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Radiation reaction at ultrahigh intensities
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Intensities of 1022 W cm−2 have been reached and it is expected that this will be increased by two orders of
magnitude in the near future. At these intensities the radiation reaction force is important, especially in calculating
the terminal velocity of an electron. The following briefly describes some of the problems of the existing most
well-known equations and describes an approach based on conservation of energy. The resulting equation is
compared to the Landau Lifshitz and Ford O’Connell equations, and laboratory tests are proposed.
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I. INTRODUCTION

In recent years laser intensities between I = 1018 W cm−2

and I = 1022 W cm−2 have been reached [1] and, with
expectations to reach another couple of orders of magnitude,
the often neglected self force becomes important. It is generally
considered to be unimportant below 1022 W cm−2, and
becomes increasingly important as the intensity rises above
this value. However, even at lower intensities, the correct
description of physics cannot be obtained without the self
force. For example, the net acceleration of a charged particle
in a plane wave can only be accounted for by consideration of
the radiation effects. [2] Besides this example, the self force
must be taken into account above 1022 W cm−2, and in the
following these effects are shown explicitly.

When a charged particle is accelerated it creates a radiation
field that acts back on the particle. This self force has been
rooted at the origin of over a century’s debate on this question.
While some authors have claimed to have settled the issue,
there is no universally accepted equation of motion that
includes self forces. Perhaps it will remain this way until
experimental evidence gathers enough strength to point its
fateful finger to the truth. Below, an approach will be developed
and it will be compared, for special realistic situations, with
other theories, and may therefore be tested in the near to
immediate future.

In a culmination of the work of Lorentz and Abraham,
Dirac derived what is usually referred to as the LAD (or LD)
equation, which is [3],

m
dvµ

dτ
= e

c
Fµσ vσ + mτ0

(
v̈µ + vµ

c2
v̇σ v̇σ

)
, (1)

where τ0 = 2e2/3mc3 and dots indicate differentiation with
respect to proper time τ . The term with the parenthesis is called
the self force, or the von Laue four-vector, or the Abraham
vector. The first part of it is called the Schott force,

F
µ

S = mτ0v̈
µ (2)

the second is the radiation reaction force

F
µ

R = mτ0
vµ

c2
v̇σ v̇σ . (3)

*rhammond@email.unc.edu

The most grievous transgression of this equation, which
comes from the Schott force, can be seen in the low velocity
limit for the case of no external force, letting v̇ = a,

a = τ0ȧ. (4)

The solution, in which the particle with no external forces
is accelerated to the speed of light in practically no time,
is called the runaway solution. It as an egregious case of
nonconservation of energy and is clearly unphysical. There
is no field to begin with, and there is no known mechanism
by which this charge can create some sort of inductive field to
preserve our notion of conservation of energy. Even with other
forces present (and also in the relativistic case), the Schott
term tends to introduce unphysical runaway solutions. For
these reasons the LAD equation is not considered to be a
correct description of the motion, and for decades work has
progressed to find a suitable replacement.

The runaway solution is an indication of a deeper problem,
the problem with conservation of energy. To see this, for v � c,
suppose we integrate the zero (time) component of (1) with
respect to the proper time. This gives

mcγ = e

c

∫
Evdt + mτ0v̇

0 (5)

for the case of a charged particle released from rest in an
electric field. (One must be careful here. This equation is not
valid when the Schott term vanishes to lowest order in 1/c,
which happens for the constant field.)

For the case that E is a monotonic function of time (and
ignoring the concomitant magnetic field, (5) leads to

K = WF + mτ0V V̇ , (6)

where WF is the work done by the external force, V = dx/dt ,
and we used v̇0 ∼ V V̇ /c. Since this last term is greater than
zero, we have shown that the kinetic energy of the particle is
greater due to radiation effects, which makes no sense. This
problem is so irksome that some authors conclude that rest
mass is not conserved [4,5].

This is related to a well known issue about the LAD
equation. If the zero (time) component of (1) for the general
case is integrated we find

mc2(γ − γinc) =
∫

F · dx −
∫

Pdt + τ0
(
v̇0 − v̇0

inc

)
, (7)
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where F = eE, the power radiated is P = −mτ0v̇σ v̇σ , and x

and t are the laboratory coordinates in which E is measured.
In words this equation reads, the change in the kinetic energy,
K , is equal to the work done by the external field, WF , minus
the energy radiated, WR , plus something else. This something
else is well known to be the Schott energy, but it seems very
strange indeed. In fact, the Schott term is what gives rise to
the runaway solutions we encountered earlier, solutions that
violate conservation of energy.

