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Signatures of the superfluid-insulator phase transition in laser-driven dissipative
nonlinear cavity arrays
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We analyze the nonequilibrium dynamics of a gas of interacting photons in an array of coupled dissipative
nonlinear cavities when driven by a pulsed external coherent field. Using a mean-field approach, we show that
the response of the system is strongly sensitive to the underlying (equilibrium) quantum phase transition from
a Mott insulator to a superfluid state at commensurate filling. We find that the coherence of the cavity emission
after a quantum quench can be used to determine the phase diagram of an optical many-body system even in the
presence of dissipation.
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Recent theoretical advances in cavity quantum electrody-
namics (QED) have indicated that arrays of coupled nonlinear
cavities may be candidates for exploring quantum many-body
phenomena of light [1]. Initial proposals for realizing a
Mott phase of polaritons [2] have been scrutinized in great
detail [3], and different schemes have been put forward
to simulate a variety of correlated quantum states [4–7].
Given the importance of dissipation in state-of-the-art solid-
state (single) cavity QED devices (see, for example, [8]),
experiments in cavity QED arrays are expected to be performed
under strongly nonequilibrium conditions, with an external
source compensating for the loss of photons (see Fig. 1).
These conditions, dictated by the experimental constraints,
put forward QED arrays as natural candidates for exploring
the rich world of nonequilibrium quantum many-body systems
[10–12], which is the subject of recent interest in the context
of ultracold atoms as well [13,14]. At the same time, new
important questions arise related to whether it is possible to
realize and detect, under realistic nonequilibrium conditions,
the very rich phase diagram [1] predicted for QED arrays at
equilibrium.

In this Rapid Communication, we propose an answer to
this last question, thus providing the missing link between
the initial ideas of cavity arrays as quantum simulators and
future experimental realizations. Specifically, we show how to
detect the superfluid-insulator phase transition for a dissipative
nonlinear cavity array driven by an external pulsed laser.
In analogy to what happens in a quantum quench [15,16],
photons are excited in the cavities by a periodic train of short,
coherent pulses and then evolve according to the complex
many-body dynamics determined by the simultaneous action
of hopping, strong interactions, and losses. The properties of
the secondary emission are measured in the time lapse between
subsequent pulses: even though the losses drive the system
toward the vacuum state, distinct signatures of the quantum
phase transition are found in the statistics of the transient
emitted light. First- and second-order photon correlations

are shown to be powerful tools to detect the existence of
a nonzero order parameter as they are very sensitive to the
delocalization of photons through the array, although more
complete measurement schemes exist [17].

The time evolution of the array in the presence of driving
and losses is described by the master equation

∂tρ(t) = −i[Ĥ,ρ] + L[ρ], (1)

for the density matrix ρ of the system. The first term on the
right-hand side of Eq. (1) accounts for the unitary evolution of
the system, while the second term accounts for the damping.
As discussed in [1], an array of coupled cavities in the absence
of losses can realize an effective Bose-Hubbard model whose
Hamiltonian reads

Ĥ = − J
∑
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â
†
�â�′ + U
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[ε(t) â� + ε(t)∗ â
†
�], (2)

with â�, â
†
� , and n̂� denoting, respectively, the annihilation,

creation, and number operator of the electromagnetic mode
of the �th cavity. The first term of Eq. (2), quantified by
the coupling constant J , describes the hopping of photons
between neighboring cavities (the lattice has a coordination
number z). The second term, quantified by U , represents the
effective nonlinearity arising from the specific light-matter
interaction mechanism. The achievable values of J and U

depend on the specific implementation of the model [1].
The last two terms in Eq. (2) describe the coupling of the
photons in the cavities with a uniform coherent pump in the
rotating frame—here ε(t) is the (slowly varying) envelope
of the external driving field and � is the detuning of
the laser frequency from the bare cavity resonance. The
dominant source of dissipation in the system is the leakage
of photons out of the cavities. In the Markov approximation,
the decay process is described by a Liouvillian in the Lindblad
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FIG. 1. (Color online) Schematic representation of a possible
realization of the proposed system, employing a two-dimensional
array of photonic crystal defect cavities [9]. Photons in the cavities
have a finite lifetime, which requires losses to be compensated
by some external pump, in our case a coherent pulsed laser field.
Nonlinear processes in each cavity lead to an effective Bose-Hubbard
repulsion between the cavity photons [1]. Neighboring cavities are
tunnel coupled to each other by spatial overlap of the cavity mode
profiles.

