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Visualizing electron delocalization, electron-proton correlations, and the Einstein-Podolsky-Rosen
paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses
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We investigate theoretically the dissociative ionization of an H2
+ molecule using two ultrashort laser (pump-

probe) pulses. The pump pulse prepares a dissociating nuclear wave packet on an ungerade surface of H2
+. Next, an

ultraviolet [or extreme ultraviolet (XUV)] probe pulse ionizes this dissociating state at large (R = 20–100 bohr)
internuclear distance. We calculate the momenta distributions of protons and photoelectrons which show a
(two-slit-like) interference structure. A general, simple interference formula is obtained which depends on the
electron and protons momenta, as well as, on the pump-probe delay and also on the durations and polarizations
of the laser pulses. This pump-probe scheme reveals a striking quantum delocalization of the electron over two
protons which intuitively should be localized on just one of the protons separated by the distance R much larger
than the atomic Bohr orbit.
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I. INTRODUCTION

Recently, due to the extraordinary increase of research
activities in quantum information and quantum cryptography
there is a growing interest in various quantum intriguing
phenomena originating back to the famous Einstein-Podolsky-
Rosen (EPR) paradox [1] formulated in 1935. This paradox is
related to the phenomenon of quantum entanglement [3] and
to the nonlocal character of quantum mechanics [5] or to the
problem of local realism versus the completeness of quantum
mechanism. A most recent comprehensive review of various
aspects of the EPR paradox can be found in [2]. So far nearly
all experimental evidence for entanglement is related to the
measurement of correlated photon pairs obtained in a process
called “parametric down-conversion” [4]. In such processes
a photon from a laser beam gets absorbed by an atom which
subsequently emits two “polarization-entangled” photons. The
entanglement phenomenon should in principle also appear in
various breakup processes involving slower (massive) frag-
ments than photons (e.g., in various disintegration processes
such as photoionization and photodissociation), as suggested
in [6–11]. So far, there exist very few experimental results
demonstrating the entanglement in such slower processes and
involving massive particles which are much better localized
in space than massless photons [2]. The dissociation process
of H2

+ we are studying here shows similar to the above-
mentioned two-particle quantum correlations. They originate
from a strong delocalization of an electron over two protons
which intuitively should be localized on just one of the protons
when they are separated by the distance R much larger than
the atomic Bohr orbit.

In this paper we investigate theoretically an experimental
scheme based on recent advances in the ultrashort laser
technologies which allow one to shape laser pulses in
femtosecond or even subfemtosecond (attosecond) timescales
[12,13]. Thus, these technologies allow one to image the
evolution in time of correlated electron-nuclear wave function.
This can be achieved by initiating the dissociation process
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using an ultrashort pump pulse and allowing the dissociating
fragments to separate and be far apart. Next, this system
can be probed via a photoionization process using a probe
pulse having a well-defined phase relative to the pump pulse,
and consequently in phase with the dissociating system. In
general, the photoelectron spectra will exhibit a two-center
interference, sometimes called a Fano interference since it was
predicted by Cohen and Fano in 1967 [14]. Their calculations
showed that when a molecule is photoionized via absorption
of one photon the photoelectron spectra in diatomic molecules
are modulated by an interference factor,

χ̄ = 1 ± sin(| �pe|Req)

| �pe|Req
, (1)

where �pe is the electron momentum and Req is the equilibrium
internuclear distance and the sign depends on the parity of
the molecular electronic wave function; (+) for a gerade and
(−) for an ungerade electronic state. We show that if the Fano
interference is observed in dissociating diatomic molecule at
large internuclear separation it may become an important tool
for visualizing peculiarities of quantum mechanics related to
entanglement and to the nonlocal character of the electron
which (intuitively) should be localized on a single heavy
(1836.15 times heavier than the electron) center, during the
dissociation process, due to localization via Coulomb attractive
force. Note that a quantum state describing a localized
electron on a specific proton accompanying another distant
proton would not lead to the two-center Fano interference in
the photoelectron spectrum. This interference is a result of
the unique gerade or ungerade symmetry of the electronic
molecular wave function before the photoionization takes
place. Since the molecular Hamiltonian has also this symmetry
we conclude that the state before the turn-on of the probe
pulse should preserve the symmetry of the dissociating state
prepared by a pump pulse. In other words, the quantum
dissociating state is not a simple product of the hydrogen and
proton states but is a coherent superposition of the possible
“simultaneous presence” of the electron on both well-separated
protons.
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FIG. 1. (Color online) Illustration of the proposed pump-probe
experimental scheme. Two lowest electronic surfaces �g and �u of
H2

+ are shown. The pump pulse prepares the nuclear wave packet
sliding on the upper ungerade surface �u. After the turn-off of
the pump pulse this wave packet evolves as free system until it is
photoionized at large internuclear distance R.

