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Enhanced ionization of the H2 molecule driven by intense ultrashort laser pulses
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We report correlated two-electron ab initio calculations for the hydrogen molecule H2 in interaction with
intense ultrashort laser pulses, via a solution of the full three-dimensional time-dependent Schrödinger equation.
Our results for ionization and excitation probabilities (at 800 and 400 nm) as a function of internuclear distance
R show strong evidence of enhanced ionization, in both single and double ionization, as well as enhanced
excitation, in single and double excitation, as the internuclear distance R increases from the equilibrium value
Re. The enhancement of all these molecular processes exhibits a maximum at a critical distance Rc, which can
be predicted from simple electrostatic and recollision models.
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As the internuclear distance of molecular systems driven
by intense laser fields increases beyond the equilibrium inter-
nuclear distance Re, the ionization rate increases significantly,
reaching a peak at some critical internuclear separation Rc; it
then decreases to atomic ionization rates for R values beyond
Rc in symmetric molecules. This phenomenon, known as
charge-resonance-enhanced ionization (CREI) for symmetric
molecules, has been predicted by theoretical studies [1,2]
and confirmed by various experiments [3]. The theoretical
investigation of CREI for symmetric molecular systems
driven by intense laser pulses [1,2] has been extended to
nonsymmetric [4] molecules with only one active electron
and is generally known as enhanced ionization (EI). The first
papers [1,2] arrived at a theoretical expression for the CREI
critical distance Rc for one electron which has been generalized
to one-dimensional (1D) models of symmetric two-electron
systems such as H2 [5,6], H3

+ [7] and H4
2+ [5]. Three-

dimensional Born-Oppenheimer simulations for H2 [8,9] have
addressed the question of electron correlation in ionization,
and experiment has confirmed recollision dynamics in D2 and
H2 [10]. Recently, a 2D two-electron model has confirmed the
importance of electron correlation in high-order harmonic gen-
eration [11]. A previous 1D comparison of single and double
ionization in H2 as a function of R supported recollision [12]
as an important mechanism [13]. The role of intermediate
ionic states H+H− [14] as precursors to EI was emphasized
in [5,7,8,15].

In this work, we solve the full-dimensional time-dependent
Schrödinger equation (TDSE) for the H2 molecule with two
active electrons driven by an intense laser pulse. Spheroidal co-
ordinates are used with electron-electron correlations included,
and the TDSE is expanded in a basis of Laguerre and Legendre
polynomials as for H2

+ [4]. Results for the H2 molecule show
that processes leading to the breakup of the molecule, that is,
single and double ionization and single and double excitation,
are all strongly enhanced as the internuclear distance increases.
We find that all these processes are maximum at nearly the
same critical internuclear distance Rc and then they decrease
for internuclear distances larger than Rc. A simple theoretical
expression is derived for Rc in a similar formalism as for
1D models [5,7] and the 3D formalism [8]. The TDSE for a

two-electron diatomic molecular system with fixed nuclei is

i
∂

∂t
�(r1,r2,t) = [H + D(t)]�(r1,r2,t), (1)

where �(r1,r2,t) is the electronic wave function,
H = Ke + VN + Uc is the field-free electronic Hamil-
tonian, Ke = p2

1/2 + p2
2/2 is the kinetic energy of

the two electrons, and pj = −i∇j is the momen-
tum of electron j . VN = −Za(1/r1a + 1/r2a) − Zb(1/r1b +
1/r2b) is the Coulomb attraction between the nuclei
a and b and the two electrons, where rja = |rj + R/2|
(rjb = |rj − R/2|) denotes the distance between the nucleus
a (nucleus b) and electron j (j = 1,2). R is the internuclear
vector and Za and Zb are the nuclear charges. rj is the electron
coordinate relative to the geometric center of the molecule.
Uc = 1/r12 is the electron-electron repulsion potential, where
r12 = |r1 − r2| denotes the electron-electron distance. D(t) is
the Hamiltonian for the interaction of the molecule with the
laser, which is given by D(t) = E(t) · (r1 + r2) in the length
gauge and by D(t) = A(t) · (p1 + p2) in the velocity gauge.
However except in Figs. 1(a) and 2(a), only the velocity gauge
is used in this work because of its rapid convergence [4]. The
vector potential of the laser field is A(t) = A0f (t) sin(ω0t)ez,
where A0 is the maximum amplitude, f (t) is the cosine square
pulse envelope, ω0 is the laser frequency, and ez is the unit
vector along the laser polarization axis z, which is assumed
to be parallel to the internuclear axis. The electric field of the
laser pulse is determined from A(t) as E(t) = −(∂/∂t)A(t),
so the total field area is zero. Atomic units (a.u.) are used
throughout this work.

