observables O(x, �m) and O(y,�n) (s �= 0)
are jointly measurable if and only if either max{|α|,|β|} � 1
or R � 0.

Given two unsharp observables O(x, �m) and O(y,�n), there
are effectively five parameters: two biasedness x,y, two
sharpness m,n, and the relative angle θ between �m and �n
determined by mn cos θ = �m · �n. In the following discussions
we shall fix some parameters to see the tradeoffs among the
remaining parameters imposed by the condition of the joint
measurability.

At first let us examine the set of all observables O(y,�n)
with a given biasedness y that is jointly measurable with
a fixed observable O(x, �m). The admissible region of �n is
shown in Fig. 1(a) as the union of a blue-contoured region
and a yellow-shaded region with a boundary given by Eq. (8)
with equality and |y| + n = 1. The [blue (gray)] arcs of the
circle n = 1 − |y| satisfying Eq. (8) define a forward cone
around �m and a backward cone around �m (centered on the
origin) in which all �n are admissible. If 1 − F 2

x � |y| then
Eq. (8) holds true and two cones overlap so that all �n
are admissible as formulated as one part of the conditions
in [9].

Next we fix the biasedness x,y and the angle θ between
�m and �n and examine the tradeoff between the sharpnesses
m,n whose tradeoff curve (solid black) is plotted in Fig. 1(b).
There is a critical value m0 of the sharpness determined by
Eq. (8) with equality and |y| = 1 − n, below which there is no
constraint on n at all. In the same vein there is also a critical
value for n. If

(1 + sgn[xy] cos θ )(1 − |x|)(1 − |y|) � 2|xy|, (14)

with sgn[f ] = +1 if f � 0 and −1 if f < 0, then m0 � 1 −
|x| (and n0 � 1 − |y|) so that there is no tradeoff between
m,n. Here n0 is defined similarly as m0 with (x,m) and (y,n)
interchanged.

Finally we consider two fixed directions �m and �n.
If m + n + | �m ± �n| � 2 every vector �g = �mα + �nβ with

max{|α|,|β|} � 1 satisfies Eq. (12) so that there is no tradeoff
at all between x,y.

V. COMPLEMENTARITY INEQUALITY

As demonstrated in Ref. [5], the duality inequality is a
consequence of the joint measurability of two orthogonal
observables with one being unbiased. Here we shall consider a
pair of observables O(x, �m) and O(y,�n) satisfying �m · �n = xy

or γ = 0 with γ = �m · �n − xy, which will be referred to as a
pair of orthogonal unsharp observables. Obviously when the
biasedness of one or two of the observables vanish we recover
the usual concept of orthogonal observables.

From the if and only if condition Eq. (8) for the joint mea-
surability we see immediately that two orthogonal observables
are jointly measurable if and only if

F 2
x + F 2

y � 1. (15)

This is because x2/F 2
x + y2/F 2

y < 1 is ensured by mn >

|xy|. In general, the condition F 2
x + F 2

y � 1 is sufficient
for joint measurement since Eq. (8) is ensured because
(|xy| − mn)2 � γ 2 when mn < |xy|. Specifically, we refer
to a pair of orthogonal observables that satisfies �n = �nc with
n2

c/F
2
x + y2/(1 − F 2

x ) = 1 as a pair of maximally orthogonal
unsharp observables. It is maximal in the sense that any
observable O(y,�n) with n � nc (regardless of its direction)
is jointly measurable with O(x, �m) while all the observables
O(y,�n) with n > nc along �nc are not jointly measurable with
O(x, �m).

As a measure for the unsharpness of an unsharp mea-
surement, we take a linear combination of the sharpness
and the biasedness, similar to the definition of the distin-
guishability. Explicitly for each observable we define the
unsharpness as D1 = Q1m + P1|x| and D2 = Q2n + P2|y|
where 0 � Pi � Qi (i = 1,2) are some constants. To measure
jointly a pair of orthogonal unsharp observables there is a
tradeoff between the previously defined unsharpnesses [since
D2

1 + (Q2
1 − P 2

1 )F 2
x � Q2

1]

D2
1

(
Q2

2 − P 2
2

) + D2
2

(
Q2

1 − P 2
1

) + P 2
1 P 2

2 � Q2
1Q

2
2. (16)

Englert’s duality inequality [4] in the case of orthogonal
observables with one being unbiased [5] turns out to be a
special case of the above inequality if we let Q1 = 1, P2 = 0
so that D1 and D2 become the path distinguishability and the
fringe visibility, respectively.