More specifically, we consider a pump-probe excitation
scheme [12,13] in which a pump laser pulse prepares a
dissociating nuclear wave packet on an ungerade (repulsive)
surface of a H2

+ molecule. Next (20–200 fs later, after the
pump pulse is turned off), an ultraviolet [or extreme ultraviolet
(XUV)] probe pulse ionizes this dissociating (H-atom +
proton) state at large (R = 20–150 bohr) internuclear distance,
as illustrated in Fig. 1 and also described in [13]. We show that
coincidence measurement of the electron and proton spectra
reveal a very special, counterintuitive nature of the quantum
dissociation process. It can be assumed that after the turn-off
of the pump pulse the motion on the ungerade surface of
H2

+ is adiabatic. Consequently, because of the antisymmetric
(or symmetric, if dissociation occurs on a gerade electronic
state) character of the electronic wave function the quantum
state of the dissociating system is very distinct from a simple
product of a state of a free proton and a free hydrogen atom
[15]. Such a simple product occurs (e.g., in proton-hydrogen
scattering). Thus quantum mechanics predicts that even at
large internuclear distance the electron can be well localized
in two places (i.e., it can form a hydrogen atom on two
well-separated protons which seems counterintuitive). Note
that in our scheme electron localization occurs due to the
Coulomb attraction from two protons. Suppose that we have
measured the hydrogen atom at the right-hand side along
the laser polarization vector, as shown in Fig. 2. Already
at relatively small internuclear distance R = 10 bohr shown
in Fig. 2 the electron is very well localized on each center.
Thus, we infer (using the charge conservation principle) that
the opposite detector (at left-hand side in Fig. 2) at the
internuclear separation larger than R = 60 bohr will measure
with a certitude a proton. This situation resembles a variant
of the EPR paradox based on the disintegrating system of
the two-spin one-half particles, originating from their initial
singlet state [16] in which by measuring a spin up by one
detector we infer what was the spin projection measured by
the opposite detector.

Suppose now that instead of measuring directly the H atom
in the above experiment we use a probe UV pulse which
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FIG. 2. (Color online) The upper part shows schematically the
first stage of the proposed experimental scheme in the case when
only the laser pump pulse is used. This pulse dissociates the H2

+

molecule. Two opposing detectors are measuring the H atom or the
H+ ion. These measurements resemble the case of the EPR paradox
in which the spin projections are measured in the disintegration of
the two-spin one-half particles from the initial single-spin state. We
also illustrate the definition of the Jacobi coordinates for the p-p-e
system used in our calculations. The lower part shows the two-center
Coulomb potential, the ungerade electronic wave function ϕu

el and
the corresponding probability density as a function of the electron
coordinate zel at fixed internuclear distance R = 10 bohr.

photoionizes the molecule and the two-center Fano interfer-
ence pattern is observed in the photoionization signal. Simple
perturbative calculations using a plane wave approximation for
the final electrons state [14,17] predict that at fixed internuclear
vector �R the molecular photoelectron signal is modulated via
interference factors sin2( �pe · �R/2) or cos2( �pe · �R/2). Just the
fact that such an interference pattern is observed would mean
that the electron is well localized simultaneously on system.
This is a very unusual and counterintuitive situation since
the tunneling time from one center to another is extremely
large even at the relatively small internuclear separation R =
60 bohr: ttunnel = 2.4 years [15]. Moreover, if we interpret
the integral of e|ψ |2 over half-space as a charge present
around a specific proton, one concludes that a fractional
charge e/2 is well localized around one center [18]. Thus,
one may argue that the observation of the Fano two-center
interference is a witness for the simultaneous presence of a
charge e/2 on each center. Clearly, this simple three-body
system with the electron and two well-separated protons
represents an interesting quantum mystery related to the
formation of a hydrogen atom during the dissociation process
and is certainly worth further experimental and theoretical
investigation.

There exists already some experimental evidence for the
existence of the Fano interferences originating from disso-
ciating molecules at large internuclear separations: in the
pump-probe experiment by Sanov et al. [19] negative iodine
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I2
− ions were used in which similar to dissociating H2

+

electron delocalization occur when a following pump probe
is used. The photoionization was initialized using a 780-nm
laser that dissociated the I2

− ions into I− + neutral iodine
atom I. After a variable time delay, a photoionizing probe
removed the electron from the I2

− ion. Next the asymmetry
coefficient [19] was calculated from the photoelectron angular
distributions. This coefficient oscillates as function of the time
delay between the probe and pump pulses as expected from our
calculations presented at the end of Sec. IV. This oscillation is
due to the fact that as in this experimental scheme one cannot
distinguish whether the photoelectron originates from the right
or left iodine atom separated by an internuclear distance as
large as 60 bohr.

In our theoretical description of the above-mentioned
pump-probe scheme (dissociation followed by photoioniza-
tion), we do not calculate the dynamics of the first step in
which an ultrashort UV pump pulse photodissociates (via an
absorption of one photon) the H2

+ molecule and it thus pre-
pares a nuclear wave packet moving on the molecular ungerade
surface. We assume that this wave packet has the Gaussian
shape right after the pump pulse is turned off, centered at R =
R0 = 12 bohr, at t = 0, and it next evolves as a free system
(field-free) on the �u surface until it reaches the internucelar
distance R = 60–120 bohr. Then an ultrashort UV pump laser
pulse is turned on and it photoionizes this dissociating packet,
at t = tc, also via a one-photon process. The photoionization
probability distributions of the momenta of the electron and the
protons are calculated using first-order perturbation theory in
three dimensions (3-D) (for both electron and nuclear degrees
of freedom). A plane wave approximation is used for the final
state of protons and a “modified-plane-wave” approximation
for the electron (see next section for the details). Note that to
the best of our knowledge, all theoretical work related to Fano
interference has been so far done using frozen nuclei at fixed
equilibrium internuclear distance | �Req|. We believe that our
study is the first dynamical investigation of Fano interference
in the photoelectron spectrum originating from dissociating
molecules at large internuclear separations. It includes full
3-D electron-nuclear dynamics. Note that so far approaches
based on solving the time-dependent Schrödinger equation for
H2

+ are based on the models with reduced dimensionality
[20,21].

