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Contributions to the energy levels in light muonic atoms and, in particular, to the Lamb shift fall into a few
well-distinguished classes. The related diagrams are calculated using different approaches. In particular, there is
a specific type of nonrelativistic (NR) contribution. Here, we consider such corrections to the Lamb shift of order
α5mµ. These contributions are due to free vacuum-polarization loops as well as to various effects of light-by-light
scattering. The closed loop in the related diagrams is an electronic one, which allows an NR consideration of the
muon. Both types of contributions have been known for some time, however, the results obtained to date are only
partial results. We complete a calculation of the α5mµ contributions for muonic hydrogen. The results are also
adjusted for muonic deuterium atom and helium ion.
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The recent progress of the Paul Scherrer Institut (PSI)
experiment by Pohl et al. concerning the Lamb shift in muonic
hydrogen [1] has attracted interest in the theory of the Lamb
shift in light muonic atoms. Their study can provide us with
information on certain nuclear structure effects with accuracy
that is not available in any other experiment.

To obtain such data, one has to be able to separate
quantum electrodynamics (QED) effects from the nuclear
structure effects, and, for this purpose, an adequate QED
theory providing high accuracy is required. Contributions to
the energy levels in light muonic atoms and, in particular,
to the Lamb shift fall into a few different well-distinguished
classes. A specific theory stands behind each of them. There are
corrections, the evaluation of which is identical for hydrogen
and muonic hydrogen, and corrections that are specific for
muonic atoms. The latter involve a certain part of QED, recoil
effects, and effects of the finite nuclear size. An important class
of such specific contributions, which, in fact, also include the
dominant term for the Lamb shift, is due to nonrelativistic
(NR) physics.

Note that atomic momenta in light muonic atoms
∼Zαmµ � 1.5Zme are compatible with the electron mass,
while the atomic energy ∼(Zα)2mµ � 0.01Z2me is much
smaller than the electron mass. (The relativistic units in
which h̄ = c = 1 are applied throughout the paper.) Such
an environment produces an important sector of corrections,
which deal with an NR bound muon, while the QED effects
are present only through the closed electron loops. Meanwhile,
the Compton wavelength of electron λ−re = 1/me determines
the radius of the effective interaction induced by this type
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of diagram. The loops may be for either free-loop vacuum-
polarization (VP) effects, related to the Uehling and Källen-
Sabry potentials and higher-order diagrams, or light-by-light
(LbL) scattering contributions.

The VP leading term is of order α(Zα)2mµ, and it has been
known for some time, while the second-order VP contribution
[of order α2(Zα)2mµ] was relatively recently calculated with
appropriate accuracy for muonic hydrogen in Ref. [2]. The
accuracy of current and planned experiments requires a
complete theory for the NR contributions to the Lamb shift
of order α5mµ. The LbL contributions are depicted in Fig. 1,
while the VP diagrams are presented in Fig. 2. Both types
of contributions have been known for some time; however,
the results obtained up to now were only partial results. In
particular, in the case of muonic hydrogen, the contribution in
Fig. 1(c) has not yet been calculated, while there are also some
questions [3] about the applicability of the so-called scattering
approximation applied in Ref. [4] to evaluate the contribution
in Fig. 1(b).

Certain LbL contributions have specific names. The first one
in Fig. 1 is a so-called Wichmann-Kroll contribution, and it
was calculated for muonic hydrogen with sufficient accuracy in
Ref. [5]. It was also reproduced in Ref. [4]; we also confirm this
contribution. For muonic deuterium and muonic helium-4 ion,
the results have been obtained in Refs. [6,7], and we confirm
the deuterium result [6] and obtain a result for a muonic helium
ion,

�EHe
1a = −0.0198(4) meV, (1)

which is consistent with −0.02 meV from Ref. [7], but is
more accurate, and strongly disagrees with +0.135 meV from
Ref. [8].
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FIG. 1. Characteristic diagrams for three basic contributions of
LbL scattering effects to the Lamb shift in muonic hydrogen of
order α5mµ. Here, N stands for a nucleus, which may be a proton, a
deuteron, etc. The horizontal double line is for the muon propagator
in the Coulomb field.

In our calculation, we used approximations for the
Wichmann-Kroll potential in the form

VWK(r) = α(Zα)2

π

Zα

r
× 0.361 662 331

× exp
[
0.372 8079x

−
√

4.416 798x2 + 11.399 11x + 2.906 096
]
,

as discussed in Ref. [3] (see also Ref. [9]) and

VWK(r) = (Zα)310−4

r

{ 1.528−0.489x
1.374x3+1.41x2+2.672x+1 , x � 1,

0.207x2+0.367x−0.413
x6 , x > 1,

as considered in Refs. [2,10]. Here, x = mer . The results are
consistent. Indeed, if higher accuracy is required, one can apply
an exact expression [11] for VWK(r) as a two-dimensional
integral.