formL[ρ] = κ
∑

�(2â�ρâ
†
� − n̂�ρ − ρn̂�), where (2κ)−1 is the

photon lifetime.
Solving Eq. (1) is a formidable task, as it describes an

open quantum many-body system out of equilibrium. We
thus resort to a self-consistent cluster mean-field approach,
which should give reliable results if the array is (at least)
two-dimensional. The cluster mean-field (for its equilibrium
version, see, for example, [18]) is based on approximating
the Hamiltonian (2) with that of a cluster of cavities that
interact with the rest of the lattice via a mean-field term, that
is, ĤMF = ∑

�,�′∈�c
Ĥ�,�′ − J

∑
〈�′,�〉,�∈�b,�′ /∈�c

(â†
�ψ�′ + H.c.).

Here, Ĥ�,�′ is the Hamiltonian (2) restricted to the sites
within the cluster (�c). The second term instead is the
mean-field expression for the hopping from the cavities � in
the cluster boundary (�b) to their nearest neighbors �′ outside
the cluster. It is a function of the time-dependent mean-field
order parameter ψ�(t), which, for the �th cavity, is determined
by the self-consistency condition ψ�(t) = Tr[â� ρ(t)]. In the
remainder of the Rapid Communication, we consider only the
two cases in which the cluster consists of one or two sites.
For the numerical integration of the master equation, we use
a fourth-order Runge-Kutta algorithm and truncate the local
Fock basis {|n〉�}nmax

n=0 for the �th cavity, with an upper cutoff
nmax � 20.

In order to simplify the presentation, we first consider an
idealized case in which the laser pulse sets, at t = 0, the cavity
array in a Fock state ρin = ⊗

� |1〉�〈1|� with one photon per
cavity. We discuss the precise shape of the required pulses and
the robustness of the response of the system to imperfections
in the pulse shape further. We first focus on single-site mean
field and analyze the coherence properties of the light emitted
from the cavity array after each pulse. The time-dependence
of the photon population n(t) of each cavity is trivial, and

FIG. 2. Time evolution of the zero-time-delay second-order
correlation function and of the rescaled order parameter (inset),
after a pulse that projects the cavities into a Fock state with one
photon per cavity. The rescaled order parameter ψ̄(t) = |ψ(t)|/√n(t)
compensates for the decay of the photon number in the cavities
and is related to the coherent fraction of the emission (κ = 10−2 U ,
zJ = 3.0 U , � = 0).

the corresponding equation of motion can be integrated,
yielding an exponential decay n(t) = n(0)e−2κt . Much more
interesting are the properties of the order parameter ψ�(t)
and the zero-time-delay second-order correlation function,
g2 = 〈n̂2

� − n̂�〉/〈n̂�〉2, for t > 0, that is, after the laser pulse
is switched off. If J/U < (J/U )c [(J/U )c is the value at
which the transition from the superfluid to the Mott state
occurs], any initial fluctuation in the order parameter does
not grow in time, and the density matrix in photon-number
representation is essentially diagonal throughout the relaxation
process. In the opposite case, J/U > (J/U )c, a superfluid
instability can develop and lead to nonlinear oscillations of
both |ψ(t)| and g2. This kind of instability has been discussed,
in the absence of dissipation, in [15]. Here, we show that the
instability is present also in the presence of losses. It can be
generated by means of pulsed laser and detected by measuring
the properties of the light emitted from the cavities. In contrast,
within our mean-field analysis, continuous shining of coherent
light on the cavities would wash out the effects of the
instability.

