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Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation
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We study how entanglement among the register qubits affects the gate fidelity in the one-way quantum
computation if a measurement is inaccurate. We derive an inequality that shows that the mean gate fidelity is
upper bounded by a decreasing function of the magnitude of the error of the measurement and the amount of the
entanglement between the measured qubit and other register qubits. The consequence of this inequality is that,
for a given amount of entanglement, which is theoretically calculated once the algorithm is fixed, we can estimate
from this inequality how small the magnitude of the error should be in order not to make the gate fidelity below
a threshold, which is specified by a technical requirement in a particular experimental setup or by the threshold
theorem of the fault-tolerant quantum computation.
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I. INTRODUCTION

The one-way quantum computation [1] is a novel scheme
of quantum computation often contrasted with the traditional
circuit model of quantum computation [2]. It is believed to
be one of the most promising approaches to the realization of
scalable quantum computers, and indeed, small-size cluster
states have already been created in laboratories [3]. Some
important quantum algorithms, such as the Deutsch algorithm
[4] and the Grover search algorithm [5], have also been
demonstrated experimentally.

One great advantage of the one-way quantum computation
over the circuit model is that the preparation of the resource
(entanglement) and the consumption of it are clearly separated
with each other. This fact has prompted many researchers
to explore lower bounds or upper bounds for the proper
amount of resource entanglement for the one-way quantum
computation [6–9]. For example, it was shown [6] that a
certain amount of entanglement is necessary for any universal
resource state for the one-way quantum computation. On the
other hand, it was shown [7,8] that a state that has too much
entanglement is useless for the one-way quantum computation.
These important results and further research based on them will
ultimately enable us to pin down the exact amount of resource
entanglement, which is neither too small nor too large for the
one-way quantum computation.

If the proper amount of resource entanglement for the
one-way quantum computation is determined, the next goal
is to clarify how such proper entanglement affects the gate
fidelity of the one-way quantum computation. Because a
highly entangled state is often fragile [10–13], we cannot
make the most of the power of entanglement if the one-way
quantum computation itself is unstable. Of course, a one-way
quantum computer is, like the circuit model of a quantum
computer, finally stabilized to some extent by embedding a
quantum error-correcting code as shown in Ref. [14]. However,
it is still very important to investigate the stability of a
bare one-way quantum computer for several reasons [15].
First, it gives valuable feedback for the study of general
fault-tolerant schemes. Second, it helps the development of
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made-to-measure error-correcting codes. Third, what experi-
mentalists are now interested in is not the gigantic fully fledged
quantum computer but a bare elementary gate between a couple
of qubits. Finally, and most importantly, although the stability
of the final result of the computation is guaranteed by the
threshold theorem, we must verify the stability of each gate
independently, because the crucial assumption of the threshold
theorem is that the fidelity of each gate is larger than a certain
threshold [14].

In this Rapid Communication, we study how the gate
fidelity of the one-way quantum computation is affected by the
amount of entanglement between the measured qubit and other
register qubits if the measurement is inaccurate in the sense
that the direction to which the qubit is projected is slightly
deviated from the ideal one. As the resource state that has a
proper amount of entanglement, we adopt the cluster state [16].
Our main result is

F � 1 − S sin2 ε

2
,

which shows that the mean gate fidelity F (0 � F � 1) is up-
per bounded by the decreasing function of the amount S (0 �
S � 1) of entanglement and the magnitude ε (0 � ε � 1)
of the deviation. The main consequence of this inequality
is that, for a given amount S of entanglement, which is
theoretically calculated once the algorithm is fixed and is
often very large (see Refs. [11,17–19] and Sec. IV), we can
estimate, from this inequality, how small ε should be in order
not to make the gate fidelity F below a threshold, which is
specified by an experimentalist implementing the one-way
quantum computation on his or her particular experimental
instruments or by the threshold theorem of the fault-tolerant
quantum computation.