Although there have been attempts to reconcile this in
special cases [7], it is an abiding problem. Sorkin [6] in a
recent article concerning the constant field, sums it up: “A
well-known peculiarity of the radiation reaction force on a
charged particle is that it vanishes when the particle accelerates
uniformly. But this raises a paradox. An accelerating charge
radiates, and the longer the acceleration continues, the greater
the total energy radiated. If one asks where this energy comes
from in the case of uniform acceleration, the usual answer is
that it is ‘borrowed’ from the near field of the particle and then
‘paid back’ when the acceleration finally ceases. But this ‘debt’
can be arbitrarily great if the acceleration remains uniform
for a long enough time. What, then, if the agent causing the
acceleration decides not to repay the borrowed energy? What
if, in fact, it does not even possess enough energy to pay its
immense debt at that time? If we believe in conservation of
energy, the respective answers must be that the accelerating
agent must not be at liberty to avoid transferring the required
energy and that it must always possess the necessary amount
to cover its accumulated debt.”

One approach that has been used to remove the runaway
solutions converts the third order equation to a second order
one by the use of an integrating factor. This technique is used
in the nonrelativistic case but in this case the resulting equation
of motion violates causality. In particular, one has [8]

V̇ = 1

m

∫ ∞

0
F (t + sτ0)s−sds. (8)

If we expand F in a Taylor series, F (t + sτ0) = F (t) +
sτ0Ḟ (t), and neglect higher order terms, (8) becomes

mV̇ = F (t) + τ0Ḟ (t). (9)

Equivalently, by noting that the right hand side is the Taylor
series of F (t + τ0) (neglecting higher order terms) we obtain
the great surprise

mV̇ = F (t + τ0), (10)

or equivalently, with V̇ = a,

ma(t − τ0) = F (t). (11)

This shows that the electron must be prophetic—it begins to
accelerate at the time τ0 before the force arrives. This violation
of causality is often reluctantly accepted since it is such a tiny
violation, but surely it is unphysical. For special cases, this
technique has been attempted in the relativistic case [9].

Some reasonable results can be salvaged by tinkering with
the LAD equation. For example, as a simple case consider
(4), written as a − τ0ȧ = 0. Since τ0 is so small we may
recognize the left side as the Taylor series expansion, so that
we have, to order τ0, ȧ = 0, a benign equation which is exactly

what we would expect. In fact, in a more general approach,
assuming that the acceleration occurs at a different time than
the force, the pesky runaway solution disappears [10]. For
example, assuming that the self force acts a different time (by
τ0) one may derive

m
dvµ

dτ
= e

c
Fµσ vσ+eτ0

c

(
d

dτ
(Fµσvσ ) − vµvγ

c2

d

dτ
(Fγνvν)

)
.

(12)

which was derived years before with an entirely different
derivation and is called the Ford O’Connell equation [11].
In a similar approach, one may expand in terms of τ0 [13] and
obtain the Landau Lifshitz equation [12]

dvµ

dτ
= (e/mc)Fµσvσ + τ0

[
(e/mc)Ḟ µσ vσ

+ (e/mc)2
(
Fµγ F φ

γ vφ + Fνγ vγ F φ
ν vφvµ

)]
. (13)

Since all derivations involved some sort of expansion, they
are only reliable when the self force is a small effect. But
today we have situations in which laser intensities have reached
1022 W cm−2, with expectations to increase this by at least
two orders of magnitude. As we will see explicitly below,
this brings us to the realm in which self force effects are not
small, and may even be dominant. Thus, we cannot trust these
equations that were derived in a series approach, assuming the
self force is small.

It has been shown elsewhere that the FO and LL equations
are equivalent to order τ0 [13], which is a reasonable result
in lieu of the fact that they have been derived by a series that
utilizes the smallness of τ0. However, there are problems with
the FO and LL equations: One occurs when they are applied to
the age old problem of a charged particle in a uniform electric
field. The solutions are perplexing, telling us that the radiation
reaction has no effect whatsoever on the equation of motion.
The problem of a uniform field has been the subject of a hot
and sometimes contentious debate. For a recent paper with
references one may consult the literature [7].