VI. JOINT UNSHARP OBSERVABLES

In previous sections we have found out the conditions
under which there exists a joint observable for two unsharp
observables. In this section we shall construct explicitly the
joint observable for any given pair of observables that are
jointly measurable.

If s = 0 then a joint observable of observables O(x, �m) and
O(y,�n) is simply given by {Oµ(x, �m)Oν(y,�n)}. If 	τ < 0 with

	τ = ( �m − τ �n)2 − (x − τy)2, (17)
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for some τ = ± then Oη(x, �m) − Oη·τ (y,�n) � 0 where η =
sgn[x − τy]. Therefore the POVM

{0,Oη̄(x, �m),Oη(x, �m) − Oη·τ (y,�n),Oη·τ (y,�n)}, (18)

is a joint observable (η̄ = −η). In the case of s > 0 and 	± �
0 considering Theorem 3′ we have:

Theorem 4. Given observables O(x, �m) and O(y,�n), (a) if
R � 0 then {Mµν(γ,�g)} is a joint observable; (b) if R < 0 and
max{|α|,|β|} � 1 then {Mµν(Z(�zητ ),�zητ )} is a joint observable
where

Z(�z) = max
µ=±1

{|�z + µ( �m + �n)| − µ(x + y)} − 1, (19)

�zητ = �g + Dητ ( �m × �n) × �Lητ

�L2
ητ − | �m × �n|2 , (20)

with Dητ = τAηα + ηBτβ + ητγ − 1, �Lητ = τAη�n −
ηBτ �m, τ = sgn[α] and η = sgn[Bτβ + τγ − x] if |α| � 1,
η = sgn[β] and τ = sgn[Aηα + ηγ − y] if |β| � 1. Here
Aη = 1 − ηx and Bτ = 1 − τy.

The regions for different constructions of joint observables
according to the above theorem are indicated schematically in
Fig. 1(b) whenever two observables are jointly measurable.
We note that 	 = min{	±} < 0 infers max{|α|,|β|} � 1.
The region where case (a) of Theorem 4 happens is the
oval region defined by R � 0, a yellow-shaded region.
Since R = d2

µν − |�g − qµν |2 for all µ,ν = ± with dµν =
1 − µx − νy + µνγ , we see that if R = 0 then 4Mµν(γ,�g) =
dµ̄ν̄ + (µν �g + �qµν) · �σ are proportional to some projections
for all µ,ν = ± (i.e., the joint observable is composed of
projections). Outside the region R � 0 and inside the region
that is included by the solid curve, we have either α � 1 or
β � 1 where the case (b) of Theorem 4 applies.

VII. ANALYTIC SOLUTION TO THE SEMIDEFINITE
PROGRAM

In Ref. [10] the general problem of joint measurability
was formulated in terms of a semidefinite program and the
violation of some Bell inequality provides a sufficient and
necessary condition for the joint measurability. Here we shall
demonstrate explicitly that our condition Eq. (8) provides an
analytical solution to the semidefinite program.

Explicitly stated in our case according to proposition 2
in [10], two observables O(x, �m) and O(y,�n) are jointly
measurable [by writing Q̂ = O+(y,�n) and P̂ = O+(x, �m)] if
and only if the largest eigenvalue λmax of the following 4 × 4
matrix

T =
(

u2P̂ − v2Q̂ − u2 uv(P̂ + Q̂ − 1)

uv(P̂ + Q̂ − 1) −u2P̂ + v2Q̂ − v2

)
, (21)

is nonpositive (i.e., λmax � 0) for all possible φ with u =
cos φ,v = sin φ. As it turns out, taking into account the
definition in Eq. (2), the matrix T satisfies the following
identity