II. SETUPS

Before showing our main result, some setups are necessary.
As a universal set of quantum gates, we adopt the set of single-
qubit rotations about the x and z axes and the controlled-NOT

(CNOT) gate between two qubits [2]. This is a universal gate
set, since, according to the Euler decomposition, any single-
qubit rotation can be written as a combination of these two
types of rotations. We denote the Pauli x, y, and z operators
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FIG. 1. (Color online) Circles represent qubits, bonds repre-
sent the controlled-Z (CZ) interaction |0〉〈0| ⊗ 1̂ + |1〉〈1| ⊗ Ẑ, and
squares represent the input state. X represents the measurement
in the X̂ basis. ±u represents the adaptive measurement in the
(cos uX̂ ∓ sin uŶ ) basis according to the result of the previous
measurement ±, respectively. u represents the measurement in the
(cos uX̂ − sin uŶ ) basis. Output states are modified according to the
measurement history [20]. (a) The single-qubit rotation e−i(u/2)X̂ by
u about the x axis. (b) The single-qubit rotation e−i(u/2)Ẑ by u about
the z axis. (c) The CNOT gate.

acting on the ith qubit by X̂i , Ŷi , and Ẑi , respectively. We
also define eigenvectors of X̂i and Ẑi by X̂i |±〉i = ±|±〉i and
Ẑi |z〉i = (−1)z|z〉i (z = 0,1), respectively. Let us be reminded
[20] that the single-qubit rotation e−i(u/2)X̂ by u about the
x axis, the single-qubit rotation e−i(u/2)Ẑ by u about the z axis,
and the CNOT gate are realized in the one-way scheme as
Figs. 1(a)–1(c), respectively.

Let us also be reminded that there are two possibilities for
the implementation of the one-way quantum computation. One
possibility is one that appeared in the original proposal [1] of
the one-way quantum computation, where the whole cluster
state was created before the onset of adaptive measurements.
The other, which is called the one-buffered implementation
[14], is the repetition of the addition of a single column of
the cluster state to the register column and the measurement
of register qubits (see Fig. 2). We will adopt the one-buffered
implementation.

Let |ψ〉 be an N -qubit state, which is considered as the
quantum register. We assume that one of the three operations
in Figs. 1(a)–1(c) is applied to |ψ〉 in the one-buffered imple-
mentation as shown in Figs. 3(a)–3(c). We are interested in the

FIG. 2. (Color online) The one-buffered implementation [14] of
the one-way quantum computation. The green ellipse represents
the register state. The black solid (thin) arrow represents the
measurement.
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FIG. 3. (Color online) (a) The register state |ψ〉 is represented
by the green ellipse. The rotation of the bottommost qubit of |ψ〉 by
u about the x axis. (b) The rotation of the bottommost qubit of |ψ〉
by u about the z axis. (c) The CNOT gate between the bottommost
qubit and a qubit of |ψ〉. (d) The red bond (bond from u to the blue
inner ellipse) represents entanglement between the first qubit and
other register qubits [which are in the blue (inner) ellipse]. Processes
(a) and (b) can be written as a combination of (d). (e) Process
(c) can be written as a combination of (d) and (e). (f) The state
after the measurement on the first qubit in (d).

fidelity of these operations by assuming that a measurement is
inaccurate.

It is easy to see that we have only to consider the fidelity
of the process in Fig. 3(d) for the study of Figs. 3(a)–3(c).
First, any of three operations, Figs. 3(a)–3(c), is a combination
of the two elementary processes in Figs. 3(d) and 3(e) (see
Fig. 4). Therefore, the study of the fidelity of Figs. 3(a)–3(c)
is reduced to that of Figs. 3(d) and 3(e). Second, in the process
of Fig. 3(e), the measurement on the first qubit [which is

X
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X

Measurement Measurement

Measurement Measurement

FIG. 4. (Color online) Top line: The rotation of the bottommost
qubit in |ψ〉 about the x axis. The rotation about the z axis is given in
a similar way. Bottom line: The CNOT gate between the bottommost
qubit and another qubit in |ψ〉.
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labeled as 1] commutes with the CZ interaction between the
second qubit and the third qubit [which are labeled as 2 and
3, respectively]. Therefore, the study of Fig. 3(e) is reduced
to that of Fig. 3(d). In summary, we have only to consider the
fidelity of the process of Fig. 3(d) for our purpose.