There have been a number of attempts to overcome these
problems. Rohrlich’s well-known book gives many details
and references and details on the history of self forces up to
1965 [14]. Later, Mo and Papas [15] add a term proportional to
the acceleration, which was analyzed by Shen [16,17]. Steiger
and Woods [18,19] derive a self force from the average power
radiated in a cycle, Herrera considered the problem of the
uniform magnetic field [20], while Moniz and Sharp consider
the limit of QED [21]. Ford and O’Connell developed their
equation [22–24], Hartemann and Luhmann [25] use an aver-
aging technique over spatial integrations, Rohrlich, based on
a treatment by Spohn [26], averred the LL equation is correct
[27], while Bosanac assumed mass is converted to energy of the
electromagnetic field [5]. More general approaches, including
looking at higher dimensionality and magnetic charge were
also done [28–38]. In the case of magnetic charge [28], it was
shown that the magnetic dipole gives terms that are fourth
order in the retarded time expansion. The method developed
in the present paper is able to be generalized to this case in a
straightforward manor by including the energy radiated by a
magnetic dipole in the power P .
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Despite this body of work, indicative of an even larger
effort, no equation has been accepted by all as the correct one.
I propose to obviate all of the problems outlined above by
assuming energy is conserved without assuming some of it in
wondrously stored in an immeasurable field. Starting with the
radiation free equation, we assume there is a self force, f µ,

m
dvµ

dτ
= e

c
Fµσ vσ − f µ (14)

and set out to find f µ by assuming that the change in the
kinetic energy is equal to the work done by the external field
minus the energy radiated,

K = WF − WR. (15)

In fact, Ford and O’Connell believed this so strongly
that they were willing to replace the Larmor formula with
a radiation formula that conserved energy, as stated above
[22]. To begin our search we consider the one dimensional
nonrelativistic limit,

m
dv

dt
= F − f, (16)

where F is any external force. Multiplying by v and integrating
with respect to time we find

1

2
mv2 =

∫
Fdx −

∫
f vdt. (17)

Now, assuming that the kinetic energy is equal to the work
done by the external field minus the energy radiated, and noting
that the energy radiated is mτ0

∫
v̇2dt we find f v = mτ0v̇

2.
Thus we have two equation and two unknowns, v and f , but we
must generalize this to three dimensions and to the relativistic
realm.

To do this, we realize that the energy radiated is a scalar
quantity (nonrelativistically), and assume, as is true for many
forces, that it is derivable from a potential according to
f = −∇φ. The relativistic generalization is ∇ → φ,µ and the
equation of motion becomes

m
dvµ

dτ
= e

c
Fµσ vσ + φ,µ − vµ

c2
φ̇, (18)

where the last term is added to ensure vσ v̇σ = 0. Thus, the
radiation reaction force is given by −f µ = φ,µ − vµφ̇/c2.
The φ,µ are found by conservation of energy: The change in
the kinetic energy is equal to the work done by the external
field minus the energy radiated [13,39]. Thus, integrating the
time component of (18) we find

f 0 = γP/c, (19)

which ensures conservation of energy. Obviously this is not a
covariant statement, it holds in the laboratory frame (where we
measure E, x, and t). Thus, although (18) is covariant, once
we establish (19), we have chosen a frame. The idea is to treat
(19) and (18) as coupled equations.

Now the question becomes: is (18) better than the LAD,
FO, and LL equations, and is it correct. As far as comparison
to the LAD equation, we can see that (18) does not give rise
to the runaway solution LAD has, but how does it compare to
the LL and FO equations?

To answer this question, and to answer the more important
question ‘is it correct,’ we shall look at experimental situations
that are being created in the laboratory, and ones that are on
the horizon. These equations may be used for any situation
where radiation reaction is involved, but the most important
case is the ultrarelativistic case where γ � 1. For an electron
in an electromagnetic pulse this corresponds to intensities
above 1020 W cm−2, and certainly above 1022 W cm−2, the
regime where radiation reaction begins to become important.
In this case φ,σ vσ vµ/c2 � φ,µ, so f µ = vµφ̇/c2, and the
conservation of energy statement gives φ̇ = P .

These results will be studied numerically for high intensity
pulses and compared to the LL and FO equations for a
specific case of an electromagnetic pulse containing just a few
wavelengths. We nondimensionalize by letting kxµ → xµ and
ωt → t , where c = ω/k, k = 2π/λ, and we take λ = 8 000Å,
a typical approximate IR frequency. In particular the electric
field is given by

E = E0e
−[(z−t)/w]2

cos[	(z − t + λ)]x, (20)

where the dimensionless 	 allows us to explore frequencies
other than that of the IR laser. The dimensionless w is used
to describe the width of the pulse and is taken to be 2π/	,
which maintains an envelope containing a few wavelengths.
To relate the electric field to the average intensity, we use
E0 = √

8πI/c/w.
Above an intensity of 1020 W cm−2, v0 ≈ v3, and from the

symmetry (plane of polarization of the field), v2 = 0, so that in
the following only v1 and v3 are displayed. Also, we will keep
things in terms of the proper time, although one may readily
convert to laboratory time. Finally, it should be pointed out that
to obtain ultra-high intensity, the laser beam is focused down to
a thin waist, so that there is also a z component to the field. For
the purposes of the comparisons made here, it is not essential to
use such a pulse shape, although it presents interesting future
research, and in fact, may be have a considerable effect on the
radiation reaction.