[(1 + 2T )2 − u2(m2 + x2) − v2(n2 + y2)]2

= 4(u2x �m + v2y�n)2 + 4u2v2( �m × �n)2, (22)

from which four eigenvalues of T can be easily calculated.
Obviously λmax � 0 is equivalent to

0 � [1 − u2(m2 + x2) − v2(n2 + y2)]2

− 4(u2x �m + v2y�n)2 − 4u2v2( �m × �n)2

= (u2√gx − v2√gy)2 + 4u2v2(γ 2 − f−), (23)

in which we have denoted gx = (1 − m2 − x2)2 − 4x2m2,
gy = (1 − n2 − y2)2 − 4y2n2, γ = �m · �n − xy and

f− = m2n2 + x2y2

− (1 − m2 − x2)(1 − y2 − n2) + √
gxgy

2
. (24)

It follows immediately from Eq. (23) that λmax � 0 for all
possible u and v if and only if γ 2 � f−. As can be easily
checked, f− is exactly equal to the left-hand side of the
inequality in Eq. (8) in Theorem 2, by noting some identities
such as 2F 2

x = 1 + x2 − m2 + √
gx and 2x2/F 2

x = 1 + x2 −
m2 − √

gx .

VIII. CONCLUSION AND DISCUSSIONS

We have derived a single inequality as the condition for
the joint measurement of two simple qubit observables, based
on which an example of MUR is established that generalizes
the existing results. Two recent references [8,9] provide two
seemingly different solutions to the same problem considered
here, whose equivalency can be established in an analytical or a
half-numerical and half-analytical way via our results. Also we
have explicitly demonstrated that our single inequality Eq. (8)
provides an analytic solution to the semidefinite program
formulation of the joint measurability [10], which provides
promising solution to the general problems of the joint
measurability of more than two observables or observables
with more than two outcomes.
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APPENDIX A: PROOFS OF THE THEOREMS

In the following proofs we shall make use of the fact
that given two overlapping convex regions in a plane either
their boundaries intersect or one region belongs to the other.
Recalling that E±

x and E±
y as defined in Eqs. (4a) and (4b) are

four elliptical regions on the plane spanned by �m and �n. As
shown in Fig. 2 two neighboring ellipses with intersections
and the four-ellipse E (thick blue curve) are shown, in which
we have denoted by

E =
{

�z ∈ P

∣∣∣∣∣
∑

µ,ν=±

∣∣∣∣∣ �z − �qµν | � 4

}
(A1)

an oval region with the boundary being a generalized ellipse
E with four foci Qµν with µ,ν = ±. The condition in Eq. (12)
becomes simply �g ∈ E. It is easy to see that Jx := E+

x ∩ E−
x ⊂

E, Jy := E+
y ∩ E−

y ⊂ Ewith boundaries given by Jx = (E+
x ∪
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FIG. 2. (Color online) The setup for proofs. In the plane P
spanned by �m and �n there are two neighboring ellipses E+

x and E+
y

and the generalized ellipse E with four foci Qµν (thick blue curve).

