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Quantum discord, local operations, and Maxwell’s demons
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Quantum discord was proposed as a measure of the quantumness of correlations. There are at least three
different discordlike quantities, two of which determine the difference between the efficiencies of a Szilard’s
engine under different sets of restrictions. The three discord measures vanish simultaneously. We introduce an
easy way to test for zero discord, relate it to the Cerf-Adami conditional entropy and show that there is no simple
relation between the discord and the local distinguishability.
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I. INTRODUCTION

We learn about the external world from correlations
between our measuring devices and the systems we study.
The information flow is studied in (classical) information
theory through the analysis of correlations [1]. Their buildup
and propagation are at the core of measurement theory [2,3].
The research of their behavior with respect to space-time
locality led to the identification of quantum entanglement
[3,4]. All correlations—classical and quantum—are important
in statistical thermodynamics [5], which, in turn, influences
the entanglement theory [6]. Initial correlations modify the
dynamics of open systems [7,8], and a significant part of
quantum information processing is devoted to preservation and
manipulation of useful correlations, while trying to mitigate
the effects of the unwanted ones.

A boundary between quantum and classical correlations
is sharp for pure states, which are either simply separable
product states or entangled. It becomes less clear for mixed
states, particularly for systems larger than a pair of qubits. We
investigate this boundary through a characteristic of quantum
discord [9–11] (more precisely, we review and define three
similar, but subtly different, discord measures).

First, we recall some basic definitions [1] and set the nota-
tion. The (Shannon) entropy of a classical discrete probability
distribution p(a) ≡ pa over a random variable A is defined by

H (A) = −
∑

a

pa log pa, (1)

where the logarithm has, either a natural (log e ≡ ln e = 1)
or a binary (log 2 = 1) base. Both bases work with obvious
adjustments in constants. However, when it is necessary to
compare quantities of interest with the results of quantum
information protocols, we express them in qubits and adapt
the binary basis (end of this section, Sec. II C, and Sec. III).

Entropy of the joint probability distribution p(a,b) over
AB, H (AB) is defined analogously. The Bayes theorem relates
it to the conditional probabilities,

p(a,b) = p(a|b)p(b) = p(b|a)p(a), (2)
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where p(a|b) is a conditional probability of A = a given that
B = b. The conditional entropy of A,

H (A|B) =
∑

b

pbH (A|b) = −
∑
a,b

p(a,b) log p(a|b) (3)

is a weighted average of the entropies of A given a particular
outcome of B.

Correlations between two probability distributions are
measured by the symmetric mutual information. It has two
equivalent expressions,

I (A :B) = H (A) + H (B) − H (A,B), (4)

and

J (A :B) = H (A) − H (A|B) = H (B) − H (B|A). (5)

Quantum-mechanical (von Neumann) entropy [3] is defined
as

S(ρ) = −trρ log ρ. (6)

It minimizes the Shannon entropy of probability distributions
that result from rank-1 positive operator-valued measures
(POVMs) that are applied to the state ρ on the Hilbert
space HA. The minimum is actually reached on a probability
distribution A that results from a projective measurement
� = {�a,a = 1, . . . ,d}, ∑

a �a = 1, �a�b = δab�a , which
is constructed from the eigenprojectors of ρ,

S(ρ) = min
�

H
(
A�

ρ

)
, (7)

that is,

S(ρ) = H
(
A�∗

ρ

)
,

(8)
ρ =

∑
a

pa�
∗
a, pa � 0,

∑
a

pa = 1.

The expression A�
ρ stands for a classical probability distribu-

tion (of a measured parameter A) that is obtained from the
state ρ under the POVM �.

Quantum channels are abstracted as maps from the ini-
tial states ρA to the final states ρX, where the space HX

may be either the same space HA or a different one [4].
Any orthonormal basis {|a〉} of HA defines a dephasing
channel P,

ρ �→ ρ ′ = P(ρ) =
∑

a

�aρ�a, �a := |a〉〈a|. (9)
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Hence, taking the weighted average over the outcomes of a
measurement � = {�a}a=1,...,dA

is equivalent to sending the
initial state through a dephasing channel with a superoperator
P = P�.

