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Quantum decoherence in a hybrid atom-optical system of a one-dimensional
coupled-resonator waveguide and an atom
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Decoherence for a one-dimensional coupled-resonator waveguide with a two-level system inside one of the
resonators, induced by their interaction with corresponding environments, is investigated. Each environment is
modeled as a continuum of harmonic oscillators. By finding the eigenstates of the hybrid system, which is the
dressed state of the hybrid system, we calculate the lifetime of one excitation, which characterizes the existence
of quantum coherence in such hybrid systems and the basic quantum nature.
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I. INTRODUCTION

Any discrete state coupled to continua of states is subject
to decay. The intrinsic dynamics of such quantum systems
is irreversible (i.e., once a system is initially in the discrete
state, it never returns to the initial state spontaneously). Such
a kind of phenomenon is also described by the so-called
resonant tunneling process. There are many examples of such
processes in different branches of physics. A typical example
is an excited two-level system interacting with the modes of
electromagnetic fields.

Spontaneous emission is normally regarded as a loss and a
decoherence mechanism. Recent works show that spontaneous
emission of the excited two-level system can be exploited to
influence the coherent transport properties of a single photon
in a one-dimensional (1D) waveguide due to the interference
between the spontaneous emission from two-level systems and
the propagating modes in the 1D continuum [1]. For a discrete
system, the simplest model which possesses the resonant
tunneling process is the so-called Anderson-Fano-Lee model
[2-5], in which the continuum is formed by a linear chain
of sites with the nearest-neighbor interaction and the rate
of emission is modified due to the change of the density of
state.

With the development of microfabrication technology, the
platforms, such as defect resonators in photonic crystals [7-10]
and coupled superconducting transmission line resonators
[11-14], are promising candidates for realizing a waveguide
(or an array) [6], under the tight-binding approximation.
Since a 1D coupled-resonator waveguide (CRW) possesses a
band-gap spectrum and can transmit a wave packet of light, a
single-photon quantum switch [15,16], made of a controllable
two-level or three-level system, has been studied using a
discrete-coordinate approach. It is then found that the trans-
mission of a single-photon in a 1D CRW can be switched on
and off by modulating the energy-level spacing of the two-level
system (TLS) with a high-frequency signal [17].

The system with TLSs inside a 1D CRW [15-18] is
investigated under the condition of ideal resonators and ideal
couplings of the resonator modes to the respective atomic
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transitions. Such a system is closed, and the existence of
superpositions prescribed by quantum mechanics is valid.
All the results in Refs. [15,16] are obtained by seeking the
stationary states of the system with a TLS inside 1D CRW.
However, a realistic quantum system can rarely be isolated
from its surrounding completely, rather it is usually coupled
to the external environment (also called “heat bath”) with a
large number of degrees of freedom. There are two main loss
processes which are serious obstacles against the preservation
of quantum coherence over a long period of time: spontaneous
emission from the excited state to the ground state due to its
interaction with the modes outside the resonator, and leaking
out of photons of the resonator mode. Obviously, when the
external environment is taken into account, the decoherence
of every resonator and the TLS would result in the incoherent
or dissipative propagation of the incident photon.

It is pointed out in Refs. [15-17] that the decoherence
or dissipation can be divided into two categories: One
influences the free propagation of the single photon, and
another influences the scattering process which broadens the
line width.

Therefore, in the present work, we shall investigate the
influence of environment to the decoherence of a 1D coupled
resonator with a two-level system inside. We mainly focus on
two issues, one is the lifetime of each eigenstate characterizing
the timescale of quantum coherence in a 1D CRW with a TLS
inside, and another is the rate of decay through introducing the
leakage rate in each resonator and the decay rate of the TLS,
which influences the free propagation of the single photon.
The reflection spectrum is also obtained and it is found that the
dissipation lowers the peak of the resonance and broadens the
line width. However, the total reflection can still be achieved
when the leakage rate in each resonator is equal to the decay
rate of the TLS.