E−
x ) ∩ E and Jy = (E+

y ∪ E−
y ) ∩ E, respectively. Furthermore

E+
x ∩ E−

x ⊂ E ∩ Jx , E+
y ∩ E−

y ⊂ E ∩ Jy .
Lemma 1. J �= ∅ if and only if either E

µ
x ∩ Eν

y ∩ E �= ∅ for
some µ,ν = ± or E

µ
x ∩ Eν

y = ∅ for all µ,ν = ±.
Proof. Sufficiency. Suppose that there exists �z ∈ E

µ
x ∩ Eν

y ∩
E for some µ,ν = ±. From �z ∈ E

µ
x ∩ E and �z ∈ Eν

y ∩ E it

follows that �z ∈ Eµ̄
x and �z ∈ Eν̄

y respectively, which leads to
�z ∈ J . If E

µ
x ∩ Eν

y = ∅, for all µ,ν then, taking into account

Lemma 2(ii), we have either Eµ
x ⊂ E±

y ⊂ Eµ̄
x or Eν

y ⊂ E±
x ⊂

Eν̄
y , i.e., either J = Eµ

x or J = Eν
y for some µ,ν, which is

obviously not empty.
Necessity. If J �= ∅ then two convex regions Jx and Jy

overlap. As a result we have either Jx ∩ Jy �= ∅, which means
(∃µ,ν) E

µ
x ∩ Eν

y ∩ E �= ∅, or Jx ∩ Jy = ∅ with either Jx ⊂ Jy

or Jy ⊂ Jx . If Jx ∩ Jy = ∅ and Jx ⊂ Jy , i.e., Jx lies totally
within Jy ⊂ E, then Jx ∩ E = ∅ which infers E+

x ∩ E−
x = ∅,

i.e., the boundaries of two overlapping regions E±
x do not

intersect. As a result (∃µ) Eµ
x ⊂ Eµ̄

x so that (∃µ) Eµ
x = Jx ⊂

E±
y , which infers (∃µ) E

µ
x ∩ E±

y = ∅ since Jx ∩ Jy = ∅. In
the same manner Jy ⊂ Jx with Jx ∩ Jy = ∅ infers (∃ν) Eν

y ∩
E±

x = ∅. In both cases, considering Lemma 2(i), we obtain
(∀µ,ν) E

µ
x ∩ Eν

y = ∅.
Lemma 2. (i) E

µ
x ∩ Eν

y �= ∅ if and only if 	µ·ν � 0;

(ii) Eµ
x ⊂ Eν

y infers Eν̄
y ⊂ Eµ̄

x ; (iii) (∃µ,ν) E
µ
x ∩ Eν

y ∩ E �= ∅
if and only if either R � 0, or (∃µ,ν,τ ) Dµν � 0 and 	τ � 0;
(iv) R � 0 if and only if �g ∈ E; (v) (∀µ) 	µ < 0 infers
(∃µ,ν) Dµν > 0; (vi) provided R < 0, (∀µ,ν) Dµν < 0 if and
only if |α| < 1 and |β| < 1.

Proof. (i) Consider the straight line passing through two
points Qν̄µ and Qνµ̄ (dashed line in Fig. 2 for the case of
µ = ν = +). If 	µ·ν � 0 then one intersection of E

µ
x (or Eν

y )
with the straight line will not lie in the interior of Eν

y (or
Eµ

x , respectively) which means neither Eµ
x ⊂ Eν

y nor Eν
y ⊂ Eµ

x

and hence E
µ
x ∩ Eν

y �= ∅. If 	µ·ν < 0 then, e.g., Aµ − Bν >

| �m − µν�n| and �z ∈ Eν
y infers |�z − �qνµ| + |�z − �qν̄µ| � 2Bν +

2| �m − µν�n| < 2Aµ, i.e., E
µ
x ∩ Eν

y = ∅.
(ii) Eµ

x ⊂ Eν
y is equivalent to 	µ·ν � 0, i.e., 	µ̄·ν̄ � 0, and

Aµ � Bν , i.e., Bν̄ � Aµ̄.
(iii) Suppose �z ∈ E

µ
x ∩ Eν

y ∩ E for some µ,ν = ±. Since
�z ∈ E

µ
x ∩ Eν

y we have 	µ·ν � 0, r + |�r + 2ν �m| = 2Aµ and

r + |�r + 2µ�n| = 2Bν where �r = �z − �qνµ and r = |�r|. It
follows that �s × �r = �Kµν − r �Lµν whose square provides
a quadratic equation of r: (L2

µν − s2)r2 − 2r �Kµν · �Lµν +
K2

µν = 0 where �Kµν = νaµ�n − µbν �m, Lµν = | �Lµν | and

Kµν = | �Kµν |. By noticing L2
µν > s2 as long as s > 0 we obtain

two solutions

r (±)
µν = dµν + s2Dµν ± √

s2aµbν	µ·ν
L2

µν − s2
, (A2)

and we denote E
µ
x ∩ Eν

y = {�z(+)
µν ,�z(−)

µν } with �z(±)
µν = �qνµ + �r (±)

µν

and s2�r (±)
µν = ( �Kµν − r (±)

