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Dynamics of entanglement transfer through multipartite dissipative systems
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We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level
atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe
the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this
situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities
mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities
throughout the dynamics. Considering the entanglement dynamics of interacting and noninteracting bipartite
subsystems, we found time windows where the entanglement can only flow through interacting subsystems,
depending on the system parameters.
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I. INTRODUCTION

Entanglement has emerged as a central physical resource
for quantum-information theory [1]. For processing quantum
information, physical architectures are expected to be com-
posed of multipartite quantum systems. Understanding how
quantum entanglement is transferred between the parties has
motivated several contributions in recent years [2–6]. One
issue is entanglement flow through individual parties and the
whole multipartite system [2]. Another interesting problem
is entanglement transfer between qubits and its relation to
energy [3]. In addition, we have the study of the entanglement
transfer between noninteracting qubits, leading to conservation
rules for entanglement depending on how qubits are initially
correlated [4]. Entanglement transfer from atoms to cavity
modes leading to entanglement revivals has been studied
in [5]. Entanglement transference from two cavities to their
corresponding reservoirs allowed the description of entan-
glement sudden death as opposed to entanglement sudden
birth [6].

An interesting problem in this context is the entanglement
flow between parties in a multipartite system, including their
dissipative mechanisms. In this work, we study the entan-
glement dynamics of two initially correlated atoms placed in
two noninteracting leaky cavities, each connected to its own
reservoir. To achieve this, we developed a hybrid analytical
approach for finding the quantum dynamics of the atom-
cavity-reservoir system. Unlike the master equation approach,
our method allows us to include the reservoir dynamics,
thus preventing information loss due to trace operations. We
study the evolution of entanglement in different noninteracting
bipartite subsystems, such as atom-atom, cavity-cavity, and
reservoir-reservoir. We show that the entanglement initially
contained in the atomic subsystem is completely transferred
into the reservoir-reservoir subsystem. Although cavities are
the bridges connecting atoms to reservoirs, we show that they
may not be entangled throughout the dynamics. Moreover,
depending on the initial state, quantum dynamics may lead
to a situation where no entanglement exists in any of these
three subsystems. In this case, we extend the study to other
interacting and noninteracting subsystems.

This paper is organized as follows. In Sec. II we develop
a hybrid analytical method to find the quantum dynamics. In
Sec. III, we study the dynamics of entanglement transfer. In
Sec. IV we present our concluding remarks.

II. ATOM-CAVITY-RESERVOIR DYNAMICS

Our model considers two independent subsystems, each
formed by a three-level atom inside a leaky QED cavity.
Each atom interacts with a single mode of frequency ω of
the quantized electromagnetic field and a classical field with
frequency ν in a Raman configuration, as shown in Fig. 1. The
quantum mode couples levels |g〉 and |c〉, while the classical
field couples levels |e〉 and |c〉. Assuming no direct coupling
between cavities, the dynamics of each atom-cavity-reservoir
system can be studied individually. Neglecting effects of
spontaneous emission from levels |c〉 and |e〉, the Hamiltonian
describing this system can be conveniently written, in the
rotating wave approximation, as

Ĥ = h̄�|c〉〈c| − h̄δ|e〉〈e| − h̄

N∑
k=1

(ω − ωk)b̂†kb̂k

+ h̄�(|c〉〈e| + |e〉〈c|) + h̄g(â|c〉〈g| + â†|g〉〈c|)

+ h̄

N∑
k=1

(gkâb̂
†
k + g∗

k b̂kâ
†). (1)

Here, â(â†) annihilates (creates) a photon with frequency
ω in the cavity mode, operator b̂k(b̂†k) annihilates (creates) a
photon with frequency ωk in the kth mode of the reservoir. We
have defined � = ωcg − ω, with ωcg the frequency difference
between levels |c〉 and |g〉, detuning δ = ωce − ν − �. The
coupling strength between the classical field and the atom is �,

and we have explicitly written the system-bath interaction with
a linear coupling with coupling constant gk . In the usual master
equation approach, considering the Markov approximation and
an infinite number of bath oscillators, we can describe the
dynamics of the atom-cavity system by

˙̂ρ = −i[Ĥ ′,ρ̂] + κ

2
(2â†ρ̂â − â†âρ̂ − ρ̂â†â), (2)
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FIG. 1. Scheme of a three-level atom inside a cavity coupled to a
reservoir.

where Ĥ ′ corresponds to Hamiltonian (1) without terms
involving the reservoir.