II. PERTURBATIVE CALCULATIONS OF DISSOCIATIVE
IONIZATION

We use Jacobi coordinates for the electron and two protons
(separated by a vector �R) in which the electron position vector
�re originates in the center of mass of two protons; see Fig. 2. In
these coordinates, the Hamiltonian of H2

+ has the following
form [22] (in atomic units, h̄ = me = e = 1):

Ĥ0 = − 1

2m′
e

��re
− 1

2µ
� �R + VC(�re, �R), (2)

where

m′
e = 2mpme

2mp + me

, µ = mp/2

are the electron two-proton reduced mass and the proton-
proton reduced mass, respectively,

VC(�re, �R) = −1

|�re − �R/2| + −1

|�re + �R/2| + 1

| �R| (3)

is the total Coulomb interaction between protons and the
electron, and me and mp are the electron and proton masses.
The total Hamiltonian is Ĥ = Ĥ0 + V̂int, where

V̂int = −i
κ

m′
ec

�A(t) · �∇�re
, (4)

where

κ = 1 + me

2mp + me

.

Vint describes the interaction of H2
+ with a UV laser probe

field via its vector potential. Since we use a weak intensity
probe pulse and the pulse frequency is larger than the
ionization potential of H2

+ we may use the perturbation
theory for calculation of the photoionization probability of
the dissociating wave packet (prepared by the pump pulse)
using the transition amplitude:

Af i = −i

∫ ∞

−∞
dt〈ψf |eiĤ0tVinte

−iĤ0t |ψin(t)〉. (5)

We first recall the result for fixed nuclei at �R. Using for the
electron initial state,

ϕ
g/u

el (�re, �R) = 1√
2

[ψH (�re + �R/2) ± ψH (�re − �R/2)], (6)

where ψH is the hydrogen 1s wave function [sign (±) is used
for the electronic gerade on the ungerade state], and using the
plane wave for the final electron state:

ψf = (2π )−3/2 exp(i �pe · �re), (7)

we get from Eq. (5) (just by choosing the integration
coordinates local to each center) that∣∣Afix

f i

∣∣2 ∼ [1 ± cos( �pe · �R)]|AH ( �pe)|2, (8)

where AH ( �pe) is the atomic photoionization amplitude given
in [17]. Thus, if ionization occurs from the ungerade surface the
molecular ionization probability is modulated via a sin2( �pe ·
�R/2) factor. If the molecule is not initially aligned, and if

protons momenta are not measured, we need to integrate over
the direction of �R which leads to the χ̄ factor given in Eq. (1).
To include the nuclear motion in Eq. (5) we use the plane wave
approximation for the final state for both the electron and for
the relative motion of protons:

ψf = (2π )−3 exp(i �pN · �R) exp(i �pe · �re). (9)

We will isolate from this expression the electronic atomic
photoionization amplitude AH ( �pe) in which we will use the
exact expression for an atomic amplitude, that is, in which
exact Coulomb wave for the individual center is included (but
the influence of the neighboring center is neglected which is
a reasonable approximation for the case of very large R we
are interested in). This explains the term “modified-plane-
wave” approximation used in the introduction. Regarding
the plane wave approximation for the nuclei we think that
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it is justified for photoionization occurring at very large
internuclear distances. We are interested in R’s as large as
R > 60 bohr at which Coulomb repulsion should be negligible
with respect to the kinetic energy of the the dissociating H2

+,
that is, when

p2
0

2µ
	 e2

R0 + p0tc/µ
, (10)

where R0 is the position of the the center of the dissociating
wave packet with the momentum p0 at t = 0 when the pump
pulse is turned off and tc is the time at which the amplitude
of the probe pulse is at maximum. At this time the wave
packet reaches the distance R0 + p0tc/µ . These plane wave
approximations allow us to get a simple analytic expression
for the amplitude Af i . Using the Coulomb waves in the final
state leads one to much more complicated formulas involving
some numerical integration.

As the initial state we take the Born-Oppenheimer solution
(we consider an improvement to this approximation in the
appendix) as a product of the ungerade electronic function (6)
and the superposition of nuclear plane waves exp(i �p · �R):

ψin(�re, �R,R0) = ϕu
el(�re, �R)

∫
d3p ϕN ( �p,R0) exp(i �p · �R),

(11)

where ϕN ( �p,R0) is the initial distribution of the momenta in
the dissociating nuclear wave packet. It should be adjusted to
the shape of the wave packet prepared by the pump pulse which
we suppose is short (its duration is 5–20 fs). In calculation of
the amplitude (5) we assume the free evolution of the H2

+

wave packet between the turn-off of the pump pulse at t = 0
and the turn-on of the probe pulse. We derive next the analytic
formula for photoionization valid for any shape of ϕN ( �p,R0).
Its specific shape will be chosen for illustrating graphically
our results. In order to perform analytically the time integral
in (5) we need a specific shape of the vector potential �A(t) of
the laser field. We assume it has a Gaussian form:

�A(t) = �eprobe

2
A0 exp

[
− (t − tc)2

2τ 2

]
exp(−i	probet) + c.c.,

(12)

where A0, �eprobe, 	probe, and τ are the UV probe pulse
amplitude, polarization, central frequency, and duration. Pulse
duration τ is related to the commonly used FWHM duration
via relation τFWHM = 2

√
ln(2)τ . We recall that thus defined

FWHM means full width at half-maximum of the laser
intensity time profile, not the FWHM of the envelope of the
laser field. tc is the time at which the probe pulse has maximum
and at the same time tc is also a measure the time delay between
the probe and the pump pulse since we have chosen t = 0
as the time when the pump pulse is turned off and the center
of the nuclear packet is at R = R0.

