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Measure for the non-Markovianity of quantum processes
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Recently, a measure for the non-Markovian behavior of quantum processes in open systems has been developed,
which is based on the quantification of the flow of information between the open system and its environment
[Phys. Rev. Lett. 103, 210401 (2009)]. The information flow is connected to the rate of change of the trace
distance between quantum states, which can be interpreted in terms of the distinguishability of these states. Here,
we elaborate the mathematical details of this theory, present applications to specific physical models, and discuss
further theoretical and experimental implications as well as relations to alternative approaches proposed recently.
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I. INTRODUCTION

A Markov process in the evolution of an open quantum
system typically gives rise to a quantum dynamical semigroup
for which the most general representation can be written in the
Lindblad form [1,2]. There exist, however, complex systems
for which this relatively simple description of the open-system
dynamics in terms of a Markovian master equation fails to give
a comprehensive picture of the dynamics [3]. Thus, in many
realistic physical systems, the Markovian approximation of the
dynamics gives an overly simplified picture of the open-system
evolution, and a more rigorous treatment of the dynamics is
required.

To give insights into the nature of non-Markovian effects,
many analytical methods and numerical simulation techniques
have been developed in recent years (see, for example,
Refs. [4–17]). Non-Markovianity manifests itself in the dif-
ferent approaches in a variety of ways, and there exists no
general recipe for comparing the degree of non-Markovianity
in different physical models. In order to give a general quantity
determining the degree of non-Markovian behavior in the
open-system dynamics, one has to rigorously define what
makes a dynamical map non-Markovian.

Here, we discuss a recently proposed measure for the
degree of non-Markovian behavior which is based on the
trace distance between quantum states [18]. The trace distance
describes the probability of successfully distinguishing two
quantum states and the change in the trace distance of two
open-system states can be interpreted as a flow of information
between the system and the environment. When the trace
distance decreases, information flows from the system into
the environment, while an increase of the trace distance
signifies a backflow of information from the environment
to the system. Markovian processes tend to continuously
decrease the distinguishability between any two states of the
open system; that is, information flows continuously from
the system to the environment. The condition which defines
a non-Markovian dynamical map is that the map allows an
information flow from the environment to the system and
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therefore allows the system to gain information about its
former state. This condition for a non-Markovian map leads to
a rigorous and general definition of a measure for the degree
of non-Markovianity in open quantum systems.

In Sec. II, we construct the measure for non-Markovianity
and discuss its properties for some general classes of quantum
processes in open systems. It is shown that the nondivisibility
of the dynamical map is necessary for the process to be non-
Markovian. Hence, the measure vanishes for quantum dynam-
ical semigroups and for time-dependent Markov processes.
We also demonstrate that the appearance of negative rates
in the quantum master equation is a necessary condition for
non-Markovianity. In Sec. III, we illustrate the determination
of the measure for a two-level system and for a �-type atom in
a cavity. Section IV contains a detailed discussion of several
alternative ways for defining a measure for non-Markovianity.
Moreover, we present possible experimental strategies for
the detection of non-Markovian effects. The conclusions are
drawn in Sec. V.

II. THE MEASURE FOR NON-MARKOVIANITY

A. Construction of the measure

To construct the measure for non-Markovianity, we need a
measure for the distance between any pair of quantum states
represented by density matrices ρ1 and ρ2. Such a measure is
given by the trace distance, which is defined as

D(ρ1,ρ2) = 1
2 Tr|ρ1 − ρ2|, (1)

where the modulus of an operator A is defined by |A| =√
A†A. The trace distance D yields a natural metric on the

state space and satisfies 0 � D � 1. It has many properties
that make it a useful measure for the distance between quantum
states [19]. First, the trace distance is preserved under unitary
transformations U ,

D(Uρ1U
†,Uρ2U

†) = D(ρ1,ρ2). (2)

Second, all completely positive and trace-preserving (CPT)
maps � (trace-preserving quantum operations) are contrac-
tions for this metric,