This paper is organized as follows. In Sec. II, we introduce
a microscopic model where both the resonators and the TLS
are coupled to its own surrounding through an exchange
interaction. In Sec. III, we briefly review the stationary states
of a CRW with a TLS inside in Ref. [15]. In Sec. IV, we
derive the characteristic time for a single-photon staying in
the system with a TLS embedded in 1D CRW. In Sec. V, we
investigate the impact of dissipation on scattering amplitude.
Conclusions are made in Sec. VI.
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FIG. 1. (Color online) Schematic illustration of the model, where
a two-level system (a) is inside a 1D coupled resonator waveguide
(b). The two-level system and each of the resonators are coupled to
the corresponding environment, which is modeled as an infinite set
of harmonic oscillators.

II. MODEL

Figure 1 shows a schematic diagram of what we consider
in this paper. The total system includes the system S and the
environment B. The environment B does not explicitly show in
Fig. 1. The system S refers to a 1D CRW with a TLS inside one
of the resonators as discussed in Ref. [15] and the environment
B refers to all the subsystems interacting with each resonator
in the 1D CRW and the TLS. In Fig. 1 the wavy line with an
arrow indicates that a bath interacts with this subsystem.

Each resonator in the CRW is modeled as a harmonic
oscillator mode with frequency w.. Due to the overlap of
the spatial profile of the resonator modes, photons can hop
between neighboring resonators. Introducing the creation and
annihilation operators a; and a; for the jth resonator, the
Hamiltonian for the CRW is given by

Hc = cha}aj —& Z(a;am + H.c.), (D
j j

where the intercavity coupling constant £ is the same for all
neighboring cavity-cavity interactions. A TLS with transition
frequency €2 is located in the Oth resonator. The atom-resonator
interaction is described by the Jaynes-Cummings model,

Hy = Qle)(e| + J(le)(glao 4+ H.c.), 2
under the dipole and rotating wave approximations. Here |e)
and |g) are the excited state and ground state of the TLS,
respectively. The dynamics of the system S is governed by the
Hamiltonian,

Hs = Hc + Hi. 3)

By employing the Fourier transformation,

1 ki
a;, = — eay, 4)
J ka: k

PHYSICAL REVIEW A 81, 062111 (2010)
Hamiltonian Hg is transformed into a k-space representation,

) J
Hs =Y Qala, + Qle)le] + —= Y (le)(glax + H.c.),
3 7w s

(&)

where the lattice constant is assumed to be unity and ; =
w, — 2& cosk is the well-known Bloch dispersion relation.
Here, the Hamiltonian H given by a diagonal matrix describes
the extended states of the continuum. The third term in
Eq. (5) is responsible for the interaction between the TLS
and the continuum. The Hamiltonian Hs describes that a
quasiexcitation is created or annihilated in the kth mode, and
the TLS transits from its excited state to the ground state or
vice versa. Obviously, it is easy for the TLS to transit to its
ground state, and very difficult to go back to its excited state.
Therefore, the CRW with a TLS inside is a typical system of
quantum dissipation phenomenon.

The environment B is modeled as a set of infinite numbers
of harmonic oscillators. In this paper, we assume each
resonator of the CRW is coupled to an individual bath of
harmonic oscillators. The dynamic of the jth resonator and its
corresponding environment is governed by the Hamiltonian,

]
HYE =" wg1b)1bgin + Y (gqrpatbgy + He),  (6)
q q

where b, ;) and b; ;1 are the annihilation and creation operators
for the gth bath oscillator attached to the jth resonator of the
CRW, wy(; is its frequency, and g,(;; the coupling strength.
The total Hamiltonian describing the interaction between the
CRW and environments reads

Hee = ) Hig. @
J

We also introduce the exchange interaction between the TLS
and its environment, which is described by the Hamiltonian,

Hia = Y vedidy + Y BudfIg)lel + le)(gldy).  (8)

q n

where d, and di are the annihilation and creation operators
corresponding to the gth mode with frequency v,. The
Hamiltonian of the total system S + B reads

Hsg = Hs + Hgc + Hga. &)

Although there exists energy exchange between system S and
environment B, the total number of excitations is preserved.