After integrating the time t and the electronic coordinate �re

in the formula (5), we get:

Af i = N1AH ( �pe)
∫

d3p a( �p)
∫

d3R

× exp(i �p · �R − i �pN · �R)(ei �pe · �R/2 − e−i �pe · �R/2), (13)

where

a( �p) = exp[if ( �p)tc − τ 2f ( �p)/2]ϕN ( �p,R0), (14)

f ( �p) = �p 2
e

2m′
e

+ �p 2
N

2µ
+ Ip − 	probe − �p 2

2µ
,

(15)
N1 = κA0τ

2π23/2m′
ec

,

AH ( �pe) = A1s( �pe) = 23/2 (�e · �pe)(1 − iν)

π
(
1 + �p2

e

)2

× exp[−2ν arctan(pe)] N∗
ν , (16)

ν = 1

pe

, Nν = exp(πν/2)�(1 + iν).

Integration over the �R coordinate yields two Dirac delta
functions for momentum conservation. Thus, we get for the
dissociative-ionization amplitude,

Af i = N1(2π )3AH ( �pe)
∫

d3p a( �p) [δ( �p − �pN + �pe/2)

− δ( �p − �pN − �pe/2)]. (17)

Integration over the nuclear momenta �p yields the final
probability amplitude for dissociative ionization,

Af i = N2AH ( �pe)[a( �p−) − a( �p+)], (18)

where a( �p) is defined in (14),

N2 = (2π )3N1 = κA0(2π )2τ

23/2m′
ec

,

and

�p± = �pN ± �pe/2. (19)

The shifted momentum in the last equation is related to the
recoil received by each proton from the electron: the final
relative momentum is either �p+ or �p−.

Equation (18) provides a general expression for the mo-
menta distributions of protons and of the electron valid for
any initial distribution of momenta ϕN ( �p,R0) of a dissociating
wave packet. However, in order to investigate in detail Fano
two-center interference effect we need to specify the initial
momentum distribution in the wave packet prepared by the
pump pulse. We suppose that the H2

+ molecule was initially
in the vibrational v = 0, J = 0 of the gerade bound state,
where J is the initial angular momentum quantum number of
the molecule. Thus, the nuclear wave packet, after absorption
of one photon, will be in the J = 1 rotational state on the
ungerade �u surface of H2

+. We assume that it has the
form:

ϕN ( �p,R0) = CN

cos θp

p
exp

(
−�R2

2
(p − p0)2

)
× exp[i(p0 − p)R0] , (20)

where cos θp = �p · �epump/| �p| and θp is the angle between the
nuclear relative momentum �p and the pump pulse polarization.
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The nuclear wave packet is at R = R0 at t = 0, the probe has
maximum at t = tc. This is a free Gaussian wave packet (in
the radial variable p = | �p|) sliding on the electronic surface
�u with the angular momentum J = 1. Its electronic wave
function ϕu

el is given in Eq. (6). The central radial momentum
of the wave packet is p0 and its spatial width is �R. In order
to study the two-center interference effect it is convenient to
rewrite the probability of ionization in the following form (in
this form the interference appears through the cross term C:

|Af i( �pe, �pN,τ,�R,tc)|2
= |AH ( �pe)|2[|a( �p+)|2 + |a( �p−)|2 + C(p+,p−,tc)], (21)

where

|a( �p)| = CN exp

(
−f 2( �p)

τ 2

2
− �R2

2
(p−p0)

)
| �p · �e|/| �p|2,

(22)

C(p+,p−,tc) = 2|a( �p+)| |a( �p−)| cos[�(tc)], (23)

�(tc, �pe , �pN ) = (| �p+| − | �p−|)R0 + [f ( �p−)| − f ( �p+)]tc

= (| �p+| − | �p−|)R0 + | �p+|2 − | �p−|2
2µ

tc. (24)

After the use of Eq. (19), the phase � becomes

�(tc, �pe, �pN ) = (| �p+| − | �p−|) R0 + �pe · �pN

µ
tc. (25)

This is an important result since after comparing Eq. (25) with
the phase corresponding to static result Eq. (8) we conclude
that by measuring the relative nuclear momentum pN and the
delay time tc we are fixing the increment of the internuclear
separation �R during the time interval tc (i.e., this increment
is simply): �vN tc where �vN = �pN/µ is the relative velocity of
protons. We can simplify more Eq. (25) in the case of the
nuclear momentum larger than the electron momentum (i.e.,
if the inequality pe � pN holds we get):

| �p±| =
√

p2
N ± �pe · �pN + p2

e

/
4 � pN ± �pe · �pN

2pN

= pN ± pe cos(θpe)/2. (26)