In such an approach, only atom-cavity dynamics is de-
scribed, while the reservoirs are traced out. This results in loss
of quantum correlations between reservoirs and other parties.

In what follows, we will develop a method to find the
dynamics, including explicitly the reservoir’s degrees of
freedom. In this manner we preserve all the information about
quantum correlations in the system.

To address this problem, we develop a hybrid analytical
approach to find the dynamics. First, we will follow the
method described for obtaining the quantum dynamics and the
entanglement properties of inhomogeneously coupled systems
[7,8]. This method consists of inspecting the Hilbert space
occupied for the quantum system throughout the evolution
and implementing truncation criteria based on a probabilistic
argument. Then, to find explicitly analytical expressions for
the quantum dynamics, we follow the well-known quantum
trajectory method [10].

Let us consider the case of a single initial excitation
contained in the atomic subsystem. That is,

|ψ0〉 = |e〉a ⊗ |0〉c ⊗ |0̄〉r ≡ |e00̄〉, (3)

where |0〉c corresponds to the vacuum of the cavity, and |0̄〉r ≡∏
k |0k〉 denotes the vacuum of the reservoir. Now we have

to look for the accessible Hilbert space for the compound
system when starting from this initial condition. We can find
this by following the action of Hamiltonian ĤII on the initial
state |ψ0〉. It is not difficult to realize that a portion of the
Hilbert space connected by Hamiltonian (1) is given by states
{|e00̄〉,|c00̄〉,|g10̄〉}. The one photon excitation in state |g10̄〉 is
transferred to bath modes through Hamiltonian (1) as follows:

ĤII |g10̄〉 = h̄g|c00̄〉 + h̄N0|g01̄0〉, (4)

where we have defined the state

|1̄0〉r ≡ 1

N0

n∑
k=1

gk|1k〉r , (5)

with N0 =
√∑n

k=1 |gk|2, and |1k〉r corresponds to the state
having one photon in the kth reservoir mode and zero photon in
the remaining modes. The state in Eq. (5) is a collective state of

the reservoir having a single excitation. The |g01̄0〉 collective
state evolves under the interaction part in Hamiltonian (1),
back to states |g10̄〉 and |c00̄〉. However, this is no longer true
when considering the action of the reservoir Hamiltonian on
reservoir states. Taking the vacuum state of the reservoir, we
have

N∑
k

(ω − ωk)b̂†kb̂k|0̄〉r = 0. (6)

For |1̄0〉r , the free energy term leads to

|	1〉 = 1

N0

N∑
k

gk(ω − ωk)|1k〉r . (7)

Although this state is different from |1̄0〉r in Eq. (5), it can
be written as a superposition of this state and a state |1̄1〉r
orthogonal to |1̄0〉r . That is,

|1̄1〉r = 1

N1
[|	1〉 − 〈1̄0|	1〉|1̄0〉r ], (8)

where N1 = (〈	1|	1〉 − |〈1̄0|	1〉|2)1/2.
The new generated state |1̄1〉r leads to other orthogonal

states having one excitation through the action of the reservoir
terms of the Hamiltonian [7]. As a consequence, the accessible
Hilbert space for the overall system initially prepared in state
(3) can be written in a collective basis spanned by the set of
orthogonal states

{|e00̄〉,|c00̄〉,|g10̄〉,|g01̄0〉,|g01̄1〉,|g01̄2〉, . . .}. (9)