In order to solve the TDSE (1), we use prolate spheroidal
coordinates [4] (ξ ,η,φ), where ξ = (r1 + r2)/R, η = (r1 −
r2)/R, and φ is the azimuthal angle. The time-dependent wave
function is expanded in a basis as

�(r1,r2,t) =
ν1,ν2∑

m,µ1,µ2

ψν1,ν2
m,µ1,µ2

(t) [1 + εφεpP12]

×Um
ν1

(ξ1) V m
µ1

(η1) Um
ν2

(ξ2) V m
µ2

(η2)

× (−1)m
eim(φ1−φ2) + εφe−im(φ1−φ2)

2π
, (2)
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where ψν1,ν2
m,µ1,µ2

(t) are time-dependent coefficients. [1 +
εφεpP12] is an antisymmetrization operator that projects onto
singlet states in accordance with the Pauli exclusion principle
(εp = +1 for singlet states and εφ = +1 for �+ states).
P12 is an operator that exchanges the parameters (µ1,ν1)
and (µ2,ν2) in order to ensure the indistinguishability of the
two electrons. Equation (2) accounts for the fact that we
are only dealing with � states, for which the projection of
the total angular momentum M of the electron along the z
axis is zero. Um

ν (ξ ) and V m
µ (η) are basis functions expressed

in terms of Laguerre L
2|m|
ν−|m| and Legendre polynomials

P m
µ (η) [4] as Um

ν (ξ ) = Nm
ν e−α(ξ−1)(ξ 2 − 1)|m|/2L

2|m|
ν−|m|[2α(ξ −

1)] and V m
µ (η) = Mm

µ P m
µ (η). The basis indices take the

values m = 0, ± 1, ± 2, . . .; µ = |m|,|m| + 1,|m| + 2,|m| +
µmax, and ν = |m|,|m| + 1,|m| + 2,|m| + νmax. The electron-
electron correlation is included in our calculation by means of
the Neumann expansion:

1

r12
= 4

R

∞∑

l=0

+l∑

n=−l

Sn
l P

|n|
l (ξ<)Q|n|

l (ξ>)

×P
|n|
l (η1)P |n|

l (η2) ein(φ1−φ2), (3)

where Sn
l = (−1)n[(2l + 1)/2][(l − |n|)!/(l + |n|)!], and ξ<

and ξ> are the lesser and the greater values of ξ1 and ξ2,
respectively. P n

l and Qn
l are associated Legendre functions

of the first and second kind, respectively [4]. Projection
of the stationary Schrödinger equation H� = E� and the
TDSE onto the basis (2) leads, respectively, to the field-free
eigenvalue equation H� = ES� and to the system of first-
order differential equations

i
∂

∂t
S�(t) = [H + g(t)D]�(t), (4)

where � is the vector representation of the wave function, and
g(t) = −iA(t) in the velocity gauge and g(t) = E(t) in the
length gauge. S, H, and D are the overlap, exact Hamiltonian,
and dipole matrix, respectively. The field-free solution of
the eigenvalue equation H� = ES� yields eigenvalues and
eigenfunctions of H2 for each R; in particular, the initial
state wave function for time propagation of the TDSE. As
discussed before [4], we further project the TDSE (4) onto
the eigenstate representation, where it becomes i(∂/∂t)�(t) =
[h + g(t)W]�(t). In this equation h is a diagonal matrix
containing eigenvalues of the field-free molecular Hamiltonian
H, and W is the dipole matrix in the eigenstate basis.
In this representation, the wave function �(T ) at the end
of the laser pulse (at time t = T ) is a superposition of
probability amplitudes for finding the system in eigenstates
of the field-free Hamiltonian, that is, �(T ) = ∑

i Ci(T )�i ,
where 
i is the electronic eigenstate of energy Ei and Ci(T )
is its probability amplitude. Single- (PSI) and double- (PDI)
ionization probabilities are obtained by projecting the final
two-electron wave function �(r1,r2,t) as follows [13,16,17]:

PSI =
∑

m1,E1

∑

m2,E2

∣∣〈ϕm1,m2
E1,E2

(r1,r2)|�(r1,r2,T )〉∣∣2
, (5)

PDI =
∑

m1,E1

∑

m2,E2

∣∣〈ϕm1,m2
E1,E2

(r1,r2)|�(r1,r2,T )〉∣∣2
, (6)

where

ϕ
m1,m2
E1,E2

(r1,r2) = N
[
ϕ

m1
E1

(r1)ϕm2
E2

(r2) + εpϕ
m1
E1

(r2)ϕm2
E2

(r1)
]

(7)

is an antisymmetrized product of a bound [ϕm1
E1

(r1)] and a
continuum orbital [ϕm2

E2
(r2)] of H2

+, where m1 and m2 are
their angular momentum projections and E1 and E2 are their
energies. Similarly,

ϕ
m1,m2
E1,E2

(r1,r2) = N
[
ϕ

m1
E1

(r1)ϕm2
E2

(r2) + εpϕ
m1
E1

(r2)ϕm2
E2

(r1)
]

(8)

is an antisymmetrized products of two orbitals of H2
+ in which

both electrons are in the continuum. The wave function (7)
describes a two-electron state where one electron is still bound
and the other is in a continuum state, whereas Eq. (8) represents
a state in which both electrons are in a continuum. Therefore
the single-ionization probability in Eq. (5) is obtained as
a sum of probability amplitudes for all combinations in
which one electron is in a bound state and the other is in
a continuum, and similarly for double ionization in Eq. (6)
as a sum over all configurations where both electrons are in
a continuum. Given that Eqs. (7) and (8) are uncorrelated,
obtaining single and double ionization in this way amounts to
neglecting correlation in the final state. The above projection
method for the extraction of single and double ionization yields
satisfactory and practical results [16–18].

In order to assess further information on the breakup of
the molecule, we also compute the following quantities from
the total two-electron wave function �(r1,r2,t), Eq. (2), at the
end of the laser pulse: The total ionization probability PTI is
defined as the probability of finding the molecule in eigenstates
of H2 with energies larger than the single-ionization threshold
Ip, the sum of probabilities for single and double ionization
and double excitation, and the total excitation probability PTE

is the sum of probability amplitudes for finding the electron in
excited states below the double-ionization state, that is,

PTI = 1 −
∑

Ei<Ip

|Ci(T )|2,
(9)

PTE =
∑

Ei<0

|Ci(T )|2 − |C1(T )|2.

|Ci(T )|2 is the probability of finding the system at the end
of the laser pulse in the electronic eigenstate of energy Ei .
The single-excitation probability PSE, which is the sum of
probability amplitudes for finding the electron in excited states
below the single-ionization state, becomes then

PSE =
∑

Ei<Ip

|Ci(T )|2 − |C1(T )|2,
(10)

PDE = PTI − PSI − PDI,

and the double-excitation probability is defined as PDE.
Our results are summarized in Figs. 1 and 2 for ω =
0.114 and 0.057 a.u. for various laser peak intensities.
The convergence of results is assessed by increasing the
basis size until the results become relatively unchanged
with further increase of the basis size. The results obtained
from both length and velocity gauges agree [Figs. 1(a)
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FIG. 1. (Color online) Total (PTI), single- (PSI), and double- (PDI)
ionization probabilities of H2 by a four-cycle laser pulse for two
different frequencies and intensities (V, velocity gauge, and L, length
gauge): (a) I = 1014 W/cm2, ω = 0.057 a.u. (b) I = 1014 W/cm2,
ω = 0.114 a.u. (c) I = 5 × 1013 W/cm2, ω = 0.057 a.u.

and 2(a)] and this confirms the accuracy of our numerical
procedure.