We now consider numerical solutions of (13) (solutions
subscripted with L), (12) (solutions subscripted with F ), and
(18) (solutions given no subscript). First, we check to see that
the change in kinetic energy (Ekin) is equal to the work done
by the external force (Wf ) minus the energy radiated away
(Wr ), which is shown in Fig. 1, where all of these quantities
are divided by mc2. For the LL or FO approach, such results
are not even approximated by the solutions. It is interesting to
note, in this regime, the exponential dependence of energy on
intensity. In this graph we use

I = 1019+n. (21)

Next we consider a direct comparison of the (four) velocity
as a function of time. At and below 1022 W cm−2, the results
seem to overlap (but see below), but at 1024 W cm−2 and 	 =
0.1 (or 1025 W cm−2 and 	 = 1) we find the result presented
in Fig. 2.

The most important difference in these results is the
final z component of the velocity. One may recall the
Lawson-Woodward theorem that states, if radiation reaction is
excluded, the particle gains no net momentum from the pulse.
Since radiation reaction is being considered it is clear that
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Wr
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FIG. 1. (Color online) Listplot of ln(Ekin), ln(Wf ), ln(Wr ) and
(not the ln of) 
 = EWkin − Wf + Wr . Ekin (red curve beginning at
n = 2) and Wr overlap at this scale.

Lawson-Woodard does not apply. Even at lower intensities
the z component of the velocity is substantially different
for the present theory and the older theories. For example,
at 1022 W cm−2 (	 = 1) the final z component of the (four)
velocity is 0.13c while the LL and FO theories give values that
are over two orders of magnitude smaller. At 1020 W cm−2

and smaller, however, all theories converge.
In order to indicate when the radiation reaction is important,

one may use the final value of the z component of the velocity.
It is zero if there is no radiation reaction, so its value per
unit rest mass gives some indication of the effects of radiation
reaction. For γ � 1, v3 ≈ v0 so that v3/c ≈ Ekin (recall Ekin

is the kinetic energy divided by mc2). This is shown in Fig. 3
for the current theory. Between 1022 W cm−2 and 1023 W
cm−2 the kinetic energy equals the rest energy, signaling he
importance of radiation reaction.

In summary it has been shown that the effects of radiation
reaction can be well described using the approach based on
conservation of energy. It gives results quite different than

50 150
τ

1.5

2.5

v3

v3

v3L

v3F

FIG. 2. (Color online) The z component of the four velocities
(times 10−7) for the three different methods. The highest peak (green)
corresponds to v3

L, the highest final velocity (blue) corresponds to v3.

1 2 3 4
n
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2

2
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ln Ekin

FIG. 3. The value of the ln of the kinetic energy per rest energy.

existing formulations at high intensities. It was shown that the
LAD equation, as is well known, leads to unphysical runaway
solutions. For this reason alone one may conclude that the
equation is incorrect, but it was shown that this arises from
a deeper problem, explicitly, nonconservation of energy. The
conventional argument is to assume that the missing energy
resides in an induction field, but is is shown here that by
changing this view to one in which energy is conserved without
the mysterious induction field, sensible equations follow. The
other two most quoted equations are the Landau Lifshitz and
the Ford O’Connel equations. Since these may be derived from
the LAD equation, we should not expect them to be exact. In
fact, contrary to the result presented in Fig. 1, the solutions
do not conserve energy. In addition, the final velocity of the
electron is much greater in the current theory than that of
LL and FO, and laboratory tests may be made. However,
in this work the phase λ was set to zero, but the results
depend quite significantly on the value of this constant. The
value of this constant, called the envelope or absolute phase,
is in general impossible to control. Few cycle femtosecond
lasers emit pulses with varying phase: It cannot be made
constant because the phase and group velocities of the beam
in the laser cavity are not the same [40]. In fact, one may

2 4 6
λ

2000

4000

v3 λ

FIG. 4. The z component of the four velocities for the three
different methods.

062104-4



RADIATION REACTION AT ULTRAHIGH INTENSITIES PHYSICAL REVIEW A 81, 062104 (2010)

measure the final velocity to determine the phase. For example,
for 1022 W cm−2 and 	 = 1 the final velocity (z component)
is plotted in Fig. 4 for λ ranging from 0 to 2π . The numerical

work was done with Mathematica, the zero values reported
above for Ekin − Wf + Wr were correct to five decimal places
for intensities up to 1025 W cm−2.
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