µν
�Lµν) × �s. The condition (∃τ ) �z(τ )

µν ∈
E [i.e., 2(Aµ + Bν) − r (τ )

µν + |�r (τ )
µν + 2�qνµ| � 4] is equivalent

to (∃τ ) r (τ )
µν � dµν − min{dµ̄ν̄ ,0}. Due to

s2aµbν	µ·ν = s4D2
µν + s2R

(
L2

µν − s2
)
, (A3)

and Eq. (A2), it follows from (∃τ ) r (τ )
µν � dµν that either R � 0,

or R < 0 and Dµν � 0. Necessity is thus proved.
If 	± � 0 then (∀µ,ν) dµν � 0 since 2dµν = 	µ·ν̄ + aµ +

bν . Thus from (∃µ,ν) Dµν � 0 and R < 0 it follows that r (±)
µν �

dµν which infers �z(±)
µν ∈ E so that E

µ
x ∩ Eν

y ∩ E �= ∅.
If (∃τ ) 	τ < 0 and 	τ̄ � 0 then (∀ν) Eν

x ∩ Eτ ·ν
y = ∅ and

(∀ν) Eν
x ∩ Eτ̄ ·ν

y �= ∅. It follows that eitherEν
x ⊂ Eτ ·ν

y orEτ ·ν
y ⊂

Eν
x , (i.e., either Eτ ·ν̄

y ⊂ Eν̄
x or Eν̄

x ⊂ Eτ ·ν̄
y ). As a result either

J = Eν
x ∩ Eτ ·ν̄

y or J = Eν̄
x ∩ Eτ ·ν

y from which it follows that
(∃ν) Eν

x ∩ Eτ ·ν̄
y ⊂ E [i.e., (∃τ,ν) Eν

x ∩ Eτ ·ν̄
y ∩ E �= ∅].

If R � 0 then we claim that 	± � 0, from which it follows
immediately that (∀µ,ν) E

µ
x ∩ Eν

y �= ∅ and �z(+)
µν ∈ E. First,

if a± = 0 (or b± = 0) then R � 0 infers s = 0, which is
precluded. Second, if either (∀µ,ν) aµbν > 0, or (∃µ) aµ = 0
and aµ̄ > 0 and b± > 0, or (∃ν) bν = 0 and bν̄ > 0 and
a± > 0, then the claim is obviously true due to the identity
in Eq. (A3). Third, if (∃µ,ν) aµ = bν = 0 and aµ̄bν̄ > 0
then R = 0, Dµν = Dµν̄ = Dµ̄ν = 0 with Dµ̄ν̄ = −4, and
	µ·ν = 	µ̄·ν̄ > 0. As a result r (±)

µν = dµν � 0 which leads to
	µ·ν̄ = 2dµν � 0.

(iv) If R � 0 then (∀µ,ν) dµν � 0 so that (∀µ,ν) |�g −
�qνµ| � dµν , which infers �g ∈ E. If �g ∈ E then (∃µ) �g ∈ Eµ

x . As
a result aµ − Aµdµ+ = (�g − �q+µ) · �m � aµ − |�g − �q+µ|Aµ

which infers either |�g − �q+µ| � dµ+ (i.e., R � 0) or Aµ = 0
which leads to R = 4y2 � 0.

(v) 	± < 0 infers R < 0 [i.e., (1 ± γ )2 < 	∓ + |�g|2] and
thus |�g| > 1 + |γ |. Let η = sgn[β] and τ = sgn[α] then |�g| �
Aη|α| + Bτ |β| � Dητ + 1 + |γ | which means Dητ > 0.

(vi) If (∀µ,ν) Dµν < 0 then |α| < 1 and |β| < 1
since max{D−+,D+−} + max{D−−,D++} < 0. If |α| < 1 and
|β| < 1 then |�g − �qνµ| � Aµ(1 − να) + Bν(1 − µβ) which,
together with (∀µ,ν) dµν < |�g − �qνµ| inferred from R < 0,
leads to (∀µ,ν)Dµν = dµν − Aµ(1 − να) − Bν(1 − µβ) < 0.