D(�ρ1,�ρ2) � D(ρ1,ρ2). (3)
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Third, the trace distance has a physical interpretation as a
measure of state distinguishability. Suppose Alice prepares a
quantum system in the state ρ1 with probability 1/2 and in
the state ρ2 with probability 1/2. She gives the system to Bob,
who performs a measurement to distinguish the two states.
The maximal probability that Bob can identify the state given
to him is [20]

pmax = 1
2 [1 + D(ρ1,ρ2)]. (4)

Hence, the trace distance represents the maximal bias in favor
of the correct state identification which Bob can achieve
through an optimal strategy. For example, if ρ1 and ρ2 have
orthogonal supports, the trace distance becomes D(ρ1,ρ2) = 1
and thus pmax = 1, which means that Bob is able to distinguish
the states with certainty.

The change in the distinguishability of states of an open
system can be interpreted as a flow of information between
the system and the environment. We consider here quantum
processes given by a dynamical CPT map �(t,0) which
transforms the initial states ρ(0) at time zero to the states
ρ(t) at time t � 0,

ρ(0) �→ ρ(t) = �(t,0)ρ(0). (5)

When such a quantum process reduces the distinguishability
of states, information is flowing from the system to the
environment. Likewise, the increase of the distinguishability
signifies that information flows from the environment to the
system. The invariance under unitary transformations (2)
indicates that information is preserved under the dynamics of
closed systems. The contraction property of Eq. (3) guarantees
that the maximal amount of information the system can
recover from the environment is the amount of information
that previously flowed out the system.

The basic idea underlying our construction for the mea-
sure of non-Markovianity in a quantum process is that for
Markovian processes, information flows continuously from
the system to the environment. In order to give rise to
non-Markovian effects, there must be, for some interval of
time, an information flow from the environment back to the
system. The information flowing from the environment back
to the system allows the earlier states of the system to have an
effect on the later dynamics of the system; that is, it allows the
emergence of memory effects.

We define the rate of change of the trace distance of a pair
of states by means of

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t)), (6)

where ρ1,2(t) = �(t,0)ρ1,2(0). For a non-Markovian process
described by a dynamical map �(t,0), information must flow
from the environment to the system for some interval of time,
and thus we must have σ > 0 for this time interval. A measure
of non-Markovianity should measure the total increase of
distinguishability over the whole time evolution, that is, the
total amount of information flowing from the environment
back to the system. This suggests defining the measure N (�)

for the non-Markovianity of the quantum process �(t,0)
through

N (�) = max
ρ1,2(0)

∫
σ>0

dtσ (t,ρ1,2(0)). (7)

The time integration is extended over all time intervals (ai,bi)
in which σ is positive and the maximum is taken over all pairs
of initial states. Due to Eq. (6), the measure can be written as

N (�) = max
ρ1,2(0)

∑
i

[D(ρ1(bi),ρ2(bi)) − D(ρ1(ai),ρ2(ai))].

(8)

To calculate this quantity, one first determines for any pair
of initial states the total growth of the trace distance over
each time interval (ai,bi) and sums up the contribution of all
intervals. N (�) is then obtained by determining the maximum
over all pairs of initial states. Although it may be difficult
to derive an analytical expression for the measure defined in
Eq. (8), the numerical evaluation of the measure is relatively
easy provided the dynamical map is known explicitly. We
discuss in Sec. III the determination ofN (�) for some specific
examples.

B. Classification of quantum processes

Having defined our measure for non-Markovianity, we
discuss in this section the properties of this measure for
some general classes of quantum processes. Specific physical
systems are investigated in Sec. III.

1. Divisible maps

The dynamical map �(t,0) is defined to be divisible if for all
t,τ � 0 the CPT map �(t + τ,0) can be written as a composite
of the two CPT maps �(t + τ,t) and �(t,0),

�(t + τ,0) = �(t + τ,t)�(t,0). (9)

We note that this definition differs slightly from the usual
definition of divisibility according to which a CPT map �

(quantum channel) is said to be divisible if there exist CPT
maps �1 and �2 such that � = �1�2, where it is assumed
that neither �1 nor �2 is a unitary transformation [21]. In
Eq. (9), the left-hand side as well as the second factor on the
right-hand side are fixed by the given dynamical map. Hence,
Eq. (9) requires the existence of a certain linear transformation
�(t + τ,t), which maps the states at time t to the states at
time t + τ and represents a CPT map (that may be a unitary
transformation) for all t and all τ . There are many quantum
processes which are not divisible. For instance, if �(t,0) is not
invertible, a linear map �(t + τ,t) which fulfills Eq. (9) may
not exist. Moreover, even if a linear map �(t + τ,t) satisfying
Eq. (9) does exist, this map need not be completely positive
and not even positive.