Therefore, the atom-cavity-reservoir system governed by
Hamiltonian (1) evolves to

|ψt 〉 = Et |e00̄〉 + Ct |c00̄〉 + Gt |g10̄〉
+R0,t |g01̄0〉 + R1,t |g01̄1〉 + · · · , (10)

where Rj,t is the time-dependent probability amplitude of the
state |g01̄j 〉. This state can be conveniently written defining
the one-excitation collective state for the reservoir

|1̄〉 = 1

Rt

(R0,t |1̄0〉 + R1,t |1̄1〉 + · · ·), (11)

where

Rt =
√

|R0,t |2 + |R1,t |2 + · · · (12)

corresponds to the probability amplitude of having one
excitation in the reservoir modes.

In this manner, the dynamics of the atom-cavity-reservoir
system can be described in terms of a three-qubit system
in the basis: {|e〉,|g〉} ⊗ {|0〉,|1〉} ⊗ {|0̄〉,|1̄〉}. Notice that we
have assumed the high detuning regime (� � �,g), so the
electronic level |c〉a is only virtually populated, and the
evolution described in Eq. (10) can now be written as

|ψt 〉 = Et |e00̄〉 + Gt |g10̄〉 + Rt |g01̄〉. (13)

Probability amplitudes can be obtained by numerical diagonal-
ization of Hamiltonian (1) where it is found that Ct ∼ 0. It is
worth noticing that this form of finding the quantum dynamics
has a close relation with the Weisskopf-Wigner procedure
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(see, for example, Ref. [9]) where the reservoir is considered
throughout the dynamics.

We are interested in finding analytical expressions for
the temporal dependent coefficients in the wave function
in Eq. (13). Unfortunately, this is not possible by solving
the Schrödinger equation. However, if we know the reduced
dynamics for the atom-cavity system, we can get information
about the probability amplitude Rt . The reduced atom-cavity
dynamics could be obtained by solving the corresponding mas-
ter equation, or alternatively by using the quantum trajectory
method (see, for example, [10] and references within). By
using this approach, we obtain the reduced density matrix for
the atom-cavity system as

ρ̂(t) = |Et |2|e0〉〈e0| + |Gt |2|g1〉〈g1| + EtG
∗
t |e0〉〈g1|

+E∗
t Gt |g1〉〈e0| + |Rt |2|g0〉〈g0| (14)

The probability amplitudes obtained through the quantum
trajectory approach are

Et =
[
cos (�̄t) + κ

4�̄
sin (�̄t)

]
e− 1

4 κt ,

(15)
Gt = igeff

�̄
sin (�̄t)e− 1

4 κt ,

where 4�̄2 = 4g2
eff − κ2/4 and geff = g�/�. For simplicity,

here we have set δ = (g2 − �2)/�. From these expressions
we obtain the probability amplitude Rt as

|Rt | =
√

1 − |Et |2 − |Gt |2. (16)

On the other hand, since Rt is by definition a real-positive
number (|Rt | = Rt ), we can say that the dynamics is given by
Eq. (13) with Et , Gt and Rt , defined in Eqs. (15) and (16).

III. DYNAMICS OF ENTANGLEMENT TRANSFER

Having described the dynamics of the atom-cavity-reservoir
subsystem, we now focus on the problem of two initially
entangled atoms, each located in a leaky cavity, as shown
in Fig. 2. This entangled state between distant atoms have
received much attention in the last years due to its possible
applications in quantum communication [11–17]. In this sense,
the present study might be relevant. On the other hand, this
coherent manipulation of atoms and cavities could also be
extended into a trapped ions system. For example, in the
experimental setup described in Ref. [18], a single trapped
ion is coupled to a high-finesse cavity. Further improvements
in this experiment could consider a second cavity coupled to a

FIG. 2. Scheme of two initially entangled atoms, each located in
a leaky cavity.

second ion. In this case, the same dynamics we are describing
in this section can be found in this system. Entanglement
between the electronic levels of the ions can be prepared using
the center-of-mass mode.