III. MAIN RESULT

Therefore, let us calculate the fidelity of the process in
Fig. 3(d). We assume that the measurement on the first qubit
[which is labeled as 1 in Fig. 3(d)] is inaccurate in the sense
that the direction to which the qubit is projected is slightly
deviated from the ideal one. In other words, the measurement
is not the ideal one {|u+〉,|u−〉}, where

|u±〉 ≡ 1√
2

(|0〉 ± e−iu|1〉), (1)

but the slightly deviated one {|ũ+〉,|ũ−〉}, where

|ũ+〉 ≡ cos
ε

2
|u+〉 + e−iδ sin

ε

2
|u−〉,

|ũ−〉 ≡ sin
ε

2
|u+〉 − e−iδ cos

ε

2
|u−〉.

[If the measurement is performed in the X̂ basis, we have only
to put u = 0 in Eq. (1).] It is easy to see that the degree
of the deviation is parametrized by ε and δ: |ũ+〉 (|ũ−〉)
is the vector obtained by rotating |u+〉 (|u−〉) by ε about
the z axis and by π

2 − δ about the |u+〉 axis. This kind of
inaccuracy is ubiquitous in quantum physics. For example, in
the measurement model of von Neumann [21], the direction
to which the primary state is projected is deviated in this
way if there is an inaccuracy in the control of the coupling
constant or the coupling time between the primary system
and the apparatus, or if the projection measurement on the
apparatus is inaccurate.

After the measurement of the first qubit in Fig. 3(d), the
entanglement between the first qubit and the other qubits is
broken. Then, Fig. 3(d) changes into Fig. 3(f). Let the register
state after this measurement [i.e., the state of qubits in the
green (outer) ellipse in Fig. 3(f)] be |φε,δ〉. If the measurement
was accurate, this is |φ0,0〉. Then, we can show that

F ≡ E[|〈φ0,0|φε,δ〉|2] � 1 − S sin2 ε

2
, (2)

where E[·] means the average over all measurement histories,

S ≡ 2
[
1 − Tr

(
ρ̂2

1

)]

is the entanglement between the first qubit and the other
register qubits [which is indicated by the red bond (bond from
u to blue inner ellipse) in Fig. 3(d)], and ρ̂1 ≡ Tr1 (|ψ〉〈ψ |) is
the reduced density operator of the first qubit (Tr1 is the trace
over all qubits except for the first qubit). If the first qubit and
the other register qubits are not entangled, S = 0, whereas if
they are maximally entangled, S = 1. Equation (2) is our main
result.

Proof of Eq. (2): Let us examine Fig. 3(d). The register
state |ψ〉 [which is represented by the green (outer) ellipse] is
written as

|ψ〉 = α|0〉1 ⊗ |η0〉b + β|1〉1 ⊗ |η1〉b,

where |0〉1 and |1〉1 are states of the first qubit [labeled as 1 in
Fig. 3(d)], and |η0〉b and |η1〉b are states of the other register
qubits [represented by the blue (inner) ellipse in Fig. 3(d)].
|η0〉b and |η1〉b are not necessarily orthogonal with each other.
Let us add the second qubit |+〉2 [labeled as 2 in Fig. 3(d)] to
|ψ〉 and perform the CZ interaction between the first qubit and
the second qubit:

|ψ〉 ⊗ |+〉2 → α|0〉1 ⊗ |η0〉b ⊗ |+〉2 + β|1〉1 ⊗ |η1〉b ⊗ |−〉2.