We claim that all divisible dynamical maps are Markovian.
To prove this statement, suppose that �(t,0) is divisible. For
any pair of initial states ρ1,2(0), we then have

ρ1,2(t + τ ) = �(t + τ,t)ρ1,2(t). (10)
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Since �(t + τ,t) is a CPT map, we can apply the contraction
property (3) to obtain

D(ρ1(t + τ ),ρ2(t + τ )) � D(ρ1(t),ρ2(t)). (11)

This shows that for all divisible dynamical maps the trace
distance decreases monotonically, that is, σ (t,ρ1,2(0)) � 0,
and therefore N (�) = 0. Thus, we conclude that all divisible
processes are Markovian and that non-Markovian processes
must necessarily be described by a nondivisible dynamical
map.

2. Quantum dynamical semigroups

The prototype of a Markovian dynamics is provided by a
Markovian master equation for the density matrix,

d

dt
ρ(t) = Lρ(t), (12)

with a generator in Lindblad form [1,2],

Lρ = −i[H,ρ] +
∑

i

γi

[
AiρA

†
i − 1

2
{A†

i Ai,ρ}
]
, (13)

involving a time-independent Hamiltonian H as well as time-
independent Lindblad operators Ai and positive decay rates
γi � 0. Such a master equation leads to a dynamical semigroup
of CPT maps, �(t,0) = exp(Lt). With �(t + τ,t) = exp(Lτ ),
the divisibility condition (9) is trivially satisfied. Hence, we
have N (�) = 0 for all dynamical semigroups, that is, for all
processes described by a master equation in the Lindblad form.

3. Time-dependent Markov processes

The divisibility property holds for a much larger class of
quantum processes than those described by a master equation
of the form (12). Suppose we have a time-local master equation
of the form

d

dt
ρ(t) = K(t)ρ(t) (14)

with a time-dependent generator K(t). It can be shown that
in order to preserve the Hermiticity and trace of the density
matrix this generator must be of the form [1,8]

K(t)ρ = −i[H (t),ρ]

+
∑

i

γi(t)

[
Ai(t)ρA

†
i (t) − 1

2
{A†

i (t)Ai(t),ρ}
]
.

(15)

By contrast to the assumptions in Eq. (13), the Hamiltonian
H (t), the Lindblad operators Ai(t), and the decay rates γi(t)
may now depend on time. If the decay rates are positive
functions, γi(t) � 0, the generator (15) is in Lindblad form
(13) for each fixed t � 0. Such a process with γi(t) � 0 may be
called time-dependent Markovian although the corresponding
dynamical map

�(t,0) = T exp

[∫ t

0
dt ′K(t ′)

]
(16)

does not yield a dynamical semigroup (T denotes the chrono-
logical time-ordering operator). However, one can easily see
that the divisibility condition (9) still holds because the map

�(t + τ,t) = T exp

[∫ t+τ

t

dt ′K(t ′)
]

(17)

is CPT for γi(t) � 0. Thus, we can conclude that for all time-
dependent Markovian processes, we again have N (�) = 0.

We have just seen that a quantum process given by the
time-local master equation (14) with positive rates leads to
a divisible dynamical map. Under certain conditions, the
converse of this statement is also true. More precisely, if
the dynamical map �(t,0) is divisible with a unique map
�(t + τ,t) depending smoothly on τ , then the corresponding
density matrix ρ(t) obeys a master equation of the form
(14) with positive rates in the generator (15). In fact, using
ρ(t + τ ) = �(t + τ,t)ρ(t), we find

d

dt
ρ(t) = d

dτ

∣∣∣∣
τ=0

�(t + τ,t)ρ(t), (18)

and, hence, we obtain the master equation (14), where the
generator is given by

K(t) = d

dτ

∣∣∣∣
τ=0

�(t + τ,t). (19)

Since �(t + τ,t) is CPT and satisfies �(t,t) = I , this genera-
tor must be in Lindblad form for each fixed t , that is, it must
have the form (15) with γi(t) � 0.