III. STATIONARY STATES OF A CRW WITH A TLS INSIDE

In the one-excitation subspace, the stationary states of
system S are either the localized states around the location
of the TLS or a superposition of extended propagating Bloch
waves incident reflected and transmitted by the TLS embedded
in the CRW. Assume a photon is coming from the left of the
TLS with energy:

Qr = wc — 2§ cosk. (10)
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The stationary state of the system is then

%) = > wi(j)all0g) + uerlOe),

J

Y

where |0) is the vacuum state of the cavity field, u,; is the
probability amplitude with the TLS in the excited state and
no photon, and u(j) is the probability amplitude for the TLS
to move to the lower state, emitting a photon into a mode
of the jth resonator. From the eigenvalue equation Hg|S2;) =
Qi |2), together with the bosonic commutation relations, we
derive a system of coupled equations among the amplitudes:

Vi + I G j0)ur(j) = E[ur(j + D) +ur(j — D],
uor = Grur(0),

(12a)
(12b)

with the Green function G, = G((2) = J /(2 — ) and
Vi = wc — Q. Equation (11) has the solution in terms of
incoming and outgoing waves with amplitudes:

ikj —ikj i
() = {jkei,:’ R 8 (13)
The reflection and transmission amplitudes yield
re=sp— 1, (14a)
5 2iE(S2 — Q) sink (14b)

T 2iE(Q — Q)sink — J2

Equation (12) implies that the transmission coefficient is
sensitive to the transition frequency of the TLS, as the forward
and backward propagating modes within the CRW are coupled
via the TLS.

The periodicity of the CRW in r space gives rise to a
continuum with Bloch waves grouped in energy bands, which
is broken due to the coupling between the TLS and the
CRW. Local modes are produced, and their corresponding
eigenenergy is outside the energy bands. We denote the
eigenvalue of the bound state as 2, (i.e., replace the index
k with «) as does Eq. (11). Noticing that the probability of
bound state at infinity in coordinate space is zero (i.e., bound
state is spatially localized), we can assume that the bound
states of even parity have the following amplitudes:

) Ce(i’l”_")j, J >0 .
MK(J) - Ce<inn+K)'i, J < 0’ ( 5)
where the normalization constant C is
72 —-1/2
C = |:tanhk+m:| (16)

The bound state energy lies either below or above the
continuum with the magnitude,

Q. = wc — 2&¢"™ cosh, (17)
where the value of « is determined by the following condition:
J? =2E"7 (2 — Q) sinhk. (18)

The bound states exist when Eq. (18) has solution.
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IV. SINGLE-PARTICLE SPONTANEOUS EMISSION

Quantum states inevitably decay with time into a prob-
abilistic mixture of classical states due to their interaction
with the environment, which comprises much larger systems
or ensemble of states. In this section we derive the relaxation
time for single combined photonic-atomic excitation in system
S by incorporating the effects of interaction with environment
B. Notice that the number of excitations is conserved in the
total system (S + B). Therefore, in one-excitation subspace,
two situations will occur in system S: one is that the single
excitation is in state |€2;) or |€2,); and another is that no
excitation is found in system S (i.e., the TLS is in the ground
state and no photon is in the resonator). For the first case, there
is no excitation in environment B, and we use the notation
|€2;00) to describe the state of the total system, where the
first O in the ket indicates that the radiation modes coupled
to the CRW are in the vacuum state, and the second O in the
|€2,00) denotes the vacuum state of the harmonic oscillators
attached to the TLS. When system S is in the |Og) state,
environment B contains the single excitation. Here, djllG)
(|G) = |0g00y)) represents that the single particle has moved to
the nth bath oscillator coupled to the TLS; b;[ il |G) describes
that the excitation in S is in the gth mode of environment B
attached to the jth resonator of the CRW. Obviously, states
{1€2,00), d;|G), b;'[].]|G)} provide a complete basis and thus
we can expand the wave function of the S + B at arbitrary time
t in terms of this basis as

W) =Y U0)I00) + Y Ca(1)d]|G)
k n

+ > Byjy(0bh 1G).

qj

19)

where Uy, Byj), and C, are the time-dependent probability
amplitudes for finding the entire system in its corresponding
states.