As we have assumed, the first qubit is measured in {|ũ+〉,|ũ−〉}.
Then, Fig. 3(d) changes into Fig. 3(f). Let the states of the green
ellipse in Fig. 3(f) be |φ±

ε,δ〉 if the result of the measurement
is ±, respectively. By a straightforward calculation, the
probabilities P± of obtaining |φ±

ε,δ〉 are

P± = 1
2 (1 ± ξ sin ε cos δ),

respectively, where ξ ≡ Tr (ρ̂1Ẑ1). The fidelity for each output
is also calculated as

F± ≡ |〈φ±
0,0|φ±

ε,δ〉|2 = 1 ± ξ sin ε cos δ − (1 − ξ 2) sin2 ε
2

2P±
,

respectively, and the mean fidelity is, therefore,

F+P+ + F−P− = 1 − (1 − ξ 2) sin2 ε

2
.

Our goal, Eq. (2), is obtained by applying the relation,

1 − Tr2 (ρ̂1Ẑ1) � S,

which is shown as follows. Let ρ̂1 = λ0|τ0〉1〈τ0| + λ1|τ1〉1〈τ1|,
where λ0 � 0, λ1 � 0, λ0 + λ1 = 1, and

|τ0〉1 = cos
µ

2
|0〉1 + e−iν sin

µ

2
|1〉1,

|τ1〉1 = sin
µ

2
|0〉1 − e−iν cos

µ

2
|1〉1.

Then, we obtain 1 − Tr2 (ρ̂1Ẑ1) = 1 − (λ0 − λ1)2 cos2 µ �
1 − (λ0 − λ1)2 = S.

IV. DISCUSSION

If S was always 0 during any quantum computation, Eq. (2)
would be of no use. However, in fact, S often becomes very
large during a quantum computation. For example, in Ref. [17],
it was shown that if an N -qubit register state |ψ〉 is decomposed
as the tensor product of inseparable states |ψ〉 = ⊗

i |ψi〉, at
least one of these inseparable states {|ψi〉}i must have an
unboundedly increasing size during a quantum computation
if the quantum computation offers an exponential speedup
over a classical one. This result is not changed even if a
weak entanglement is established among |ψi〉’s. Therefore,
there is a high probability that the measured qubit has a
sufficiently strong entanglement with other register qubits
during a quantum computation. Moreover, in Refs. [18,19],
it was shown that the register state has a superposition of
macroscopically distinct states during the execution of the
Shor factoring algorithm and the Grover search algorithm.
According to the result of Ref. [11], a randomly chosen single
qubit is strongly entangled with other qubits with a high
probability if the state has such a macroscopic superposition.
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In short, S is often very large in a quantum computation; and,
therefore, Eq. (2) offers a meaningful upper bound for the gate
fidelity of the inaccurate one-way quantum computation.

The error model studied here is not an atypical one. This
type of error is indeed often considered in many studies of
fault-tolerant quantum computations including Ref. [14],
where the possibility of the fault-tolerant one-way quantum
computation is shown. Therefore, the effect of our error
is recoverable to some extent, and the whole quantum
computation can be performed successfully. However, as
mentioned in Sec. I, the study of the stability of a bare
one-way quantum computation is very important. This is
where our result can contribute.

In addition to the inaccurate measurement considered here,
there are many other possibilities for errors in the one-way

quantum computation. For example, if the one-way quantum
computation is implemented with the discrete-variable linear-
optics schemes [22], we must also consider the imperfection
of the CZ gate, since, in this case, the entangling operation is
not deterministic. To consider other error models would lead
to interesting generalizations of the present work. It is left for
a future study.
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M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007).

[5] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurther,
V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature (London)
434, 169 (2005).

[6] M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel, Phys.
Rev. Lett. 97, 150504 (2006).

[7] D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102,
190501 (2009).

[8] M. J. Bremner, C. Mora, and A. Winter, Phys. Rev. Lett. 102,
190502 (2009).