In our system, since there is no interaction between both
atom-cavity-reservoir subsystems, the only link is provided by
the entanglement between the atoms. Within this scenario, we
are interested in the study of how the entanglement, initially
shared by the two atoms, is transferred to other parties. To
do this, we first consider an initial entangled atomic state
given by

|
0〉 = (α|gg〉12 + β|ee〉12)|00〉12|0̄0̄〉12, (17)

where cavities and reservoirs are in the vacuum state. Fol-
lowing the previous single atom-cavity-reservoir analysis, the
initial state |
0〉 evolves to

|
t 〉 = α|g00̄〉1 ⊗ |g00̄〉2 + β|ψt 〉1 ⊗ |ψt 〉2, (18)

where |ψt 〉 is given in Eq. (13). By tracing out the degrees of
freedom of cavities and reservoirs, we are led to the atom-atom
dynamics

ρa1a2 = β2|Et |4|ee〉〈ee| + αβ|Et |2(|ee〉〈gg| + |gg〉〈ee|)
+β2|Et |2(|Gt |2 + |Rt |2)(|eg〉〈eg| + |ge〉〈ge|)
+ [α2 + β2(|Gt |2 + |Rt |2)2]|gg〉〈gg|. (19)

Atomic entanglement can be evaluated by using the concur-
rence [19], leading to

Ca1a2 (t) = max{0,−2λ
a1a2− }, (20)

where the negative eigenvalue of the partial transpose matrix
[20,21] of ρa1a2 is given by

λ
a1a2− = β|Et |2[β(1 − |Et |2) − α]. (21)

The entanglement flow from atoms to other parties is obtained
from cavity-cavity and reservoir-reservoir reduced systems,
respectively. The reduced cavity-cavity system is described by

ρc1c2 = β2|Gt |4|11〉〈11| + αβ|Gt |2(|00〉〈11| + |11〉〈00|)
+β2|Gt |2(|Et |2 + |Rt |2)(|10〉〈10| + |01〉〈01|)
+ [α2 + β2(|Et |2 + |Rt |2)2]|00〉〈00|, (22)

while for the reduced reservoir-reservoir system we have

ρr1r2 = β2|Rt |4|1̄1̄〉〈1̄1̄| + αβ|Rt |2(|0̄0̄〉〈1̄1̄| + |1̄1̄〉〈0̄0̄|)
+β2|Rt |2(|Et |2 + |Gt |2)(|1̄0̄〉〈1̄0̄| + |0̄1̄〉〈0̄1̄|)
+ [α2 + β2(|Et |2 + |Gt |2)2]|0̄0̄〉〈0̄0̄|. (23)

The corresponding entanglement in these subsystems can also
be calculated using the concurrence. The concurrences for
cavities and reservoirs, respectively, are given by

Cc1c2 (t) = max{0,−2λ
c1c2− }, (24)

Cr1r2 (t) = max{0,−2λ
r1r2− }, (25)

where the negatives eigenvalues of partial transposed matrices
are given by

λ
c1c2− = β|Gt |2[β(1 − |Gt |2) − α], (26)

λ
r1r2− = β|Rt |2[β(1 − |Rt |2) − α]. (27)
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FIG. 3. Evolution of concurrence of subsystems: a1 ⊗ a2 (solid
line), c1 ⊗ c2 (dashed line), and r1 ⊗ r2 (dot-dashed line) for an initial
state of the form of Eq. (17) with α = β = 1/

√
2 and geff = 5κ .

We are now in a position to investigate the evolution
of entanglement for different subsystems. Disentanglement
dynamics depends on probability amplitudes α and β, as well
as the decay constant κ compared to the effective coupling
geff . For example, an important case is an initial maximally
entangled state. Figure 3 shows the entanglement evolution for
atoms, cavities, and reservoir subsystems, starting from this
state with α = β for geff = 5κ . For the chosen parameters, we
observe that the entanglement exhibits asymptotic decay, with
oscillations of atomic entanglement and cavities entanglement
to finally be completely transferred into the reservoirs. These
oscillations are expected, because for geff > κ , there are many
energy exchanges between atomic and cavity subsystems
before the energy is completely transferred to reservoirs. In
addition, the entanglement between reservoirs appears at the
same time as entanglement between atoms begins to decrease.
This regime is reminiscent of what happens for an initial
maximally entangled state under the action of a dissipative
environment.