Thus, the phase (25) on which the interference relies simplifies:

�(tc, �pN ) � �pe · �RN (tc, �pN ), (27)

where

�RN (tc, �pN ) � R0
�pN

| �pN | + �pNtc

µ
. (28)

We will also use later the absolute value of the vector �RN :

RN (tc,pN ) = | �RN (tc, �pN )| � R0 + pNtc

µ
. (29)

Clearly, we see from the last equations that, as in the
case of static result (8) the interference term C(p+,p−,tc)
is modulated via the term cos[RN (tc,pN )pe cos(θep)], where
θep is the angle between the electron momentum and relative
nuclear momentum �pN . This relation can be used for imaging
the nuclear motion as suggested in [13]: If we measure the

ionization signal for a series of time delays tc and follow
the change of a specific minimum in the spectrum, we
can thus deduce the molecular trajectory from the relation
2nπ/pecos(θep), where n is an integer corresponding to a
specific minimum. If, furthermore, the width of the momentum
distribution 1

�R
is sufficiently large compared to the electron

momentum pe (i.e., pe < 1
�R

), we may expect that the
following approximations are valid for pN values close to
the central value p0 of the momentum distributions defined
via (20):

|a( �p−)| � |a( �p+)| � |a( �pN )|, (30)

we get

|Af i |2 ∼ |AH ( �pe)|2 sin2

(
�pe · �pN

| �pN |RN (tc,| �pN |)/2

)

×
[ �pN · �epump

p2
N

]2

(31)

or

|Af i |2 ∼ cos2(θe) sin2[pe cos θpeRN (tc,| �pN |)/2] cos2(θp),

(32)

where θe is the angle between the electron momentum and
the probe pulse polarization vector �eprobe, and θp is the angle
between the �pN vector and the pump polarization �epump.
Assuming that initially H2

+ was at rest with the initial
momentum of H2

+ center of mass �Pc.m. is zero, we have the
following relations between the measured final momenta of
the two protons �p1, �p2, and of the electron momentum �pe and
the relative nuclear momentum �pN :

�p1 + �p2 + �pe = �Pc.m. = 0 �pN = 1
2 ( �p1 − �p2). (33)

Consequently, if the initial molecular temperature is zero it
will be sufficient to measure the electron momentum and
the momentum of one proton �p1 in order to determine the
�pN vector on which the interference relies. Thus, the vectors
present in (21) formulas become:

�pN = �p1 + �pe/2, �p+ = �p1 + �pe, �p− = �p1. (34)

In the case of nonzero temperature of initial H2
+ translational

motion one should either average our formula over thermal
momenta of H2

+ or measure in coincidence the momenta
of all three fragments resulting from the photoionization of
dissociating H2

+ in order to avoid possible washing out of the
interference term.

Summarizing our most important result is that the Fano two-
center interference shows up in the cross term C(p+,p−,tc) in
Eq. (23) via

cos[ �pe · �RN (tc, �pN )], (35)

where �RN (tc, �pN ) is given in Eq. (28). Note that the calculations
in which �R is fixed lead instead to the very similar interference
term cos( �pe · �R) in Eq. (8). Thus, the effect of nuclear motion
consists of replacing �R by �RN (tc, �pN ) which is a simple linear
function of the final relative momentum of outgoing protons
�pN and of the time delay tc. A convenient way to analyze
this interference in the case of �pN fixed and parallel to the
probe polarization �eprobe [note then θe = θpe which simplifies
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significantly Eq. (32) is to expand the angular distributions
described by (32) in Legendre polynomials Pl(cos θe):

|Af i |2 ∼ cos2 θe[1 − cos(peR cos θe)]

= cos2 θe

[
1 −

∞∑
l=0,l−even

(2l + 1)jl(peR(tc))Pl(cos θe)il
]
,

(36)

|Af i |2 ∼ β0(tc) + β2(tc)P2(cos θe) + β4(tc)P4(cos θe), where

(37)

β0 = 1

3
[1 − j0 + 2j2] � 1

3

[
1 − 3

sin[peRN (tc,pN )]

peRN (tc,pN )

]
for peR(tc) 	 1, (38)

β2 = 1

3

[
2 − j0 + 55

7
j2 − 36

7
j4

]

� 1

3

[
2 − 92

7

sin[peRN (tc,pN )]

peRN (tc,pN )

]
for peR(tc) 	 1,

(39)

β4 = 30

11
j6 − 351

77
j4 � 51

7

sin[peRN (tc,pN )]

peRN (tc,pN )
for peR(tc) 	 1. (40)

We see clearly that the expansion of angular distributions
in Legendre polynomials reveals the Fano interference as
a function of the pump-probe time delay tc in a very neat
way. An analysis of experimental data related to the Fano
interference using such an expansion was recently performed,
for example, in [19]. More specifically, in [19] a pump-
probe experiment was reported in which a pump pulse
photodissociates a I2

− molecule and the probe photoionizes
the dissociating molecule. The β2(tdelay) coefficient calculated
from the experimental photoelectron angular distribution
shows the modulation similar to oscillations expected from
our Eq. (39). These experimental oscillations in β2(tdelay) do
not survive for the time delays larger than a few picoseconds.
We suggest that this may be related to the constant term present
in Eq. (39) which shows in the experiment as background or
they disappear due to averaging over nuclear momenta which
becomes more significant at larger internuclear separations.
Note that the higher β4(tc) coefficient does not contain
any constant term and thus may yield a better contrast
allowing the Fano interference to survive for larger time
delays.