4. Non-Markovian processes

The measure for quantum non-Markovianity does not
depend on any specific mathematical representation of the
dynamics. There are many different such representations, for
example, through generalized master equations involving a
certain memory kernel. However, quantum master equations
with the time-local structures given by Eqs. (14) and (15)
are also very useful for the description of non-Markovian
processes. It follows from the preceding results that in order for
such a master equation to yield a nonzero measure, N (�) > 0,
at least one of the rates γi(t) must take on negative values
for some interval of time. We emphasize that temporarily
negative rates in the master equation in general do not lead
to a violation of the complete positivity of the dynamical
map. Many examples for time-local master equations with
negative rates are known in the literature. Further examples
are discussed in the next section.

III. EXAMPLES

A. Two-level system

We study the dynamics of a two-level atom with excited
state |+〉 and ground state |−〉 which is coupled to a reservoir
of field modes initially in the vacuum state. In Ref. [18], we
have described the detuned Jaynes-Cummings model, while
here we treat the resonant case. We show that the pair of states
maximizing the measure for non-Markovinity is different in
the two cases. This demonstrates that the change in both the
populations and the coherences plays a crucial role in the flow
of information between the system and the environment.
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The two-level atom model can easily be solved exactly [3]
and leads to a dynamical map �(t,0) which can be represented
in terms of the elements ρ±±(t) = 〈±|ρ(t)|±〉 of the density
matrix ρ(t) as follows:

ρ++(t) = |G(t)|2ρ++(0),
ρ−−(t) = ρ−−(0) + [1 − |G(t)|2]ρ++(0),

(20)
ρ+−(t) = G(t)ρ+−(0),
ρ−+(t) = G∗(t)ρ−+(0).

Here, the function G(t) is defined as the solution of the
integrodifferential equation,

d

dt
G(t) = −

∫ t

0
dt1f (t − t1)G(t1), (21)

corresponding to the initial condition G(0) = 1, where
f (t − t1) denotes the two-point reservoir correlation function
(Fourier transform of the spectral density). The map (20) is
completely positive if and only if |G(t)| � 1. One can easily
check that �(t,0) can be decomposed as in Eq. (9), where the
map �(t + τ,t) is given by

ρ++(t + τ ) =
∣∣∣∣G(t + τ )

G(t)

∣∣∣∣
2

ρ++(t),

ρ−−(t + τ ) = ρ−−(t) +
[

1 −
∣∣∣∣G(t + τ )

G(t)

∣∣∣∣
2
]

ρ++(t),

(22)

ρ+−(t + τ ) = G(t + τ )

G(t)
ρ+−(t),

ρ−+(t + τ ) = G∗(t + τ )

G∗(t)
ρ−+(t).

It follows from these equations that a necessary and sufficient
condition for the complete positivity of �(t + τ,t) is given by
|G(t + τ )| � |G(t)|. Thus, we see that the dynamical map of
the model is divisible if and only if |G(t)| is a monotonically
decreasing function of time. Note that this statement holds true
also for the case in which G(t) vanishes at some finite time.

With the help of these results, one can easily derive an
analytical formula for the time derivative of the trace distance,

σ (t,ρ1,2(0)) = 2|G(t)|2a2 + |b|2√
|G(t)|2a2 + |b|2

d

dt
|G(t)|, (23)

where a = ρ++
1 (0) − ρ++

2 (0) denotes the difference of the
populations and b = ρ+−

1 (0) − ρ+−
2 (0) denotes the difference

of the coherences of the initial states. This relation shows
that the trace distance increases at some point if and only if
|G(t)| increases at this point. We conclude that the measure
for non-Markovianity is positive, N (�) > 0, if and only if the
dynamical map is nondivisible.