The information function that expresses knowledge [6]
about a system of dimension d in the state ρ is a variety
of the negentropy,

K(ρ) = log d − S(ρ). (10)

It has two related operational interpretations. A Maxwell’s
demon can draw K(ρ) units of work from a single heat bath
using a Szilard engine [12]. We will discuss the demons in
Sec. III.

On the other hand, K(ρ) determines a conversion rate
between pure and mixed states. By allowing arbitrary unitary
operations, by adding of maximally mixed ancillas, and
by taking partial traces [and thinking in terms of qubits
(i.e., log 2 = 1)], it is possible to perform two tasks with
asymptotically perfect fidelity. First, given n copies of the
state ρ, one can obtain nK(ρ) qubits in a predetermined pure
state. This is done by performing the usual quantum data
compression, but instead of discarding the then-redundant pure
qubits, it is the signal block that is discarded [6]. Second, by
taking nK(ρ) pure qubits and by diluting them with ancillas in
the maximally mixed state, one produces n copies of ρ [13].

Quantum discord stems from the fact that the classical
mutual information can be extended to quantum states in
two inequivalent ways, following either Eq. (4) or Eq. (5). In
Sec. II, we introduce the three discord measures and discuss
some of their properties. Their role in the efficiency of different
Szilard’s engines is explored in Sec. III, and, in Sec. IV, we
discuss their relationship with the local distinguishability of
orthogonal states.

II. QUANTUM DISCORD

The first expression for mutual information has an obvious
quantum generalization,

I (ρAB) := S(ρA) + S(ρB ) − S(ρAB), (11)

and represents the total amount of quantum and classical
correlations [6,14,15].

A. Conditional state definition

To obtain a quantum version of J (A :B), it is necessary
to determine a conditional state of the subsystem B. If the
objective is to preserve the equivalence of two definitions in
the quantum domain I (ρAB) ≡ J (ρAB), then the conditional
entropy can be introduced [16] as

S(ρB|A) = −trρAB log ρB|A. (12)

The positive operator ρB|A is defined through

ρB|A := lim
n→∞

[
ρ

1/n

AB (ρA ⊗ 1B)−1/n
]n

= exp(− log ρA ⊗ 1B + log ρAB), (13)

where the inverse of ρA is defined on its support. It does not
usually have a unit trace, and when ρA ⊗ 1B commutes with
ρAB it reduces to

ρB|A = ρAB(ρA ⊗ 1B)−1. (14)

We will return to this quantity at the end of this section.

B. Three versions of the discord

Given a complete projective measurement � on A, a
quantum definition of J follows its interpretation as the
information gained about the system B from the measurement
on A [9],

J�A

(ρAB) := S(ρB) − S(ρB |�A), (15)

where the conditional entropy is now given by

S(ρB |�A) :=
∑

a

paS(ρB|�a
). (16)

The postmeasurement state of B that corresponds to the
outcome A = a is

ρB|�a
= (�a ⊗ 1BρAB�a ⊗ 1B)/pa, pa = trρA�a. (17)

The state of B remains unchanged,

ρB = trA ρAB =
∑

a

paρB|�a
. (18)

Unlike their classical counterparts, the quantum expressions
are generally inequivalent, and I (ρAB) � J�A

(ρAB) [9–11].
The quantum discord as defined in Ref. [9] is the difference
between these two quantities,

D�A

1 (ρAB) := S(ρA) + S(ρB |�A) − S(ρAB). (19)

Its dependence on the measurement procedure is removed by
minimizing the result over all possible sets of �,

DA
1 (ρAB) := min

�A
D�A

1 (ρAB). (20)

Similarly,

JA
1 (ρAB) := max

�A
J�A

(ρAB). (21)

This definition of the discord has its origins in the studies of
the measurement procedure and pointer bases, thus, projective
measurements are natural in this context. It is possible to
define the discord when the difference is minimized over all
possible POVM �A [10]. However, unless stated otherwise,
we restrict ourselves to the projective measurements of
rank 1.