Proof of Theorem 3. From Lemmas 1 and 2 and statements
(i), (iii), and (v) of Lemma 2 it follows that two observables are
jointly measurable if and only if either R � 0 or (∃µ,ν) Dµν �
0 and Theorem 3 is an immediate result of statements (iv) and
(vi) of Lemma 2.

Proof of Theorem 4. (a) R � 0 is equivalent to (∀µ,ν) |�g −
�qνµ| � dµν , which means (∀µ,ν) Mµν(γ,�g) � 0.

(b) From 	± � 0 it follows that (∀µ,ν) E
µ
x ∩ Eν

y �= ∅ and
dµν � 0 and from max{|α|,|β|} � 1 and the choice of η,τ as
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in Theorem 4(b) it follows that Dητ � 0. As a result {�z(±)
ητ } =

E
η
x ∩ Eτ

y ⊂ E so that �z(±)
ητ ∈ J (Lemma 1). Since J is convex

we obtain �zητ = (�z(+)
ητ + �z(−)

ητ )/2 ∈ J and Mµν(Z(�zητ ),�zητ ) is a
joint observable (Theorem 1).

From now on s may be 0. For simplicity we denote by i

(i = 1,2,3,4) four functions s2(±α − 1) and s2(±β − 1) and
 = maxi{i}. A set of if and only if conditions for joint
measurement reads s2R � 0 or  � 0. We have

Lemma 3.  = 0 infers s2R � 0.
Proof. (a) If s > 0 then  = 0 infers max{|α|,|β|} = 1

(e.g., |α| = 1 and |β| � 1). Thus |�g − �qνµ| = (1 − µβ)n �
(1 − µβ)Bν � dµν which is exactly R � 0. Here ν = sgn[α]
and µ = sgn[Bνβ + νγ − x]. (b) If s = 0 then  = 0 infers
s2α = s2β = 0 and thus s2R = 0.

Proof of Theorem 2. We have only to prove that Eq. (8)
is equivalent to either s2R � 0 or  � 0. From the identity
s2R = (γ 2 − f−)(f+ − γ 2), where f− is the left-hand side of
Eq. (8) and f+ = f− + √

a+a−b+b−, it follows that s2R � 0
is equivalent to f− � γ 2 � f+. Thus we have only to show
that γ 2 � f+ infers  � 0 and that  � 0 infers γ 2 � f−.
We notice first of all that i are four quadratic (or linear)
functions of c = �m · �n by regarding x,y,m,n as parameters and
 is continuous. Case (a) F 2

x + F 2
y � 1. In this case mn � |xy|

and f± � 0 and  � 0 for c = xy since |y| � F 2
y and F 2

y (n2 −
x2) � m2n2 − x2y2. Now that  � 0 for c = ±mn, there exist
−mn � c− � xy � c+ � mn such that  = 0 for c = c±,
which infers xy ± √

f∓ � c± � xy ± √
f± (Lemma 3). If

γ 2 � f+ then c � c− or c � c+, which ensures  � 0 since
all the coefficients of c2 of i (i = 1,2,3,4) are nonnegative. If
 � 0 then c � c− or c � c+, which infers γ 2 � f−. Case (b)
F 2

x + F 2
y � 1. In this case γ 2 � f− always and we have only

to show that γ 2 � f+ infers  � 0. If  = 0 has no solution
then  > 0 for all c since  > 0 for c = ±mn. Let c− � c+
be its two solutions and it follows that (c± − xy)2 � f+. As
a result if γ 2 � f+ then c � c+ or c � c−, which ensures
 � 0.

APPENDIX B: COMPARISON WITH KNOWN RESULTS

Here we shall formulate those results in [8,9] in our
notations and and examine the boundary of admissible �n by
fixing y,x,m. The same boundary means the equivalency.

The Stano-Reitzner-Heinosaari (SRH) Theorem [9]. Two
observables O(x, �m) and O(y,�n) are jointly measurable if and
only if either
(C1)

√
1 − |y| � Fx ; or

(C2)
√

1 − |y| > Fx and |γ | � l; or
(C3)

√
1 − |y| > Fx and |γ | < l and

√
a+h− + √

a−h+ �
2s.