A positive measure for non-Markovianity is not only linked
to a breakdown of the divisibility of the dynamical map but
also to the emergence of a negative rate in the corresponding
master equation (14). In fact, as long as G(t) �= 0, one can
write an exact master equation of this form with the generator

K(t)ρ = − i

2
S(t)[σ+σ−,ρ]

+ γ (t)

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
, (24)

where we use the definitions

γ (t) = −2 Re

(
Ġ(t)

G(t)

)
, S(t) = −2 Im

(
Ġ(t)

G(t)

)
. (25)

By writing the rate γ (t) as

γ (t) = − 2

|G(t)|
d

dt
|G(t)|, (26)

we see that an increase of |G(t)| and hence a breakdown of
the divisibility leads to a negative rate in the generator of the
master equation. Thus, we find that for the present model a
nonzero measure for non-Markovianity is equivalent to the
nondivisibility of the dynamical map and to the occurrence of
a negative rate in the master equation.

As an example, we consider the case of a Lorentzian
reservoir spectral density which is on resonance with the
atomic transition frequency and leads to an exponential two-
point correlation function,

f (τ ) = 1
2γ0λe−λ|τ |, (27)

where γ0 describes the coupling strength and λ indicates the
spectral width (damped Jaynes-Cummings model). Solving
Eq. (21) with this correlation function, we find

G(t) = e−λt/2

[
cosh

(
dt

2

)
+ λ

d
sinh

(
dt

2

)]
, (28)

where d =
√

λ2 − 2γ0λ. We see that for small couplings,
γ0 < λ/2, the function |G(t)| decreases monotonically. The
dynamical map is thus divisible in the weak coupling regime,
the rate γ (t) is positive, and the measure for non-Markovianity
vanishes. However, in the strong coupling regime, γ0 > λ/2,
the function |G(t)| starts to oscillate, showing nonmonotonic
behavior. Consequently, the dynamical map is then no longer
divisible and N (�) > 0. We note that in the strong coupling
regime the rate γ (t) diverges at the zeros of G(t). However,
the master equation can still be used to describe the evolution
between successive zeros, and therefore, the connection
between a positive measure and negative rates in the master
equation remains valid.

There is thus a threshold γ0 = λ/2 for the system-reservoir
coupling below which N (�) = 0. We find that the measure
increases monotonically with increasing coupling for γ0 >

λ/2. This is illustrated in Fig. 1. The maximization over the pair
of initial states ρ1,2(0) in expression (7) has been performed
here by a Monte Carlo sampling of pairs of initial states.
Our simulations provide strong evidence that the maximum
is attained for the initial states

ρ1(0) = |−〉 〈−| , ρ2(0) = 1
2 (|+〉 + |−〉)(〈+| + 〈−|). (29)

In Ref. [18], we calculated the measure for the detuned
Jaynes-Cummings model in the weak coupling limit. In this
example, the maximum of the measure was obtained for the
initial states ρ1(0) = |−〉 〈−| and ρ2(0) = |+〉 〈+|, that is, for
the invariant ground state and the excited state. The difference
in the maximization for the resonant and the off-resonant case
arises from the fact that the rate at which the populations and
the coherences initially decay is much larger for the resonant
case. Consequently, the growth of the trace distance occurs
after the excited-state population and the coherences have
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FIG. 1. The non-Markovianity N (�) for the damped Jaynes-
Cummings model as a function of the coupling strength γ0. Gray
dots: 1000 randomly drawn pairs of pure and mixed initial states.
Black circles: The initial pair given by Eq. (29), which leads to the
maximum in Eq. (7).

reached the value zero. After this point, the increase of the
coherences yields the dominant contribution to the increase of
the trace distance. Therefore, the maximal growth of the trace
distance for the resonant case is reached for the invariant state
and the state with maximal initial coherence.