An explicit form of a postmeasurement state will be useful
in the following text. We denote this state as ρ ′

X ≡ ρ�A

X , where
the subscript X stands for A, B, or AB, and use the former
expression if it does not lead to confusion. After a projective
measurement �A, the state of the system becomes

ρ ′
AB =

∑
a

pa�a ⊗ ρa
B, (22)
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where pa and ρa
B ≡ ρB|�a

are given by Eq. (17), and the states
of the subsystems are

ρ ′
A =

∑
a

pa�a, ρB = ρ ′
B =

∑
a

paρ
a
B, (23)

respectively.
The discord of the state ρAB is zero if and only if it is a

mixture of products of arbitrary states of B and projectors on
A [9],

ρAB =
∑

a

pa�a ⊗ ρa
B, pa � 0,

∑
a

pa = 1. (24)

By using this decomposition and properties of the entropy
of block-diagonal matrices [17], we can identify

J�A

(ρAB) ≡ I (ρ ′
AB), (25)

because S(ρ ′
A) = H (A�

ρ ) and

S(ρ ′
AB) = H

(
A�

ρ

) + S(ρB |�A). (26)

The discord is not a symmetric quantity: It is possible
to have states with 0 = DA

1 (ρAB) 
= DB
1 (ρAB). A subclass of

separable states that satisfy DA
1 = DB

1 = 0 is of the form

ρc
AB =

∑
ab

wab �A
a ⊗ P B

b , (27)

where P B is a set of projectors on HB , and consists of
classically correlated states in the sense of Ref. [18].

Another possibility is to set

J�A

2 := S(ρA) + S(ρB) − (
H

(
A�

ρ

) + S(ρB |�A)
)

= (ρA) + S(ρB) − S(ρ ′
AB), (28)

arriving to the quantum discord as defined in Ref. [19],

DA
2 (ρAB) := min

�

(
H

(
A�

ρ

) + S(ρB |�A)
) − S(ρAB), (29)

where the quantity to be optimized is a sum of postmeasure-
ment entropies of A and B. By using Eq. (7), we see that
D1 � D2. It is also easy to see that D1 = 0 ⇔ D2 = 0. By
using Eqs. (22) and (26), we obtain a different expression
for D2:

D�A

2 (ρAB) = S
(
ρ�A

AB

) − S(ρAB). (30)

Since the definition of the discord(s) involves optimization,
the analytic expressions are known only in some particular
case [9,11,20]. Moreover, typically, it is important to know
whether the discord is zero or not, while the numerical value
itself is less significant.

It follows from Eq. (24) that if the spectrum of a reduced
state ρA = ∑

a pa�a is nondegenerate, then its eigenbasis
gives a unique family of projectors � that results in the zero
discord for ρAB . Hence, a recipe for testing states for zero
discord and for finding the optimal basis is to trace out a
subsystem that is left alone (B), to diagonalize ρA, and to
calculate the discord in the resulting eigenbasis.

If the state ρA is degenerate, a full diagonalization should
be used. For the state of Eq. (24), each of the reduced states
ρa

B can be diagonalized as

ρa
B =

∑
b

ra
b P b

a , P b
a P b′

a = δbb′
P b

a . (31)

The eigendecomposition of the state ρAB then easily follows.
Writing it as

ρAB =
∑
a,b

war
a
b �a ⊗ P b

a , (32)

it is immediate to see that its eigenprojectors are given by
�a ⊗ P b

a . Hence, if ρB has a degenerate spectrum, but ρAB

has not, the structure of its eigenvectors reveals if it is of a zero
or nonzero discord. Hence, we established

Property 1. The eigenvectors of a zero discord state
DA

1 (ρAB) = 0 satisfy

ρAB |ab〉 = rab|ab〉 ⇒ |ab〉〈ab| = �a ⊗ P b
a . (33)

�
This consideration leads to the simplest necessary condition

for zero discord (first noticed in Ref. [21]):
Property 2. If DA

1 (ρAB) = 0, then

[ρA ⊗ 1B,ρAB] = 0. (34)

Hence, a nonzero commutator implies DA
1 (ρAB) > 0. �

Naturally, if the state has a zero discord, and the eigenbasis
is only partially degenerated, we can use it to reduce the
optimization space. On the other hand, the diagonalizing basis
�∗ is not necessarily the optimal basis �̂ or �̌ that enters the
definition of D1 or D2, respectively. Consider, for example, a
two-qubit state