We use laser pulses of intensities 1013 � I � 1014 W/cm2

with a total pulse duration of four cycles. We have also
performed the calculation for six cycles and found that both
ionization and excitation maxima are independent of the pulse
duration. The total PTI, single- PSI, and double-ionization
PDI probabilities of H2 versus the internuclear distance R are
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FIG. 2. (Color online) Total (PTE), single- (PSE), and double-
(PDE) excitation probabilities of H2 by a four-cycle laser pulse for two
different frequencies and intensities (V, velocity gauge, and L, length
gauge): (a) I = 1014 W/cm2, ω = 0.057 a.u. (b) I = 1014 W/cm2,
ω = 0.114 a.u. (c) I = 5 × 1013 W/cm2, ω = 0.057 a.u.

plotted in Figs. 1(a) and 1(b), respectively, for the frequencies
ω = 0.057 and 0.114 a.u. with the laser peak intensity I =
1014 W/cm2. In both cases the total, single-, and double-
ionization probabilities increase as we go to larger internuclear
distances, and at some critical point Rc � 4.5–5 a.u. a maxi-
mum is reached (at ω = 0.057 a.u., Rc = 6 a.u. for double ion-
ization); the probabilities then decrease at larger internuclear
distances. The EI behavior and critical internuclear distance
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Rc for lower laser intensity I = 5 × 1013 W/cm2 and ω =
0.057 a.u. [Fig. 1(c)] is almost the same as for I = 1014 W/cm2

in Fig. 1(a). The excitation probabilities in Fig. 2 show features
similar to those of the ionization probabilities in Figs. 1(a)–
1(c): at higher intensity I = 1014 W/cm2, total and single exci-
tation are enhanced at the same critical distance (Rc = 4.5 a.u.)
as total and single ionization for both frequencies ω = 0.057
a.u. and 0.114 a.u., but double-excitation probabilities are en-
hanced at R = 5 a.u. At lower intensity I = 5 × 1013 W/cm2,
ω = 0.057 a.u., total, single, and double excitations are
enhanced at Rc � 5 a.u., with a shoulder at R = 7 a.u. for
the single excitation. The most intriguing aspect of the results
in Figs. 1 and 2 is the parallel behavior as a function of R of
all ionization and excitation process probabilities: a common
maximum at a critical distance Rc and parallel probability dis-
tributions around Rc for two different intensities and frequen-
cies. The value of Rc � 5 a.u. for EI for the single-ionization
probability PSI (5) can be estimated from an electrostatic model
based on the creation of the precursor ionic state H+H− [5,7,8,
15] at the laser peak intensities. The energy difference �E be-
tween this ionic state H+H− and the covalent (neutral) ground
state in a field strength ε is �E = E(HH) − E(H+H−) =
�Ip − 1/R − εR, where �Ip = Ip(H) − Ip(H−) � 0.47 a.u.,
the ionization potential energy difference. −1/R is the

Coulomb attraction between H+ and H− and εR is the
electrostatic potential energy of H− in the field ε at distance
R. Charge transfer from the covalent (neutral) HH state to the
ionic state H+H− and its subsequent ionization will occur at
�E = 0. Thus at intensity I = 1014 W/cm2, ε = 0.053 a.u.,
one obtains readily from the above equation Rc = 5 a.u., in
good agreement with Figs. 1 and 2. The second-ionization
probability PDI should reach its maximum at Rc � 4/Ip(H) �
7–8 a.u. as in H2

+ [1]. Figures 1 and 2 show that PDI has the
same Rc as the single ionization PSI from H+H−. This can be
explained by the recollision model, where second ionization
occurs following recollision of the first ionized electron with
the parent ion in atoms [12] and molecules [13]. Thus, since the
first ionization PSI occurs at Rc � 5 a.u., the second ionization
PDI and excitations PSE and PDE and possibly shakeup
processes [19] are induced by this first process, so all occur at
the same Rc, a signature of recollision dynamics. Only �+

g and
�+

u doubly excited states can be populated with linear parallel
polarization. Such states are generally coupled by radiative
transition moments, which diverge as R/

√
2 [1]. Increasing

intensities and internuclear distance will therefore increase the
population of such states, as shown in Fig. 2. Such doubly ex-
cited states have been studied in [20] and could be a mechanism
for the unusual crossing of populations calculated in Fig. 2.
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