For cavities with no atoms and the initial state given by
|
〉 = (c0|00〉 + c1|11〉)|0̄0̄〉, it is well known that entangle-
ment disappears at a finite time if c1 > c0 [22]. Otherwise, if
c0 > c1, the entanglement decays asymptotically. Moreover, in
Ref. [6], finite-time disentanglement, known as entanglement
sudden death (ESD) [23–25], is necessarily linked to a sudden
birth of entanglement between reservoirs, called entanglement
sudden birth (ESB). This behavior can also occur in our
system by considering unbalanced states with β > α. In
Fig. 4, the evolution of the entanglement contained in the
three subsystems is shown for β > α and geff = 5κ . We
realize that entanglement still experiences oscillations be-
tween cavities and atoms; however, entanglement experiences
several sudden deaths and entanglement sudden revivals
(ESRs), whereas the reservoirs experience a sudden birth of
entanglement.

These behaviors can in principle be quantitatively under-
stood from Eqs. (21), (26), and (27). For arbitrary effective
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FIG. 4. Evolution of concurrence of subsystems: a1 ⊗ a2 (solid
line), c1 ⊗ c2 (dots), and r1 ⊗ r2 (dashed line) for an initial state of
the form of Eq. (17) with β = 1.5α and geff = 5κ .

coupling constant geff and amplitudes α and β, it is not possible
to calculate the times at which ESD, ESR or ESB appears. But
for the case of reservoir entanglement, Eq. (27) says that for
α > β there will always be an entanglement birth at time t = 0.
However, for β > α the reservoirs will remain unentangled
unless

|Rt |2 > 1 − α

β
. (28)

We observe this to be the behavior in Fig. 4 where ESB appears
for a tESB > 0.

Some analytical calculations can be carried out in special
regimes of geff as compared to κ . In the strong coupling regime,
when geff � κ we have �̄ ≈ geff , so that

|Et |2 ≈ cos2 (geff t)e
− 1

2 κt , (29)

|Gt |2 ≈ sin2 (geff t)e
− 1

2 κt , (30)

|Rt |2 ≈ 1 − e− 1
2 κt . (31)

From Eqs. (21) and (26) we can explain the entanglement death
and revival zones for atoms and cavities in Fig. 4. Conditions
for disentanglement in both subsystems are given by

1 − cos2 (geff t)e
− 1

2 κt � α

β
, (32)

1 − sin2 (geff t)e
− 1

2 κt � α

β
. (33)

In the strong coupling regime, we find time windows
with no entanglement between atoms, that is, time windows
between ESD and ESR times. These time windows for atoms
happen at time intervals that can be different from those for
cavities, or can overlap, depending on the ratio α/β. At the
same time, the entanglements in both subsystems extinguish
definitely because of dissipation given by the attenuation factor
in the previous inequalities. This can be observed in Fig. 5,
where evolutions of Eqs. (32) and (33) are shown compared
to α/β. Here we see that the attenuation factor exp (−κt/2)
makes it possible to satisfy conditions (32) and (33), leading to
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FIG. 5. Evolution of Eqs. (32) (solid line) and (33) (dashed line)
for geff = 5κ . Dot-dashed line shows the value of α/β.

complete disentanglement of atoms and cavities. In addition,
from Eq. (28) we can evaluate the time for ESB in the reservoir
subsystem, which is given by

tESB ≈ 2
1

κ
ln

[
β

α

]
. (34)

This time is twice that found for two entangled dissipative
cavities studied in [6]. In the present case, ESB also happens
if β > α.