ρAB = 1
4

(
1AB + bσ z

A ⊗ 1B + cσ x
A ⊗ σx

B

)
, (35)

where σa
X are Pauli matrices on the relevant spaces X = A,B,

and the constants b and c are restricted only by the require-
ments that ρAB is a valid density matrix. For this state, ρB =
1/2 and ρA = diag(1 + b,1 − b)/2. After the measurement
in the diagonalizing basis �z = ((1 + σ z)/2,(1 − σ z)/2), the
conditional state of B becomes

ρB|�z
± = 1/2, (36)

and the conditional entropy is maximal, S(ρB |�z) = log 2.
On the other hand, in the basis �x = ((1 + σx)/2,(1 −

σx)/2), the probabilities of the outcomes are equal, p+ =
p− = 1/2, but the postmeasurement states of B are different
from the maximally mixed one,

ρB|�x± = 1
2 (1 ± cσ x), (37)

so the entropy S(ρB |�z) � S(ρB |�x).
This discrepancy motivates us to define a new version of

the discord, which is useful if the eigenvectors of ρA are not
degenerate,

DA
3 (ρAB) := S(ρA) − S(ρAB) + S(ρB |�A

∗ ), (38)

where �A
∗ is the set of eigenprojectors of ρA. Otherwise,

it can be introduced using the continuity of entropy in
finite-dimensional systems [17]. By applying Eq. (7) to the
subsystem A, we find that for D3, simultaneously hold the
analog of Eq. (25),

J3(ρAB) ≡ I
(
ρ

�A
∗

AB

)
, (39)

and the analog of Eq. (30),

D3(ρAB) ≡ S
(
ρ

�A
∗

AB

) − S(ρAB). (40)
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We also arrive at the following ordering of the discord
measures:

DA
1 � DA

2 � DA
3 . (41)

There are several important cases when the measures of discord
coincide. Most importantly, they vanish simultaneously:

Property 3. D1 = 0 ⇔ D2 = 0 ⇔ D3 = 0.
The proof follows from Eqs. (24) and (41). �
On pure states, the discord is equal to the degree of

entanglement,

DA
i (φAB) = S(φA) = E(φAB), i = 1,2,3. (42)

Discord is also independent of the basis of measurement if the
state is invariant under local rotations [9]. Finally, if A is in a
maximally mixed state, then DA

1 = DA
2 .

These coincidences make it interesting to check when
the discords D1 and D2 are different. By returning to the
measurement-dependent versions of the discords, we see that

D�A

1 (ρAB) = D�A

2 (ρAB) − (
H

(
A�

ρ

) − S(ρA)
)
. (43)

Assume that D�A

2 (ρAB) reaches the minimum on the set of
projectors �̌, which are not the eigenprojectors of ρA. In this
case, H (A�̌

ρ ) − S(ρA) > 0, so we can conclude that the strict
inequality DA

1 < DA
2 holds, because

DA
1 (ρAB) � D�̌

1 (ρAB)

= DA
2 (ρAB) − (

H
(
A�̌

ρ

) − S(ρA)
)

< DA
2 (ρAB). (44)

For example, the state of Eq. (35), with b = c = 1
2 , satisfies

DA
1 ≈ 0.05, DA

2 ≈ 0.20, and DA
3 ≈ 0.21.

C. Relations with other quantities

Quantum discord D�A

1 (ρAB) is a concave function over the
set of all POVMs �A [11], and the minimum is reached on a
rank-1 POVM that consists of linearly independent operators
[22]. The easiest way to obtain this result is to note that the
set of all POVMs is convex, and the minimum of a concave
function over a convex set is obtained on its boundary.

The states of zero discord are nowhere dense anywhere in
the set of all states [21]. Nevertheless, it is obvious that even
double-zero discord states of Eq. (32) convexly span the set of
all states.

The operator ρB|A has a closed form on the states of zero
discord. Property 1 allows us to write Eq. (14) as

ρB|A =
(∑

a

wa�a ⊗ ρa
B

) (∑
b

1

wb

�b ⊗ 1B

)

=
∑

a

�a ⊗ ρa
B, (45)

which indeed results in the conditional entropy:

S(ρB|A) =
∑

a

waS
(
ρa

B

) = S(ρB |�A). (46)

For general states, the definitions imply

S(ρB|A) = S(ρB |�A) − D�A

1 (ρAB), (47)

in any basis, not only in the optimal one.