Here s = | �m × �n|, γ = �m · �n − xy, a± = (1 ∓ x)2 − m2,
h± = m2 − (γ ± y)2, and

l =
√

y2 + m2 − |y|(1 − x2 + m2).

Remarks. The corresponding boundary is plotted in
Fig. 3(a) [with the same parameters as in Fig. 1(a)]. If (C1)
then F 2

x + F 2
y � 1 so that Eq. (8) holds always true. If (C2)

then, by noticing that the left-hand side f− of Eq. (8) can be

ncosθ

n
si

n
θ γ = l γ = − l

(a)

ncosθ

n
si

n
θ

(b)

FIG. 3. (Color online) The boundaries of admissible �n arising
from (a) SRH conditions and (b) BS conditions with fixed m = 0.8,
x = −0.1, and y = 0.3.

rewritten as

f− = (a+ + 2x)(b+ + 2y) − √
a−a+b−b+

2
+ m2 + n2 − 1,

(B1)

we have f− � l so that Eq. (8) holds true. If 1 − |y| > F 2
x and

|γ | < l then |γ | < m − |y| so that Lemma 4(a) applies and
Eq. (B2) coincides with Eq. (8). Thus we have reproduced the
boundary in [9] analytically.

The Busch-Schmidt (BS) Theorem [8]. Two observables
O(x, �m) andO(y,�n) are jointly measurable if and only if either
(53) 4	+s2 � a+b+( �L2

−− − s2); or
(54) 4	+s2 � a−b−( �L2

++ − s2); or
(55) 4	+s2 � 2(A+B+ − c)(A−B− − c)(s2 − �L++ · �L−−)
− (A+B+ − c)2( �L2

−− − s2) − (A−B− − c)2( �L2
++ − s2).

Here we have denoted s = | �m × �n|, 	+ = ( �m − �n)2 −
(x − y)2, a± = (1 ∓ x)2 − m2, and b± = (1 ∓ y)2 − n2 to-
gether with

�Lµµ = µ(1 − µx)�n − µ(1 − µy) �m,

A± = 1 ∓ x, B± = 1 ∓ y, and c = �m · �n.
Remarks. Despite the facts that we have identified Eq. (55)

with R � 0 [Lemma 4(b)] and that the boundaries R = 0,
|y| + n = 1, and

4	+s2 = max
µ=±

{
aµbµ

( �L2
µ̄µ̄ − s2)},

intersect at exactly where max{|α|,|β|} = 1 and that numerical
evidences indicate that BS conditions also give rise to the
same boundary, we fail to work out an analytical proof for
the equivalency so far. The corresponding boundary is plotted
in Fig. 3(b). The yellow-shaded region comes from R � 0
while the blue-contoured region comes from the conditions in
Eqs. (53) and (54).

Lemma 4. (a) Either R � 0 or {|β| � 1 and h± � 0} if and
only if √

a+h− +
√

a−h+ � 2s. (B2)

(b) The condition in Eq. (55) is equivalent to R � 0.
Proof. (a) If R � 0 then �g ∈ E+

x ∩ E−
x so that h± � 0

and |(1 ± β)s| �
√

a∓h± which infers Eq. (B2). If |β| � 1
and h± � 0 since 4βs2 = h+a− − h−a+, then 4s2 � h+a− +
h−a+ and Eq. (B2) follows. On the other hand, if Eq. (B2)
holds true then h± � 0 and (∃µ) (1 − µβ)|s| �

√
aµhµ̄ which

infers either |β| � 1 or �g ∈ Eµ
x (i.e., R � 0).

062116-6



JOINT MEASUREMENT OF TWO UNSHARP OBSERVABLES . . . PHYSICAL REVIEW A 81, 062116 (2010)

(b) It follows from the identities A+B+ + A−B− −
2c = 2(1 − γ ) and (A+B+ − c) �L−− + (A−B− − c) �L++ =

2(y + γ x)�n − 2(x + γy) �m whose length squared is equal to
4s2|�g|2 and R = (1 − γ )2 − |�g|2 − 	+.
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