B. � model

The � model describes a three-level atom with excited state
|a〉 and two ground states |b〉 and |c〉 interacting off-resonantly
with a cavity field. This example allows us to demonstrate how
the measure for non-Markovianity operates in a multichannel
case and how there can exist simultaneously positive and
negative decay rates for different channels. The spectral
density we use is

J (ω) = γ0

2π

λ2

(ωcav − ω)2 + λ2
, (30)

where ωcav is the resonance frequency of the cavity. Further
details and the master equation describing the dynamics of
the �-type atom are presented in the appendix. The generator
of the master equation is of the form of Eq. (15) with two
Lindblad operators |b〉 〈a| and |c〉 〈a| and two time-dependent
decay rates γ1(t) and γ2(t).

The detunings of the transition frequencies of the �

atom from the cavity resonance frequency are denoted by

i = ωi − ωcav. When the detuning parameters 
1 and 
2

are both sufficiently large, the decay rates γ1(t) and γ2(t)
get temporarily negative values, and this gives rise to an
information flow from the environment to the system. On one
hand, the two decay rates γ1(t) and γ2(t) have simultaneous
negative regions when 
1 = 
2. On the other hand, when

1 �= 
2, the decay rates can have opposite signs. In this
case, the co-operative action of the other channel reduces the
amount of information flowing from the environment to the
system. The maximum of the measure over the initial states is
reached when the states are chosen to be |a〉 〈a| and |b〉 〈b|,
or |a〉 〈a| and |c〉 〈c|, depending on which of the channels has
more information flow from the environment to the system.

5 10 15 20
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

1

FIG. 2. The non-Markovianity N (�) for the � model as a
function of the detuning 
1 for 
2/λ = 5 and γ0/λ = 0.01. Gray
dots: 1000 randomly drawn pairs of initial states. Circles: The
initial pair ρ1(0) = |a〉 〈a| and ρ2(0) = |b〉 〈b|. Pluses: The initial
pair ρ1(0) = |a〉 〈a| and ρ2(0) = |c〉 〈c|. At 
1 = 
2, the pair which
yields the maximum in Eq. (7) changes from the latter to the former
pair of initial states.

When 
1 and 
2 are such that the channel corresponding to
the decay rate γi(t) (i = 1 or 2) causes more information flow
from the environment to the system, we get the expression

σ (t) = −γi(t)ρaa(t). (31)

The function ρaa(t) is specified in the appendix. Equation (31)
shows that the � system is non-Markovian if one of the decay
rates γ1(t) or γ2(t) takes on negative values. The maximization
over the the pair of initial states is demonstrated in Fig. 2,
where the measure was again calculated numerically from a
large sample of initial states.

IV. DISCUSSION

A. Alternative distance measures

We have based our definition of the measure of non-
Markovianity on the trace distance (1). An alternative measure
is obtained if one replaces the trace distance by the relative
entropy,

S(ρ1||ρ2) = Tr[ρ1(log2 ρ1 − log2 ρ2)]. (32)

By using this quantity as a measure for the distance between
quantum states, one is led to a similar interpretation as
before because the relative entropy also decreases under CPT
maps [22]. There are, however, some technical problems and
limitations in the usefulness of the relative entropy which arise
from the fact that for many pairs ρ1 and ρ2 the relative entropy
becomes infinite [23] and thus leads to singularities in the
definition of the measure. This situation can occur even in the
simple case of a two-state system, demonstrating the problems
of the relative-entropy concept in defining a general measure
for non-Markovianity. No such problems occur for the trace
distance, which is well-defined and finite for all physical states
represented by positive trace class operators.
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Another common measure for the distance between two
states is the Hilbert-Schmidt distance,

DHS(ρ1,ρ2) =
√

Tr[(ρ1 − ρ2)2]. (33)

For two-dimensional Hilbert spaces, the Hilbert-Schmidt
distance and the trace distance coincide and correspond to the
Euclidean distance between the Bloch vectors representing the
states (up to numerical factors). However, the Hilbert-Schmidt
distance is not suitable for a definition of non-Markovianity
since CPT maps are in general not contractions for this metric
[24]. Thus, the Hilbert-Schmidt distance does not provide a
natural way to define the information flow between system
and environment.

B. Experimental issues

The exact determination of the measure generally requires
solving the complete reduced dynamics, which can be a
difficult task for more complex systems. However, any
observed growth of the trace distance is a clear signature
for non-Markovian behavior and leads to a lower bound for
N (�). The measure for non-Markovianity introduced here
could therefore be useful also for the experimental detection
of non-Markovianity.