In the paradigm of closed local operations [6], Alice and
Bob are allowed to perform arbitrarily local unitary operations
and projective measurements, and Alice can send her system
to Bob via a dephasing channel. In the one-way version, only
a single use of the channel is allowed. Since, at the end of the
operation, both systems are accessible to Bob, the discord DA

2
was identified with one-way quantum deficit [6],

�→(ρAB) = min
�A

S
(
ρ�A

AB

) − S(ρAB) = DA
2 (ρAB). (48)

Operationally, it expresses the fact that a simple one-way
purification strategy consists of Alice performing the measure-
ment �̌ and announcing her results to Bob (or, equivalently,
sending her part of the state individually through the channel
P�̌). In this case, the purification rate is given by K2(ρAB) =
(log dAdB) − S(ρ�̌A

AB ).
However, it is the discord DA

1 that gives the optimal
efficiency of a purification in this context. If Alice is allowed
to borrow pure states (that are returned at the completion of
the protocol) and to use block encoding prior to (individually)
sending her particles to Bob, then [23] the optimal rate is

K→(ρAB) = (log dAdB) + I
(
ρ�̂

AB

) − S(ρA) − S(ρB), (49)

so, by using Eq. (25), we see that K→(ρAB) = (log dAdB) +
JA

1 (ρAB) − S(ρA) − S(ρB), or

K(ρAB) − K→(ρAB) = DA
1 (ρAB). (50)

The additivity of JA
1 was shown to be equivalent to that of

several other quantities [23], including the Holevo capacity of
quantum channels. The additivity of the latter was disproved
[24], so a block processing will improve the distributed
purification efficiency for entangled ρAB .

A symmetrized version of J3 involves (projective) mea-
surements on both sides [25] and is given by J

sym
3 (ρAB) =

I (ρ�A
∗ ⊗�B

∗
AB ). The symmetrized discord,

D
sym
3 := I (ρAB) − J

sym
3 (ρAB) (51)

is called the measurement-induced disturbance and serves as
another upper bound on D1 and D2.

III. LOCAL MAXWELL’S DEMONS

Maxwell’s demon [26] is a being whose facilities are so
sharpened as to enable him to challenge the second law of
thermodynamics. Modern exorcism mostly focuses on his
information-processing ability, with information erasure cost
balancing the books and keeping the second law intact. Quan-
tum logic and quantum correlations introduce new subtleties
into this discussion [12].

A typical setting is provided by a (quantum) Szilard’s model
[27], in whose original form the demon operates a heat engine
with one-particle working fluid. For our purposes, it is enough
to consider only the work-extracting phase of the cycle and to
ignore the resetting of the demon’s memory. The optimal work
extracted from a system of a dimension d in a known state ρ

at the temperature T is, on average,

W+ = kT (log d − S(ρ)) = kT K(ρ), (52)
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where k is the Boltzmann constant adjusted to the base of the
logarithm.

For a bipartite state ρAB , the benchmark performance
W+(ρAB) is achieved by a fully quantum (nonlocal) demon
Charlie that can perform arbitrary quantum operations on the
system. We compare his performance with actions of two local
goblins of lesser powers. Alice and Bob are goblins that can
perform only local operations on their subsystems. They may
have only partial information about the state ρAB and may not
be able to communicate freely.

The work that is extracted by Alice and Bob that are
aware of their respective states ρA,B but are not allowed to
communicate is

WL = kT ((log dAdB) − S(ρA) − S(ρB)), (53)

so the difference of the extracted work by a global demon
and local noncommunicating goblins is given by the mutual
information,

�LW := W+ − WL = kT I (ρAB). (54)

A much more interesting scenario was proposed in
Ref. [19]. In this setting, both Alice and Bob know the state
ρAB , and Alice can communicate to Bob the results of her
measurement. She chooses her measurement � in such a way
as to maximize the extracted work,

W2 = (
log dA − H

(
A�

ρ

)) + (log dB − S(ρB |�A))

= (log dAdB) − S
(
ρ�A

AB

)
, (55)

through steering of Bob’s state to ρB|�a
, which, on average,

makes up for a higher entropy of Alice’s ρ�A

A = ∑
a �aρA�a .