For the open system we are considering, a generic example
of the instability induced by the pulsed pump is shown in Fig. 2,
where we show the evolution of g2(t) and (normalized) |ψ(t)|
calculated for t > 0. The dynamics is characterized by three
different regimes. At short times, a linear instability sets in
and both quantities increase exponentially, notwithstanding the
slow decay of the photon population. At intermediate times, the
collective nonlinear dynamics of the array leads to oscillations.
In the long time limit, these oscillations damp out with a time
constant of the order of κ−1 [in this regime, when n(t) � 1, it
can be shown that |ψ(t)| ∼ √

n(t)].
An experimentally measurable observable that yields a clear

signature of the different regimes in the initial transient is the
zero-time-delay second-order correlation function averaged
over a certain interval of time. To calculate such time-averaged
observables, we integrate the equation of motion, Eq. (1), up
to the time 2.0 κ−1 and determine the time-averaged values
〈|ψ(t)|〉t and 〈g2〉t in the time interval 1.0 κ−1 < t < 2.0 κ−1.
Considering time-integrated quantities allows us to relax
the experimental requirements on the time resolution of the
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FIG. 3. Time average of g2(t) (main panel) and integral of |ψ(t)|
(inset), in the time interval 1.0 κ−1 < t < 2.0 κ−1 for different values
of the damping: κ = 2.0 × 10−2 U (empty circles), 1.0 × 10−2 U

(filled circles), and 0.5 × 10−2 U (empty triangles); � = 0. The
vertical dashed line marks the critical value of the Mott-to-superfluid
transition for the equilibrium Bose-Hubbard model [(zJ/U )c ∼
0.17].

measurements, which can hardly exceed κ−1 in realistic
state-of-the-art devices.

In Fig. 3, we show 〈|ψ(t)|〉t and 〈g2〉t as a function of
the ratio J/U , for different values of the dissipation rate.
Both quantities vanish if J/U is smaller than the critical
value, meaning that the order parameter does not develop
any instability, and consequently the light emitted from the
cavities is strongly antibunched. In the opposite case, both
〈|ψ(t)|〉t and 〈g2〉t are different from zero. The time-averaged
g2 as a function of J/U monotonically rises from zero to
almost unity, thus showing a crossover from antibunched to
Poissonian statistics. Integrating the equation of motion for
times larger than 2.0 κ−1 leaves the features depicted in Fig. 3
qualitatively unaltered. We emphasize that the crossover of
both 〈|ψ(t)|〉t and 〈g2〉t takes place in a very narrow range of
J/U values around the transition point of the closed system.
The sensitivity of the light statistics to the coupling between
neighboring cavities is a signature of the many-body origin
of this phenomenon. The second-order correlation is thus an
excellent candidate to detect the different quantum phases in
cavity arrays.

A linear stability analysis, valid for t U,t κ � 1, shows
that the rate of the initial exponential buildup of the order
parameter is reduced by a quantity κ at fixed J/U ; for
large enough κ , the superfluid instability is then entirely
suppressed. As a consequence, the critical ratio (J/U )c

increases by � κ2/(2U 2). Such trend is already visible for
U/κ � 102. We note that this suppression of the superfluid
phase is not a consequence of the coupling to a bath [13].
It is important to note that U/κ � 102 is experimentally
achievable in a solid-state cavity with a line width of
�10 µeV (corresponding to Q � 105 at optical or near-
infrared frequencies) and interaction strength ∼1 meV, which
are within reach in current solid-state cavity QED systems
[19]. In the case of coupled photonic crystal cavities (see
Fig. 1), the range of parameters that one can expect (assuming
U = 0.1 meV) is 0 < J/U < 50 [20]. Alternatively, circuit
QED also provides an ideal experimental realization for the
present proposal [21].