The second term [Fig. 1(b)] is called the virtual-Delbrück-
scattering contribution. It has been calculated for muonic hy-
drogen in Ref. [4]. The calculation was based on Refs. [10,12],
where, at first, a scattering approximation was applied, and,
subsequently, a number of further approximations was made.
Note that the scattering approximation suggests that the
external muon legs in the diagram in Fig. 1(b) are on-shell
(i.e., p2 = m2

µ), and the muon propagator there is substituted
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FIG. 2. Characteristic diagrams for free-electron-VP contribu-
tions to the Lamb shift in muonic hydrogen of order α5mµ.

for a free one (i.e., the kinematics is exactly the same if one
calculates a related Born scattering amplitude). Since atomic
momenta Zαmµ in light muonic atoms are compatible with
the electron mass me, the validity of such an approximation is
questionable (see, e.g., the discussion in Ref. [3]).

We, however, have proved that the scattering approximation
is applicable within the uncertainty of order (Zα)2mµ/me (in
fractional units), which is at the level of about 1% in muonic
hydrogen and deuterium and of about 4% in muonic helium.
That is also correct for other simplifying approximations,
which were made in the calculations for this contribution
in light muonic atoms [4,6,7,10,12]. A general idea of our
evaluation is presented in the Appendix, while the details of
our evaluation are to be published elsewhere [13].

Eventually, we conclude that the uncertainty of the method
applied in Refs. [4,6,7] is substantially smaller than the
uncertainty of the related numerical evaluations for the Lamb-
shift correction in muonic hydrogen [4], muonic deuterium [6],
and muonic helium-4 ion [7].

The contribution in Fig. 1(c) has no specific name. Since
all other LbL contributions have one (Wichmann-Kroll term
and virtual-Delbrück-scattering contribution), sometimes it is
referred to as an light-by-light contribution, which can be
somewhat confusing.

This contribution has remained uncalculated for some time.
By studying the applicability of the scattering approximation
for the diagram in Fig. 1(b), we have also managed to prove
[13] that this remaining contribution can be expressed in terms
of the well-known Wichmann-Kroll term,

�E1c = 1

Z2
�E1a. (2)

The uncertainty of this identity is of order (Zα)2mµ/me (in
fractional units), which is at the level of about 1% in muonic
hydrogen and deuterium and of about 4% in muonic helium.

By combining our results concerning the uncertainty of
various approximations with the numerical results of other
authors, we obtain the complete result for all LbL contri-
butions of Fig. 1. The result is listed in the summary table
(Table I). With Eq. (2) proved and a possibility to obtain
a result for the Wichmann-Kroll (�E1a) term with high
accuracy for any light muonic atom, the uncertainty in the

TABLE I. The NR QED contributions to the Lamb shift �E(2s −
2p) in light muonic atoms: hydrogen (H), deuterium (D), helium-4
ion (He), which include VP contributions of the first [α(Zα)2mµ], the
second [α2(Zα)2mµ], and the third [α3(Zα)2mµ] (Fig. 2) order as well
as a complete LbL contribution. The latter is a sum of contributions of
order α(Zα)4mµ [Fig. 1(a)], α2(Zα)3mµ [Fig. 1(b)], and α3(Zα)2mµ

[Fig. 1(c)]. Results marked with a � were obtained in this work.

�EH(2p − 2s) �ED(2p − 2s) �EHe(2p − 2s)
Term (meV) (meV) (meV)

First-order VP 205.007 36 227.634 67 1665.7729
Second-order VP 1.658 85 1.838 04 13.2769
Third-order VP 0.007 52 0.008 42(7)∗ 0.074(3)∗

LbL (Fig. 1) −0.000 71(15)∗ −0.000 73(16)∗ −0.005(10)∗

NR total 206.673 02(15) 229.480 40(17) 1679.119(10)
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calculation of the complete LbL contribution now comes from
the virtual-Delbrück-scattering term, which should determine
the eventual uncertainty of the NR α5mµ term for muonic
hydrogen, deuterium, and helium ion.

Another major NR contribution of order α5mµ is due to
VP contributions. The VP terms of this order were studied
for muonic hydrogen in Ref. [14]. The diagrams are depicted
in Fig. 2, which includes contributions of the first [Fig. 2(a)–
2(d)], the second [Fig. 2(e) and 2(d)], and the third [Fig. 2(f)]
order of NR perturbation theory (NRPT).

The most complicated terms are indeed related to the first
line of Fig. 2; however, these diagrams were crosschecked due
to their contributions to the anomalous magnetic moment of a
muon [15,16], and we can rely on them.

The contributions of the second line of Fig. 2 are specific
for muonic atoms and do not correlate directly with any
calculation for the muon g − 2. Those, as well as part of the
diagrams in the first line, have been recalculated completely
independent from the results in Ref. [14].

We confirm the second-order terms of NRPT, while our
result [17] for the third-order term (the last diagram in Fig. 2)
disagrees with the one originally published in Ref. [14]. After
a correction [18], their result agrees with ours. In our cal-
culations, we used techniques developed while investigating
second-order VP contributions to the hyperfine structure of
muonic hydrogen [19].

The diagrams in Fig. 2 were also discussed in various papers
in the context of the Lamb shift in muonic deuterium [6]
and muonic helium-4 ion [8]. For this purpose, a part of the
contributions was recalculated there.