On the other hand, in the weak coupling regime geff � κ ,
we find that

|Et |2 ≈ (1 + 4γ 2)e−4γ 2κt − 4γ 2e−κt+4γ 2κt , (35)

|Gt |2 ≈ 4γ 2(e−4γ 2κt + e−κt+4γ 2κt − 2e−κt/2), (36)

|Rt |2 ≈ 1 − (1 + 8γ 2)e−4γ 2κt + 8γ 2e−κt/2, (37)

where we have considered only up to second order in
γ = geff/κ . From these equations, we observe that unlike
the strong coupling regime, in the weak coupling regime
the entanglement dynamics is not oscillatory; that is, no
entanglement revivals can be found in atoms or cavities.
We expect that disentanglement between atoms be followed
by entanglement birth in reservoirs. However, entanglement
between cavities depends on γ and the ratio α/β. This can
be understood by considering Eqs. (26) and (36), such that
the condition for disentanglement in the cavities is given
by

1 − 4γ 2(e−4γ 2κt + e−κt+4γ 2κt − 2e−κt/2) � α

β
. (38)

The evolution of the left-hand side of the inequality is shown
in Fig. 6. According to (38), this figure shows that cavities
are entangled depending on the ratio α/β. More precisely,
cavities get entangled only while the curve is below the value
of α/β. In particular, for the case of α/β = 0.985 (dashed
line), cavities get entangled only when the curve is below
the dashed line, as shown in the inset where the cavity-cavity
concurrence is plotted. When the ratio α/β is set to a value
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FIG. 6. Evolution of the left-hand side of Eq. (38) (solid line) for
geff = 0.1κ . Dashed line shows α/β = 0.985. The inset shows the
concurrence Cc1c2 (t) for the cavity-cavity subsystem.

below the minimum of the left-hand side in (38), cavities never
become entangled. The particular case of Fig. 6 happens for
α/β < 0.972. In such a case, the entanglement initially
contained in the atomic subsystem is transferred directly to
the reservoirs without entangling the cavities. This feature of
entanglement dynamics can even be found outside the weak
coupling regime as a function of γ and α/β. We can distinguish
an entangled phase and an unentangled phase throughout the
dynamics, which can be obtained from Eqs. (24) and (26).
Figure 7 shows the two phases for the cavity entanglement
dynamics as a function of γ and α/β.

In the case of atom and reservoir subsystems, the nonoscil-
latory behavior is shown in Fig. 8 for γ = 0.1 and α/β = 2/3.
In such a case, the atom subsystem exhibits ESD, while the
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FIG. 7. Diagram showing the entangled and unentangled phases
of the cavity-cavity subsystem as a function of coefficients geff/κ

and α/β.
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FIG. 8. Evolution of concurrence of subsystems a1 ⊗ a2, c1 ⊗ c2,
and r1 ⊗ r2, using Eqs. (35)–(37) (solid lines) and exact calculations
(circles). Parameters are α/β = 2/3 and geff = 0.1κ .

reservoir subsystem exhibits ESB. The time at which ESD
and ESB happen depends on the ratio α/β for a fixed γ . In
the weak coupling regime, and for values of γ that allows
us to neglect corrections in γ 2 in both Eqs. (35) and (37),
we have

tESD ≈
(

1

4γ 2

)
1

κ
ln

[
β

β − α

]
, (39)

tESB ≈
(

1

4γ 2

)
1

κ
ln

[
β

α

]
. (40)

From these equations we observe that the ESB time can occur
before, simultaneously with, or after the ESD. For example,
in Fig. 9, entanglement dynamics is shown for γ = 0.1 and
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FIG. 9. Evolution of concurrence of the subsystems a1 ⊗ a2 (solid
line), c1 ⊗ c2 (circles), and r1 ⊗ r2 (dashed line) for β = 3α and
γ = 0.1.