FIG. 4. Time average of g2(t), for κ = 10−2 U . The population ρ0

of the vacuum in the initial state is ρ0 = 0.02 for the filled symbols
and ρ0 = 0.2 for the empty symbols [zJ/U = 0.1 (triangles) and
zJ/U = 1.0 (circles), below and above the critical value; � = 0].

All the results presented here are robust even when some
of the assumptions made so far are relaxed. In the vicinity
of the critical point, the order parameter evolves on time
scales which are much longer than the cavity parameters
[15]. In contrast, the correlation function might show a
more complex short-distance evolution, which could invalidate
the analysis presented previously. In order to check this
possibility, we carried out the same analysis in the two-site
mean-field approximation, where both the dynamics of the
order parameter and the short time-scale dynamics governed
by J and U are present. All the results shown so far are
fully confirmed. In addition, we checked that the uniform
solution for the order parameter is stable against possible
spatial inhomogeneities of the initial state.

We also checked that our findings do not depend on the exact
form of the state after the pulsed excitation. We considered
an initial state that is not necessarily pure but that entirely
projects the system onto the subspace spanned only by the
two Fock states |0〉� and |1〉�. We considered depletion of
the average filling up to 20% and scanned the whole range
of initial coherences. For all the possible initial states, 〈g2〉t
in the superfluid regime was always markedly different (at
least three orders of magnitude) from the insulating one, as
shown in Fig. 4. This insensitivity to the initial conditions in
the superfluid regime is due to the nonlinearity of the time
evolution for times shorter than the photon lifetime. In fact,
in the insulating regime, the initial correlations are suppressed
due to the photon blockade, while in the superfluid region, even
the absence of any initial correlation is quickly compensated
by the cooperative action of the photons. We remark that while
〈g2〉t predicts strongly antibunched cavity emission in the
insulating regime for all considered variations in the initial
states, the actual degree of antibunching does depend on the
initial state coherence; at present, we do not understand this
feature.

We now discuss pulse shapes that project the coupled
cavity array into a desired initial state (such as ρin, discussed
previously). A π pulse applied to an isolated cavity drives
the vacuum state into the desired initial state, provided that
the duration of the pulse is shorter than the photon lifetime
κ−1. To design a suitable pulse shape for the whole array,
we resorted to a rapidly converging quantum optimal-control
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FIG. 5. Optimized pulse envelopes for the preparation of a Fock
state with one photon per cavity, with a fidelityF � 99%. The dashed
line is the pulse ε(0)(t) for J = 0. The solid line is the pulse ε(1)(t),
detuned by � = 43.25 κ , with zJ/U = 0.5. The duration Tp = 0.1/κ

of the pulse is much shorter than the photon lifetime (κ = 10−2 U in
the plot).

algorithm [22]: first, we found an optimized envelope ε(0)(t)
(see Fig. 5, dashed line) for a single cavity (J = 0). As dissi-
pation does not play a substantial role during the application of
the pulse in the time interval −Tp < t < 0, we use an algorithm
of quantum optimal control for pure states, obtaining a fidelity
F � 99% with respect to the desired state ρin. In the case

of an array of coupled cavities, J � 0 substantially modifies
the response of the system to the pumping field, and it is
necessary to devise a different shape ε(1)(t) of the pulse for
each value of the hopping amplitude (see Fig. 5, solid line).
It is nevertheless possible to prepare the initial state with high
fidelity (99% in Fig. 5) in a substantial range of values up to
zJ <∼ U .

In conclusion, we have shown that the coherence properties
of the secondary cavity emission, induced by a pulsed
excitation, provide signatures of the collective many-body
phase of the array of nonlinear cavities. Our analysis fully
takes into account the intrinsically driven dissipative nature
of the strongly correlated quantum many-body system and
identifies how dissipation influences the underlying equilib-
rium quantum phase transition that this system exhibits in the
absence of losses. Coupled cavities are promising candidates
to simulate open quantum many-body systems, and a study of
their nonequilibrium behavior will certainly unveil a variety
of new phenomena.
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