III. SOME SPECIFIC EXAMPLES OF THE PROPOSED
PUMP-PROBE EXPERIMENTS

The interference expected from the theory presented in the
previous section will show up most clearly when the proton
and the electron momenta are measured in coincidence. Using
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FIG. 3. (Color online) Ionization probability (multiplied by 104)
calculated using Eqs. (21)–(24) for the case when the polarizations
of the pump and probe pulses are parallel and the nuclear relative
momentum �pN is also parallel to both polarizations. We used λprobe =
60 nm, pN = p0 = 14.8 a.u., pe = 0.72 a.u., �R = 3.0 bohr, R0 =
12.0 bohr, and the pump pulse duration τFHWM = 2.4 fs.

our exact expressions (21) for probabilities as a function
of the momenta of three outgoing fragments, we calculate
the probabilities of ionization by the probe pulse for three
selected geometries and plot the results in Figs. 3–6. Note
that we do not use in Figs. 3–5 the approximations suggested
in formulas (26) and (30). The probabilities are shown as
functions of the time delay tc between the pump and the probe
pulse. We plot in Fig. 3 the angular distributions of the electron
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FIG. 4. (Color online) Same as in Fig. 3, but for the case when
the polarizations of the pump and probe pulses are perpendicular and
the nuclear relative momentum �pN is also parallel to the polarization
of the pump pulse as shown in the upper part of the figure.
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FIG. 5. (Color online) Same as in Fig. 3, but for the shorter
pump wavelength λprobe = 15 nm, shorter pulse duration τFWHM =
0.24 fs and smaller width of the wave packet �R = 1.0 bohr. Note
that now the electron angle θe is fixed and equal to zero. The
ionization probability is plotted now as a function of the electron
momentum pe.

in the parallel case (i.e., all three vectors �epump, �eprobe, and �pN

are parallel and the momenta pe and pN are fixed at their
values corresponding to the maximum probability. In Fig. 4,
the perpendicular geometry is used (i.e., we choose the case of
the pump laser polarization �epump perpendicular to polarization
of the probe pulse �eprobe). In Fig. 6 again the geometry is
parallel as in Fig. 5 but instead of angular distributions we
plot there the electron spectra for the electron flying along the
polarization vectors. All three graphs show strong interference
structures as a function of the time delay, as expected from
the approximate factor sin2( �pe · �pN

| �pN |RN (tc,pN )/2). Note that
we show in Figs. 3 and 5 the positions of the center of the wave
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FIG. 6. (Color online) Same as in Fig. 3, but now the ionization
probability is plotted now as function of the proton momentum p1 at
fixed electron angle θe = 0.

packet corresponding to certain time delays calculated using
Eq. (29). Similar interference structures appear in the proton
spectra displayed in Fig. 6 in which we are showing spectra
as a function of the single-proton momentum p1 = | �p1| with
fixed electron momentum pe = 0.72 a.u.. The �pN vector is
calculated using Eq. (34).

Note that in order to observe experimentally a sharp
interference structure as plotted in Figs. 3–5 the momenta of
the electron and of at least one proton should be measured
in coincidence. Such measurements are possible due to
the recently developed cold target recoil ion momentum
spectroscopy (COLTRIMS) technique [23].

IV. CONCLUDING REMARKS

Summarizing, we have investigated a laser pump-probe
scheme in which the measurement of the momenta distribu-
tions of the photoelectron allow one to determine the nuclear
trajectory R(t) which simply plays a role of a slit separation
in this double-slit-like experiment in which the molecule is
“illuminated from within” [13]. Thus the probe pulse prepares
the electron source whose de Broglie wave creates interference
structure. The observed modulation as a function of time delay,
due to the change of the slit separation becomes a witness
of the simultaneous presence of the electron on each proton.
In other words, when the internuclear distance R is much
larger that the bohr orbit it would be natural to expect a
localized electron on one heavy proton but such a localization
would prevent the interference seen in the photoionization
signal.

We have proposed a method (based on two-center Fano
interference) for observing a very peculiar time-dependent
quantum state which is an adiabatically stretched H2

+

molecule. This symmetry preserving stretching leads to the
presence of a single electron on the two remote protons,
well localized on each of them. In any local classical theory
such an unusual presence would be impossible. This suggests
that when the Fano interference is observed this might be
interpreted as a witness to the nonlocal character of quantum
mechanics. Moreover, we believe that this dissociating state
is a very special kind of an entangled state of an electron and
two protons. By definition, given in the second paragraph in
Ref. [7], entanglement means nonfactorization of a two-
particle wave function. First, in any breakup process [7], this
nonfactorization originates from the mere fact that the wave
function of interacting particles is a product of a function
depending on the relative coordinate times the center-of-mass
wave function; see Eq. (26) in [7]. Thus, the dissociating parti-
cles |H〉 and |H+〉 are entangled before they are photoionized.
The antisymmetricity of the electron wave function probably
leads to more nonfactorization in this specific system in which
a single electron is shared equally by two remote protons and
thus additional entanglement may appear in our three-body
quantum system [24]. We wish to investigate this issue in
more detail in future work.