Hence, the minimal difference between the work extracted by
the goblins and the work extracted by the demon is given by

�2W = kT DA
2 (ρAB). (56)

In this setting, Alice and Bob are essentially performing the
purification protocol from Sec. II C.

An operational meaning of D3 is clarified in the setting
where Alice is still able to report her results to Bob, but has
less knowledge than in the original example. Namely, Alice
knows only ρA, while Bob is aware of the entire state ρAB . In
this case, the best Alice can do is to perform the measurement
in the eigenbasis of ρ, and tell her result to Bob. Then, on
average, the gain is

W3 = kT (log dA − S(ρA)) + kT (log dB − S(ρB |�A
∗ )), (57)

so the difference in the extracted work is now:

�3W = kT DA
3 (ρAB). (58)

IV. LOCAL DISTINGUISHABILITY AND DISCORD

Since zero discord is thought to represent the absence
of classical correlations, it is interesting to investigate the
following question. Consider a set of pure orthogonal bipartite
states, each of which may have a different prior probability,
with the ensemble density matrix ρAB . Does the value of
D(ρAB) tell us something about the ability to perfectly

TABLE I. Local measurability vs discord.

Locally
States Discord measurable

Nine 3 × 3 product orthogona DA = DB = 0 No
states, equal weights
Two product bi-orthogonal states DA = DB = 0 Yes
Two entangled orthogonal states DA

1 > 0 Yes

Nine 3 × 3 product orthogonal DA
1 > 0 No

states, unequal weights

distinguish these states by local operations and classical
communication (LOCC)?

As exhibited in Table I, there is no relation between D(ρAB)
and local distinguishability. First, it was shown in Ref. [28] that
a certain set of nine 3 × 3 product orthogonal states cannot be
perfectly distinguished by LOCC. These states |ψ1〉, . . . ,|ψ9〉
are

|1〉 ⊗ |1〉, |0〉 ⊗ |0 ± 1〉/
√

2, |2〉 ⊗ |1 ± 2〉/
√

2,

|1 ± 2〉 ⊗ |0〉/
√

2, |0 ± 1〉|2〉/
√

2. (59)

Their equal mixture is the maximally mixed state ρAB = 1/9
that obviously has a zero discord DA(ρAB) = DB(ρAB) = 0.

Second, it was shown [29] that any two orthogonal
(entangled or not) states can be perfectly distinguished by
LOCC. Consider a mixture of the Bell states |	±〉,

ρAB = a|	+〉〈	+| + (1 − a)|	−〉〈	−|, 0 < a < 1. (60)

The discord of such a state can be calculated analytically. It
equals

D
A,B
1,2 (a) = a log2 a − (1 − a) log2 a + 1, (61)

which vanishes only for the equal mixture a = 1
2 .

Two other cases easily follow. A pair of bi-orthogonal
product states, such as |0〉|0〉 and |1〉|1〉, results in a zero
discord. Mixing the states of Eq. (59) with different weights
may result in a nonzero discord. For example, giving |ψ9〉 and
|ψ7〉 weights, which are twice as high as the rest of the states
results in a mixture ρAB for which [ρA ⊗ 1B,ρAB] 
= 0, thus,
implying a nonzero discord.

V. SUMMARY AND OUTLOOK

There are at least three useful one-way measures of the
quantumness of states, namely, the three discords. They vanish
simultaneously, and it is easy to check if this is the case by
using Properties 1 and 2. The discord measures D2 and D3

have a natural physical interpretation in terms of the work
extracted by a pair of Maxwell’s demons that operate on a
bipartite system under different sets of restrictions. On the
other hand, depending on the imposed restrictions, it is either
D1 or D2 that can serve as a measure of a quantum deficit in
the state.

Despite its intuitive appeal, quantum discord D(ρAB) is not
an indicator of a local distinguishability of the states making
an ensemble ρAB .
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Zero quantum discord allows for a completely positive
dynamics of an open system even if there are initial correlations
with the environment [8]. In a forthcoming paper [30], it
will be shown that it is not enough for practical quantum
tomography.

We discussed the discord in the states on finite-dimensional
spaces. One obvious difficulty in the generalization for the con-
tinuous variables is in the infinite-dimensional optimization

that is involved in the definition of D1 and D2. It is possible
that the measure D3 is more suitable in the latter case.
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