Here, we reevaluate all the VP contributions, and the results
are listed in Table I. When we compare these with the results
of the paper previously mentioned, we have to acknowledge
that our results are not in complete agreement with theirs.

In Ref. [6], only contributions of Figs. 2(a) and 2(b) were
directly calculated for muonic deuterium, and their results
agree with ours. However, those results were not applied there,
but instead, the muonic hydrogen result was rescaled. That was
achieved by assuming that the result for muonic hydrogen,
presented in Ref. [14] in the form of

�E(2p − 2s) = C3

(α

π

)3
(Zα)2mr, (3)

where mr is the muon reduced mass, can be directly applied
for the result of muonic deuterium. That has not been claimed
in Ref. [14] and is indeed incorrect, and the value of the
coefficient [17,18],

C3 = 0.118 680(12), (4)

is valid only for muonic hydrogen [cf. with C3 =
0.120 045(12) from Ref. [14], which needs a correction [17]
as explained previously]. The related values for other light
muonic atoms obtained here,

C3 =
{

0.1262(11) for µD,

0.270(17) for µHe+,
(5)

obviously differ from Eq. (4).
The muonic helium-4 paper [8] lacks a complete result,

and only a part of the diagrams of Fig. 2 were recalculated.
Our results are not in fair agreement, and, in particular, we

strongly disagree with the contribution of Fig. 2(e) for muonic
helium. In the Wichmann-Kroll contribution [Fig. 1(a)], we
also strongly disagree with the result in Ref. [8], while we
agree with the result in Ref. [7], for which we obtain higher
accuracy [see Eq. (1)].

Finally, in Table I, we summarize a complete theory of
NR QED contributions to the Lamb shift in muonic hydrogen,
deuterium, and helium ions up to the order α5mµ (see Ref. [3]
for references to the calculation of the low-order corrections).

Note added. Recently, we have calculated the LbL contri-
bution within a static-muon approximation (see the Appendix).
The preliminary results for �E1b, which are 0.001 15(1) meV
for µH, 0.001 24(1) meV for µD, and 0.0114(4) meV for
µHe+, are somewhat below the former results [4,6,7], but still
are in fair agreement with them. These more accurate results
will be reported in detail in a future publication [13].
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APPENDIX: ON APPROXIMATIONS FOR
THE LbL CONTRIBUTION

We have proven a type of theorem [13] that the diagrams in
Fig. 1 can be calculated in light muonic atoms (for simplicity,
we consider further muonic hydrogen) within the static-muon
approximation, in which the complete muon-line factor shrinks
to

F(q) =
∫

d3p

(2π )3
�∗(p)�(p + q),

where q is the total momentum transfer to the muon line, � is
the wave function, and the error is of the order of (Zα)2mµ/me.

The scattering approximation [4,6] agrees with the static-
muon approximation within the same uncertainty.

The proof of the theorem will be presented elsewhere [13],
and, here, we will explain its main idea. The proton and
the muon are both NR particles. Their descriptions are very
similar.

→

µ

N

→

µ

N

FIG. 3. Reduction of diagrams with free or bound fermion
propagators to static-fermion diagrams [i.e., to the static-proton
approximation (which is more commonly refered to as the external-
field approximation)] (left) and to the static-muon approximation
(right).
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Let us first compare the related diagrams with free NR
fermion propagators (cf. Fig. 3). The expressions for the muon
and proton lines are identical. Apparently, one can approximate
the proton line within the external-field approach or, which is
similar, by a static proton. To transform the complete NR
expressions to the static-proton case, we have to neglect the
proton kinetic energy in the proton propagators. Once that
is done, after a chain of identities, we should arrive at the
external-field approximation.

A reason to neglect the energy is the fact that a characteristic
energy, related to a particle of the mass M , is EM ∼ γ 2/M ,
where γ = Zαmµ is a characteristic atomic momentum. One
can prove that we can expand using small parameters EM/me

and EM/γ . However, in muonic hydrogen, they are of the same
order since γ ∼ me. The parameter EM/me (and the related
error) differs indeed for a muon and a proton, but it is small
for both.

Thus, as long as the muon propagator is a free one, there
is no difference in proving that we can apply the static-
muon approximation and the static-proton approximation (see
Fig. 3).

Meanwhile, in reality, the situation for a muon and a proton
is somewhat different. The muon characteristic momentum is
of the same order as the electron mass γ ∼ me, and we should
treat it as a bound one.

The NR Coulomb Green function of a muon includes

GC(E,p,p′) = i
∑

λ

|λ(p)〉〈λ(p′)|
E − Eλ + i0

,

a summation over all intermediate states λ of a continuous and
discrete spectrum, involving energy of the intermediates. The
characteristic energy of an intermediate state is indeed of an
order of magnitude of the atomic bound energy Eλ ∼ γ 2/mµ,
and we can neglect it, as we already did in the case of the free
propagators. After that, the sum over intermediates shrinks
to the unity operator, and the Coulomb propagator becomes
equal to a free one with the kinetic-energy term p2/2mµ

neglected

i
∑

λ

|λ〉〈λ|
E − Eλ + i0

→ i
∑

λ

|λ〉〈λ|
E + i0

= i

E + i0
.
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