β = 3α. In such a figure we observe that there is a time window
for which no entanglement is found in the three subsystems.
Using Eqs. (39) and (40), we can calculate the size of this time
window, leading to

�tW ≈
(

1

4γ 2

)
1

κ
ln

[
β

α
− 1

]
. (41)

We realize from this expression that the time window can
exist only if β > 2α and increases in size, as well as coupling
strength geff decreases.

In this time window, where no entanglement is found in
subsystems a1 ⊗ a2, c1 ⊗ c2, and r1 ⊗ r2, the question of
where the entanglement goes in this time window becomes
relevant. In order to answer this question, we must analyze the
entanglement present between other bipartite subsystems of
the overall system.

First we consider the subsystem (a1,c1,r1) ⊗ (a2,c2,r2).
Since this bipartite subsystem is in a pure state at all times, we
are able to quantify the entanglement through the square root
of the tangle [26]. This entanglement is given by

√
τ12(t) = 2αβ, (42)

which corresponds to the same amount of entanglement
initially present in the atomic subsystem. This conservation
of the global entanglement occurs due to the noninteract-
ing character of the subsystem (a1,c1,r1) ⊗ (a2,c2,r2). For
interacting subsystems, for example, a1(2) ⊗ c1(2) and c1(2) ⊗
r1(2), concurrences are shown in Fig. 10. From the figure,
we observe that in the time window where no entanglement
is found in subsystems a1 ⊗ a2 and r1 ⊗ r2, the interacting
subsystems show entanglement. Indeed, in such a time win-
dow, the entanglement seems to flow only through interacting
subsystems. To confirm this, we need to consider different
noninteracting subsystems such as a1 ⊗ c2, a1 ⊗ r2, and
c1 ⊗ r2. In these cases, the concurrences are, respectively,
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FIG. 10. Evolution of concurrence of the subsystems a1 ⊗ c1

(dots), c1 ⊗ r1 (circles), a1 ⊗ a2 (solid line), and r1 ⊗ r2 (dashed line)
for β = 3α and γ = 0.1.
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FIG. 11. Evolution of concurrence of the subsystems a1 ⊗ c2

(dots), a1 ⊗ r2 (circles), c1 ⊗ r2 (squares), a1 ⊗ a2 (solid line), and
r1 ⊗ r2 (dashed line) for β = 3α and γ = 0.1.

given by

Ca1c2 (t) = max{0,2[αβEt |Gt | −
√

w(Et,|Gt |)]}, (43)

Ca1r2 (t) = max{0,2[αβEtRt −
√

w(Et,Rt )]}, (44)

Cc1r2 (t) = max{0,2[αβ|Gt |Rt −
√

w(|Gt |,Rt )]}, (45)

where w(x,y) = α4xy2(1 − x2)(1 − y2). The temporal evolu-
tion of these concurrences is shown in Fig. 11. According to
this figure, in the aforementioned time window, no contribution
to entanglement comes from such noninteracting subsystems.
Moreover, the time window where no entanglement is found

in these subsystems is longer than the respective time window
for the noninteracting subsystems a1 ⊗ a2 and r1 ⊗ r2. This
confirms that in this finite time window, the entanglement can
flow only through interacting subsystems, such as a1(2) ⊗ c1(2)

and c1(2) ⊗ r1(2), while the noninteracting subsystems have no
entanglement.

IV. SUMMARY

In summary, we have studied the dynamics of the entan-
glement transfer of two uncoupled systems each composed
of a single atom inside a leaky cavity. We have developed a
hybrid analytical approach to find the entanglement dynamics
without tracing out reservoir modes, allowing us to study the
entanglement behavior in different subsystems. In particular,
we have found that the entanglement initially located in
two atoms is asymptotically mapped to the reservoir degrees
of freedom. Moreover, although reservoirs are connected to
atoms through the cavities, we show that for a set of initial
amplitudes and coupling constants, there are entangled and
unentangled phases in the cavities. We have also shown that
there is a time window where no entanglement is found
in noninteracting subsystems such as atoms, cavities, or
reservoirs. In this case, we observe that the entanglement flows
only through interacting subsystems.
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