Inserting the wave function (19) into the Schrodinger
equation with the governing Hamiltonian in Eq. (9), we
find a system of coupled linear differential equations for the
amplitudes:

iU = U+ Y gquinui(DBoiji + Y ulBuCa.  (200)

jqa n

iByij1 = g1 Byji + ) k(DU (20b)
k

iCn = VnCn + Z ﬁnuek Uk’ (2OC)
k

where the overdot indicates the derivative with respect to time.
The evolution of Uy is coupled to Byp;; and C,, via the coupling
constant g,;1u;(j) and u, B,. To remove the high-frequency
effect, we make the following substitution:

Ui(t) = dr(1)e™" !,
Byjy(t) = b;[j](t)eiiwqmt»

Cn (t) =Cn (t)eiivut .

21
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Then, in the interaction picture, Eq. (20) is rewritten as

s . N _is,
i =Y gauui (Db ie Bk + > " uh Bucae
n

ja

b N
ibyj1 = 8qti1 Zuk(J)rbke’ ot
k
1 (¢ i Ok
Iep = Z,Bnuek(bkel ”,

k

where Ag’,} = wy(j] — 2> Oux = v, — 4 are the detunings
between system S and environment B. Formally integrating
the equations for b,(;; and ¢, in the above equations yields

. . i Ij]l,
bﬁzm = _ng[j]Z”k(])/¢k(T)e AkTdr  (22a)
k

Cn=—i ) Pullex / di(v)e T dt. (22b)
k

Inserting Eq. (22) into the equation for ¢;, we obtain the exact
integro-differential equation,

b . o il [ o
b == e [ guoeivar
0

kjq
t
2 % —i8gnt 8T
= Y Bt [ gumetar, @)
kg 0

where the coupling constants g,(;; and B, are assumed to be
real.

Suppose that at time ¢ = O there is no interaction between
system S and bath B, and the S+ B is in the state [€2;00),
corresponding to a single excitation in system S. Mathemati-
cally, solving Eq. (23) is to solve an initial value problem. It
is well known that such an initial value problem can be solved
by the Laplace transform. Denoting the Laplace transform of
¢,(t) by ¢,(s) and taking into account the initial conditions
¢r(0) = 5,1, we have

- 1
, = ———, 24
¢ s+ 1(s) @9
where
2 12 2 2
&arilun (NI B |uenl
0= | X+
q j S+1quﬂ S+18qn

The roots of the denominator in Eq. (24) can be split into a sum
of the singular and principal value parts. The principal part is
merely included into redefinition of the energy. The singular
part gives the decay rate due to the coupling to bath B. Under
the Wigner-Weisskopf approximation [19], the system decay
is dominantly exponential with rate:

T =7 [un(DIPAj(R20) + Tlthen *Aa(R0). (25)

J

This rate is proportional to the modulus square of the coupling
between S and B.
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The functions in Eq. (25),

Aj(w) = Zq g;[j]s(w — wq1)
As(@) =Y, B28(w — vy,
are called the reservoir response (memory) functions, which
are the spectral densities of the states b;[ ;11G) and d;lG)
weighted with the coupling strengths gj[ jyand B2, respectively.
The memory function A(w) characterizes the spectral shape
of the reservoir. Since the states in the reservoir are very dense
(continuum), one can replace the sums over g by integrals,

for instance, Zq — 2V/(27t)3fq2 sinfd¢dfdqg. Then the
memory functions read

Aj(@) = g\ (@)pj(@),
Ap(w — B w)pa(w),

where g[zj](a)) are the coupling constants to states bz)[ 7lG)s
whose density of state is given by ppjj(w). Obviously, the
decay rate is determined by two factors: (1) the form of A(w);
(2) the width of the reservoir, which depicts the overlap of
the eigenfrequencies of the system and the spectral shape
of the reservoir. Usually, it is assumed that the reservoir is
spectrally flat and the frequencies of the system of interest is
deeply embedded in the continuum, therefore, the argument of
the spectral density is replaced by the eigenfrequency of the
system €2, in Eq. (25). For the sake of simplicity, we further
assume that the coupling constant g, ;) is independent of the
energy wyp;; as well as the index j [i.e., let Ajj(w) = g(w)
and let A 4(w) = Ba(w)]. The constant coupling gives us the
explicit relationship between the decay rate and the wave
number of system S:

T, =ng>+m (By — &) luel, (26)

where the normalization of the eigenstates |€2,,) has been used
in deriving the above equation. Obviously, when 84 = g, the
decay rate is a constant for any eigenstates of system S. For a
given wave number n, when B, is smaller than g, the rate
decreases, which opens up a possibility of prolonging the
lifetime of the single excitation in system S. In Fig. 2, we
plot the decay rate ['; as a function of the wave number k.
It indicates that the widths of the eigenstates in Eq. (13) are
different, which is a periodical function of the wave number &,
and the detuning between the TLS and the resonator biases the
symmetry of the line shape. By substituting the condition in
Eq. (18) into the expression of the probability amplitude u,,
the decay rate of a bound state has the form I', = mg? +
71(,3/% — g2[1 — (J? +2£%sinh 2«)7!]. It indicates that the
decay rate is an increasing function of «, and when the
resonator resonates with the TLS, T, = 7w (2g> + 2)/3. Since
the value of the imaginary wave number is determined for
given parameters {J,&, wc — 2}, the decay rate of the bound
state is a given constant.

V. DISSIPATION ON SCATTERING AMPLITUDE

To see the impact of dissipation of the system on the trans-
mission and reflection coefficients, we begin with Hamiltonian
(9) in the configuration space. Here, it is assumed that each
bath attached to its resonator is identical and the coupling
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FIG. 2. (Color online) The decay rate via wave number k starting from one eigenstate of system S, with parameters g = 0.1, 8 = 0.4,
J =15, (@) wc =5, 2=06,and (b) wc = 2 = 5, which are in units of &.

strength between the resonator and its corresponding bath is
independent of the location index j. The state at arbitrary time
is a superposition of four parts: the photon at the jth cavity
with atom in the ground state a}|G), no photon in all cavities
with atom in the excited state o |G), the photon in the gth
mode of the bath attached to the jth resonator bjz[ il |G), and
that of the bath coupled to the TLS ¢;|G):

WD) = @u)allG) + Y Agn(®)b)41G)
J

qj

+ @04 |G) + Y Dy(1)c}IG). 27)

q

The Schrodinger equation results in a system of coupled linear
differential equations for the amplitudes,

i® =wc®jr —E@jr1x + Pj_1x) + J Purdo; + quAq[j],
q
i Do = QP + J Doy + Zﬁqu
- ! (28)
iAgj1 = ©0qAgij) + 8Pk
iDq = ,Bq(bek + quq,

where the dot denotes a derivative with respect to time.
Applying the Fourier transform and expressing Ag(j;, D,
with @, ®,, respectively, the equations of motion in the
frequency domain are obtained in the reduced dimensionality,

I Yordo;

E—-Q—AE’
(29)

(E—wc—8E)Yjr=—8§Wu+ ¥+

where E is the eigenenergy of the single-photon wave in the
whole system. The eigenfrequency of the jth resonator of the
ideal CRW is renormalized into w¢ + S E, and the transition
energy of the TLS is also renormalized into 2 + AE:

2 2

8 B

8E=§ q q
qE

—wy E—v,

. AE= ; (30)

which is the influence of the baths on the state of each
resonator and the TLS. The singular part of §E and AE
yields the dissipation factors y, = mg*(w¢)p.(wc) and y, =
7B(2)p4(2). The real part of §E and AE contributes to the
Lamb shift of the levels and change of €2, respectively, which is

merely included in the redefinition of the energy. Then Eq. (29)
is reduced to the following set of equations:

I Yordo;
E—Q+iya
3

(E—wec+iy )= =W +¥j—u) +

We begin our analysis from the case with coupling strength
J = 0. In this case, Eq. (29) has a complex dispersion curve
that can be identified with the plane-wave solution ® j;
e'®i=ED where E = E, + i E; is the complex energy and k is
the wave momentum inside the CRW. The real and imaginary
parts of energy E satisfy E, = €, E; = y.. When only one
resonator is initially excited |[W(0)) = |n) (say n = 0), where
|n) is the Wannier state localized at the site n, the field profile
at time ¢ is given by

(W(1)) = e 77 N " g, (281" 2e M k),
kq

(32)

where |k) is the Bloch state. The amplitude at the site / reads

Dy = e T (28 1)e! 2, (33)

where J;(x) is a Bessel function of the first kind of integer order
[. Obviously, leakage rate in each resonator y, influences the
free propagation of the single photon. The distance that the
photon travels along the 1D resonator waveguide is depicted
by the product of the group velocity and y,~!.

We now consider the case with coupling strength J # 0.
Due to the coupling between the atom and the Oth resonator, a
complex §-like potential stands in the way that single photon
travels. Consequently, the photon experiences scattering. We
assume that the single photon has momentum k& initially.
Within the allowed distance of photon traveling along the 1D
CRW, the transmission and reflection amplitudes, ¢ and r, can
be defined via the asymptotes of the wave function:

ek 4 pre=ih,
kj
9

j <0
Y = { = (34)

sie’ j>0.

By substituting the asymptotes of the wave function into
Eq. (31) for j = +£1,0 sites, the reflection amplitude is
obtained as

J2
T 2iEsink(Q% — Q) — (ya — yo)2Esink — J2

Tk (35)
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FIG. 3. (Color online) The reflection coefficient versus the wave
number k. The parameters are in units of £ and are set as follows:
Y. =0.1, y4=04, J =038, w.=RQ =35 for blue solid line;
Ve =0.1, y4 =04, J =15, o, = 2 =5 for red dot-dashed line;
Y. =01, y4=04, J =15, w.=5, Q=06 for black dashed
line; y. = 0.1, y4 = 0.1, J = 1.5, w. =5, 2 = 6 for green dotted
line.

Equation (35) shows that as long as the rate of decay to each
resonator y, is equal to the decay rate of the TLS y4, a resonant
scattering occurs when the incident energy of the single photon
is equal to €2, the transition energy of the TLS (i.e., when the
single-photon incident from the left encounters the TLS, it
is completely reflected back to the left), as shown via the
green dotted line in Fig. 3. For unequal y, and y,, the decay
rates lower the peak of the resonance, and the width of the
line shape is broadened from J?/(2& sink) for ideal system
S to [(ya — ye)2& sink + J?]/(2& sink). In Fig. 3, we plot
the reflection coefficient as a function of the wave number
k. Comparing the blue solid line and the red dash-dot line
with the black dashed line and the green dotted line, it can be
found that the symmetry of the line shape is determined by
the transition energy 2 of the TLS. As the coupling strength

PHYSICAL REVIEW A 81, 062111 (2010)

J between the Oth resonator and the TLS goes to infinity, the
reflection coefficient approaches to one.

VI. CONCLUSION

In summary, we have studied the dissipative process of the
CRW with a TLS inside, originating from the coupling to the
environment. Our discussions are based on a simple decoher-
ence scenario in which each resonator and the TLS individually
interact with their own environments. Each environment is
modeled as a continuum of harmonic oscillators and assumed
to be on the vacuum state initially. Since the coupling with
the environment is generally weak compared to the system
of interest, the Wigner-Weisskopf approximation applies, and
the lifetime of an excitation in system S is thus obtained,
which represents the timescale of the transition from quantum
to classical behavior. We further investigate the impact of the
dissipation on the transport property of the single photon along
the 1D CRW for identical baths attached to the CRW. The
dissipation lowers the peak of the resonance and broadens the
width of the line shape of the reflection spectrum except in the
case that magnitude of the leakage rate is equal to the decay
rate of the TLS. The leakage rate in each resonator not only
influences the free propagation of the single photon, but also
results in the inelastic scattering of the single photon together
with the dissipation of the TLS.
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