In an experiment, one has to perform a state tomography
on different ensembles at different times in order to decide
whether the trace distance has increased. Such an experiment
also allows the validation of theoretical models or approx-
imation schemes. Consider a theoretical model predicting
σ (t,ρ1,2(0)) > 0 for some interval t ∈ (t1,t2) and for some
pair of initial states ρ1,2(0). In the experiment, one should then
detect the increase of the trace distance between the states ρ1(t)
and ρ2(t) in this time interval. This type of experiment could
be based, for example, on the recent proposal to use a trapped
ion to study quantum Brownian motion in the non-Markovian
regime [25]. The explicit experimental implementation of
this system can be done, for example, by using reservoir
engineering techniques [26] or by using the trapped ion as a
quantum simulator for non-Markovian dynamics [27]. One of
the possibilities here to detect non-Markovianity is to prepare
the ion in various Fock states and to study the trace distance
dynamics as described previously.

A great advantage of the present approach is that it also
allows one to plan experiments for testing non-Markovianity
without knowing the properties of the environment or the
system-environment interaction. The interactions and en-
vironmental properties can be quite difficult to model in
an experimental setup. By performing a state tomography
for two states of the open system under study at many
different times, one can determine whether there has been
any increase in the trace distance and hence non-Markovian
behavior in the dynamics. From this information, one can
conclude whether non-Markovian effects are crucial in the
dynamics and in this way also gain some knowledge of
the nature of the environment and the interactions. An example
under active investigation, where nevertheless a complete
characterization of the environment is still missing and where
non-Markovianity could play a role, is given by the energy
transfer in photosynthetic systems [28].

C. Other approaches to non-Markovianity

Recently, other interesting approaches to the character-
ization and quantification of non-Markovianity have been
proposed. The measure suggested in Ref. [5] quantifies non-
Markovianity in terms of the minimal amount of noise required
to make a given quantum channel Markovian. The most
important difference to our approach is that this measure is
based on the properties of the dynamical map at a given time,
that is, on the properties of the quantum channel represented by
a snapshot of the time evolution. Hence, this approach assesses
to what extent the dynamical map at each fixed time t0 deviates
from an element of a Markovian process. The fundamental
difference between the notion of non-Markovianity used in
Ref. [5] and ours can be seen from the following simple
example. We consider the dynamical map �(t,0) of a two-state
system undergoing pure de- and rephasing dynamics, which is
given by (using the notation of Sec. III A)

ρ++(t) = ρ++(0), ρ−−(t) = ρ−−(0),
(34)

ρ+−(t) = g(t)ρ+−(0), ρ−+(t) = g(t)ρ−+(0),

where the function g(t) = 1
2 (1 + cos2 ωt) describes a periodic

oscillation of the coherences. The trace distance for this model
is given by

D(ρ1(t),ρ2(t)) =
√

a2 + g2(t)|b|2, (35)

where a = ρ++
1 (0) − ρ++

2 (0) and b = ρ+−
1 (0) − ρ+−

2 (0). For
b �= 0, the trace distance thus oscillates periodically, and
hence N (�) = +∞ according to the definition (7) of our
measure. On the other hand, the non-Markovianity in the sense
of Ref. [5] is zero because for any fixed t0 the dynamical
map (34) can be written as an element of a Markovian
semigroup: �(t0,0) = exp(L) with the Lindblad generator
Lρ = �

2 (σ3ρσ3 − ρ), where � = − ln g(t0).
A further interesting measure proposed recently [6] is

closely connected to the measure discussed here. In fact, the
measure of Ref. [6] quantifies deviations from the divisibility
of the dynamical map. As we have seen, the nondivisibility
of the dynamical map is a necessary condition for N (�)
to be nonzero. However, we conjecture that our notion of
non-Markovianity and the one used in [6] are not strictly
equivalent, that is, that there are nondivisible maps with
N (�) = 0. Further considerations concerning this point will
be published elsewhere.