[9] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, Phys. Rev.
A 76, 052315 (2007).

[10] A. Shimizu and T. Miyadera, Phys. Rev. Lett. 89, 270403
(2002).

[11] T. Morimae, Phys. Rev. A 81, 010101(R) (2010).
[12] T. Morimae, Phys. Rev. A 81, 022304 (2010).
[13] T. Morimae, A. Sugita, and A. Shimizu, Phys. Rev. A 71, 032317

(2005).
[14] M. A. Nielsen and C. M. Dawson, Phys. Rev. A 71, 042323

(2005).
[15] M. S. Tame, M. Paternostro, M. S. Kim, and V. Vedral,

Phys. Rev. A 72, 012319 (2005); K. Kieling, T. Rudolph, and
J. Eisert, Phys. Rev. Lett. 99, 130501 (2007); K. Kieling,
D. Gross, and J. Eisert, New J. Phys. 9, 200 (2007); P. P. Rohde
and S. D. Barrett, ibid. 9, 198 (2007); D. Jennings, A. Dragan,
S. D. Barrett, S. D. Bartlett, and T. Rudolph, Phys. Rev. A 80,
032328 (2009).

[16] To consider other resource states, such as those studied in
Ref. [9], would be an interesting subject for a future study.

[17] R. Jozsa and N. Linden, Proc. R. Soc. London, Ser. A 459, 2011
(2003).

[18] A. Ukena and A. Shimizu, Phys. Rev. A 69, 022301 (2004).
[19] T. Morimae and A. Shimizu, Phys. Rev. A 74, 052111

(2006).
[20] P. Aliferis and D. W. Leung, Phys. Rev. A 70, 062314 (2004).
[21] J. von Neumann, Mathematical Foundations of Quantum

Mechanics (Princeton University Press, Princeton, 1955).
[22] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).

060307-4

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1103/PhysRevLett.98.070502
http://dx.doi.org/10.1103/PhysRevLett.100.210501
http://dx.doi.org/10.1103/PhysRevLett.100.210501
http://dx.doi.org/10.1103/PhysRevLett.98.180502
http://dx.doi.org/10.1103/PhysRevLett.103.160401
http://dx.doi.org/10.1103/PhysRevLett.103.160401
http://dx.doi.org/10.1103/PhysRevLett.98.140501
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1103/PhysRevLett.97.150504
http://dx.doi.org/10.1103/PhysRevLett.97.150504
http://dx.doi.org/10.1103/PhysRevLett.102.190501
http://dx.doi.org/10.1103/PhysRevLett.102.190501
http://dx.doi.org/10.1103/PhysRevLett.102.190502
http://dx.doi.org/10.1103/PhysRevLett.102.190502
http://dx.doi.org/10.1103/PhysRevA.76.052315
http://dx.doi.org/10.1103/PhysRevA.76.052315
http://dx.doi.org/10.1103/PhysRevLett.89.270403
http://dx.doi.org/10.1103/PhysRevLett.89.270403
http://dx.doi.org/10.1103/PhysRevA.81.010101
http://dx.doi.org/10.1103/PhysRevA.81.022304
http://dx.doi.org/10.1103/PhysRevA.71.032317
http://dx.doi.org/10.1103/PhysRevA.71.032317
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevA.72.012319
http://dx.doi.org/10.1103/PhysRevLett.99.130501
http://dx.doi.org/10.1088/1367-2630/9/6/200
http://dx.doi.org/10.1088/1367-2630/9/6/198
http://dx.doi.org/10.1103/PhysRevA.80.032328
http://dx.doi.org/10.1103/PhysRevA.80.032328
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1103/PhysRevA.69.022301
http://dx.doi.org/10.1103/PhysRevA.74.052111
http://dx.doi.org/10.1103/PhysRevA.74.052111
http://dx.doi.org/10.1103/PhysRevA.70.062314
http://dx.doi.org/10.1103/PhysRevLett.93.040503