Another unusual feature of the proposed experimental
scheme in this paper is the fact that it allows one to measure,
in a sense, the sign of the spatial wave function; more
specifically, the measurement we propose detects (in the case
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of an ungerade initial state) the fact that the sign of the
electronic wave function on one center is minus and on another
remote center is plus. Namely, at large internuclear distance
the electronic wave function is given:

ϕ
g/u

el = 1√
2

[ψH (�re + �R/2) ± ψH (�re − �R/2)].

Thus, the probability density distribution |ϕg/u

el (z)|2 is identical
for both parities at very large R values (see Fig. 2). Nev-
ertheless, measuring the photoelectron signal allows one to
distinguish between the gerade and ungerade case since the
photoionization probability at fixed internuclear distance R

is proportional to cos2( �pe · �R/2) in the case of dissociation
occurring on the gerade electronic state whereas it is propor-
tional to sin2( �pe · �R/2) in the ungerade case. This sensitivity
of the photoelectron spectra to parity (gerade or ungerade) is
very specific to this simple dissociation process and because
of this feature this experimental scheme is very distinct form
the electron two-slit diffraction.

Another method for the observation of the two-center
interference was proposed in [15]. This method uses the probe
pulse which does not ionize the dissociating molecule but is
based on elastic (Thomson) photon scattering from the two
centers in the dissociating H2

+. Thus, this method, which
resembles the double-slit experiment for photons, allows one
to probe the entangled state in dissociating H2

+ on the
internuclear distance larger than the method discussed in
our paper since the wavelength 800-nm laser is much larger
than the de Broglie wavelength used in our scheme. This
method, as ours, shows the delocalization of the electron
on two remote centers since both the Thomson scattering
or photoionization (in the case of our method) rely on
the presence of the electron on each center (i.e., neither
Thomson scattering nor photoionization can occur simply
on bare proton. This fact distinguishes both schemes (ours
and that proposed in [15]) from a simple double-slit quantum
effect.
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APPENDIX: BEYOND THE BORN-OPPENHEIMER
APPROXIMATION IN THE INITIAL STATE

The Jacobi coordinates �re, �R used in Sec. II are not conve-
nient at large internuclear distances R since the wave functions
exp(i �p · �R)ϕu

H (�re ± �R) used in Eq. (11) are not the exact
eigenstates of the molecular Hamiltonian even if one neglects
the Coulomb repulsion and the attraction from the remote bare
proton. These states are the approximate eigenstates of Ĥ0,
within the Born-Oppenheimer approximation. Note that when
a proton and a hydrogen atom are very far apart the exact
eigenstates of Ĥ0 are simply a product of two plane waves for
a free proton motion—free motion of the center of mass of
a hydrogen atom multiplied by the electronic wave function
describing the 1s electronic state of the hydrogen atom. Thus,
when the proton and the hydrogen atom are far apart and they

move with relative momentum �p it is convenient to rewrite
the Hamiltonian Ĥ0 using different Jacobi coordinates from
that used in Sec. II. Namely, instead of using the internuclear
vector �R and the electron coordinate �re we now use the
vectors,

�R1 = �R + α�r1e, where �r1e = �re − �R/2 and
(A1)

α = me

me + mp

.

�R1 is the relative vector between the center of mass of
a hydrogen atom and the neighboring proton, �r1e is the
relative vector between the proton and the electron. In these
coordinates, the Hamiltonian of H2

+ has the following form
(in atomic units, h̄ = me = e = 1):

Ĥ0 = − 1

2m′′
e

��r1e
− 1

2µ′′ � �R1
− 1

|�r1e| + V2(�re, �R),

(A2)
where V2 = − 1

|�re + �R/2| + 1

R
,

where

µ′′ = mp(mp + me)

2mp + me

, m′′
e = mpme

mp + me

, (A3)

and m′′
e is simply the reduced mass of the electron in the

hydrogen atom. Note that as in Jacobi coordinates used in
Sec. II there is no cross gradient term with coupling nuclear
and electronic variables. We easily find the exact eigenstates
of a dissociating wave packet with the relative momentum
�p, in these new Jacobi coordinates, in the limit of a very
large internuclear distance when the potential V2(�re, �R) can be
neglected. This exact asymptotic eigenstate has the following
form:

ψ
asym
in (�re, �R, �p) = exp(i �p · �R1)ψH (�r1e)

= exp[i �p · ( �R + α�r1e)]ψH (�re − �R/2), (A4)

where �p is the momentum of the relative motion between the
hydrogen atom and the remote proton. Note that in contrast
to the previously used eigenstate (11) the above state does
not have the inversion symmetry with respect to the inversion
�re → −�re. Since we expect that the initial state should have
such an inversion symmetry (as being prepared via one-photon
excitation of the gerade electronic state of a H2

+ molecule),
we construct the ungerade initial state in the following
way:

ψin = 1√
2

∫
d3pϕN ( �p,R0)

[
ψasym

in (−�re, �R, �p)

−ψasym
in (�re, �R, �p)

]
. (A5)

Clearly, for each fixed �p this is an entangled state of the
two particles: a free proton and a free hydrogen atom. We
rewrite the interaction potential (4) in a slightly different
form:

V̂int = −i �A(t) ·
(

1

me

∇�re
− i

1

mp

∇�r1p
− i

1

mp

∇�r2p

)

= −i
1

m′′
e c

�A(t) · ∇�r1e
− i

1

mp

�A(t) · ∇�r2p
. (A6)
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Note that we keep here the complete interaction of the laser
field �A(t) with three charges whereas in the previous Jacobi
coordinates (4) the interaction term with coupling to the system
center of mass was not included. In the last term in the above
formula we have merged together the interaction of the electron
with the proton which binds the electron. The last term in
Eq. (A6) will be neglected in the matrix element (5) since it
describes the interaction of the bare proton in the case when
we evaluate the term containing ψH (�r1e), and vice versa for
the term with ψH (�r2e). Inserting this new initial state (A5) into
Eq. (5) we get

Ãf i = Ñ2[AH ( �pe + α �p−)ã( �p−) − AH ( �pe − α �p+)ã( �p+)],

(A7)

where

ã( �p) = exp[if̃ ( �p)tc − τ 2f̃ ( �p)/2]ϕN ( �p,R0), (A8)

and

f̃ ( �p) = �p 2
e

2m′
e

+ �p 2
N

2µ
+ Ip − 	probe − �p 2

2µ′′ ,
(A9)

Ñ2 = (2π )2 A0τ

23/2m′′
e c

,

We note that using exact non-Born-Oppenheimer asymptotic
(for large R) states leads to the two following modifica-
tions in the transition amplitude as compared with (18).
First, the atomic transition amplitude does not factorize;
second, the function f ( �p) contains different reduced mass
µ′′. The first modification has a simple interpretation: since
the nuclei move in the opposite direction the relative elec-
tron momentum is different on each center (proton). Since
the atomic amplitude AH is now different at each center

previous Eqs. (21)–(23) will be modified in the following way:

|Ãf i( �pe, �pN,τ,�R,tc)|2
= |AH ( �pe + α �p−)|2|ã( �p−)|2 + |AH ( �pe − α �p+)|2

× |ã( �p+)|2 + C̃(p+,p−,tc) (A10)

where

C̃(p+,p−,tc) = 2|a( �p+)||a( �p−)||AH ( �pe + α �p−)||
×AH ( �pe − α �p+)| cos[�̃(tc,)], (A11)

�̃(tc, �pe, �pN ) = (| �p+| − | �p−|) R0 + ϕH ( �pe + α �p−)

−ϕH ( �pe − α �p+) + �pe · �pN

µ′′ tc, (A12)

where the phase ϕH ( �p) is simply the phase of the atomic
amplitude AH defined in Eq. (16), that is,

AH ( �p) = |AH ( �p)| exp[iϕH ( �p)]. (A13)

We conclude that the Fano interference will be similar when
the non-Born-Oppenheimer correction is included. The only
change in the time-delay dependent part is a replacement of
the reduced mass µ by the mass µ′′. Another change, due to
the shift of the argument in the AH ( �p) function modifies
only the term which does not depend on the time delay tc.
Moreover, the modifications discussed in this section will be
negligible for the cases studied in Sec. III where the values of
the electron and nuclear momenta are pe = 0.72, pN =14.8
a.u., respectively, and α = 1/1836 is indeed small. Thus, we
do not expect that the shifts in a slowly varying function
AH ( �p) will modify significantly the predictions relative to
our “dynamic” Fano interference factor (23) and illustrated in
previous sections in Figs. 3–6.
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(2000).

[24] S. Chelkowski and A. D. Bandrauk, e-print arXiv:1001.3837
[quant-ph] (2010).

062101-9

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/RevModPhys.81.1727
http://dx.doi.org/10.1103/PhysRevLett.99.180404
http://dx.doi.org/10.1103/PhysRevLett.99.180404
http://dx.doi.org/10.1088/0953-4075/39/13/S20
http://dx.doi.org/10.1103/PhysRevA.69.052117
http://dx.doi.org/10.1103/PhysRevA.69.052117
http://dx.doi.org/10.1103/PhysRevA.52.4381
http://dx.doi.org/10.1103/PhysRevLett.101.260503
http://dx.doi.org/10.1103/PhysRevLett.101.260503
http://dx.doi.org/10.1103/PhysRevLett.86.3180
http://dx.doi.org/10.1103/PhysRevLett.99.220404
http://dx.doi.org/10.1103/PhysRevLett.99.220404
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/Physics.2.72
http://dx.doi.org/10.1103/PhysRev.150.30
http://dx.doi.org/10.1088/0953-4075/39/2/L01
http://dx.doi.org/10.1088/0953-4075/39/2/L01
http://dx.doi.org/10.1070/PU2006v049n09ABEH005904
http://dx.doi.org/10.1063/1.1997131
http://dx.doi.org/10.1063/1.1997131
http://dx.doi.org/10.1063/1.1887170
http://dx.doi.org/10.1088/0953-4075/42/13/134001
http://dx.doi.org/10.1103/PhysRevLett.87.273004
http://dx.doi.org/10.1103/PhysRevLett.87.273004
http://dx.doi.org/10.1103/PhysRev.122.1207
http://dx.doi.org/10.1016/S0370-1573(99)00109-X
http://dx.doi.org/10.1016/S0370-1573(99)00109-X
http://arXiv.org/abs/arXiv:1001.3837