V. CONCLUSIONS

We have constructed a measure N (�) for the non-
Markovianity of quantum processes in open systems in terms
of the information flowing from the environment to the
system during the time evolution. The flow of information is
characterized by the change of the distinguishability between
a pair of quantum states, which, in turn, is linked to the
change of the trace distance between these states. We have
also argued why the trace distance represents the most suitable
distance measure for quantum states to be used in this context.
Furthermore, since we have developed a genuine quantitative
measure, the results presented here also allow us to compare
the degree of non-Markovianity of different types of physical
systems.
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It has been demonstrated that a nonzero measure for non-
Markovianity requires the dynamical map to be nondivisible,
a property which is thus necessary for the presence of
memory effects in the open-system dynamics. It has also
been shown that Markovian semigroups and time-dependent
Markov processes are divisible and hence lead to N (�) = 0.
The examples discussed here illustrate how the measure can
be calculated for a given open-system dynamics and that
a nonzero measure for non-Markovianity is linked to the
emergence of negative decay rates in the corresponding master
equation.

Our measure for non-Markovianity has a clear operational
meaning based on the interpretation of the trace distance in
terms of the distinguishability of states and suggests various
ways to experimentally decide whether a system under study
is non-Markovian. The measurement scheme discussed here
has the great advantage that it does not presuppose any
knowledge about the structure of the environment or about
the system-environment interaction and therefore also gives
valuable information on the theoretical modeling of the open-
system dynamics. If, for example, a substantial increase of
the trace distance is observed experimentally, a mathematical
description of the dynamics through any equation describing a
Markovian or time-dependent Markovian process is excluded.
This shows that our measure is a useful tool for the charac-
terization of non-Markovianity, both in experiments on open
systems and in their theoretical analysis and modeling.

We have argued that the characteristics of the information
exchange between the system and its environment determine
the degree of non-Markovian behavior in an open system. This
exchange of quantum information has been defined here in
very general terms through the change of the distinguishability
of quantum states and does not presuppose anything about
the specific physical carriers of the information, for example,
energy or particles. Moreover, the measure does not depend on
any specific representation of the open system’s dynamics. It
therefore opens the possibility to compare and assess different
mathematical formulations of dynamical processes in their
ability to describe memory effects, in order to understand better
the mathematical description of non-Markovian quantum
dynamics.
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APPENDIX

Here we present some details of the � model studied in
Sec. III B. The weak-coupling master equation for this model
is given by

d

dt
ρ(t) = −iλ1(t)[|a〉 〈a| ,ρ(t)] − iλ2(t)[|a〉 〈a| ,ρ(t)]

+ γ1(t)
[|b〉 〈a| ρ(t) |a〉 〈b| − 1

2 {ρ(t), |a〉 〈a|}]
+ γ2(t)

[|c〉 〈a| ρ(t) |a〉 〈c| − 1
2 {ρ(t), |a〉 〈a|}] ,

where

λi(t) =
∫ t

0
ds

∫ ∞

0
dωJ (ω) sin[(ω − ωi)s],

γi(t) =
∫ t

0
ds

∫ ∞

0
dωJ (ω) cos[(ω − ωi)s].

By introducing the definitions

f (t) = e−[D1(t)+D2(t)]/2e−i[L1(t)+L2(t)],

gi(t) =
∫ t

0
dsγi(s)e−[D1(s)+D2(s)],

where

Di(t) =
∫ t

0
dsγi(s), Li(t) =

∫ t

0
dsλi(s),

the solution of the master equation can be represented as
follows:

ρaa(t) = |f (t)|2ρaa(0),

ρbb(t) = g1(t)ρaa(0) + ρbb(0),

ρcc(t) = g2(t)ρaa(0) + ρcc(0),

ρab(t) = f (t)ρab(0),

ρac(t) = f (t)ρac(0),

ρbc(t) = ρbc(0).

These equations define the dynamical map �(t,0) of the �

model. Employing the results of Choi [29], one can check that
a necessary and sufficient condition for the complete positivity
of this map is given by

g1(t) � 0, g2(t) � 0.

These conditions are satisfied for the parameters used in the
simulations of Sec. III B.
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