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Near-unit-fidelity entanglement distribution scheme using Gaussian communication
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We show how to distribute with percentage success probabilities almost perfectly entangled qubit memory
pairs over repeater channel segments of the order of the optical attenuation distance. In addition to some weak,
dispersive light-matter interactions, only Gaussian state transmissions and measurements are needed for this
scheme. Our protocol outperforms the existing coherent-state-based schemes for entanglement distribution, even
those using error-free non-Gaussian measurements. This is achieved through two innovations: First, optical
squeezed states are utilized instead of coherent states. Second, the amplitudes of the bright signal pulses are
reamplified at each repeater station. This latter variation is a strategy reminiscent of classical repeaters and would
be impossible in single-photon-based schemes.
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The maximum distance for experimental quantum commu-
nication is currently about 250 km [1,2]. Although extensions
to slightly larger distances are possible based on present
experimental approaches [3], truly long-distance quantum
communication, similar to classical communication networks
on an intercontinental scale, would require turning the theo-
retical in-principle solution of a quantum repeater [4,5] into a
real implementation [6]. This, however, would be possible
only provided that highly sophisticated subprotocols such
as efficient entanglement distillation [7,8] and at the same
time sufficient quantum memories [9] are within experimental
reach; only with these extra ingredients can we circumvent the
otherwise exponential decay of either communication rates or
fidelities in the presence of channel losses.

There are several proposals for implementing a quantum
repeater [4,5,10–12], utilizing different physical systems and
varying in their consumption of spatial versus temporal
resources. In all these schemes, some kind of heralding
mechanism is needed in order to conditionally distribute
entangled pairs between neighboring repeater stations. Among
other classifications, for our purpose, it is useful to divide
these schemes into two categories: one where single photons
are used to distribute entanglement and another where bright
optical coherent states are exploited (hybrid quantum repeater
[12], HQR). In the former class of repeaters, as vacuum
contributions and photon losses would mainly affect the
distribution efficiencies and not the quality of the created pairs,
the heralding probabilities are typically fairly low, but initial
fidelities are naturally quite high. Conversely, the quality of the
bright-light-based pair distribution is very sensitive to losses;
hence fidelities are modest, but postselection efficiencies are
reasonably high.

For realizing a full quantum repeater, however, it is a
priori not obvious which approach is preferable (especially
when imperfect quantum memories are considered): that
leading to high-fidelity initial entanglement at low rates or
that based on higher initial distribution efficiencies at the
expense of lower initial fidelities. Nonetheless, in general,
the globally optimal quantum repeater protocol (achieving
a certain target fidelity for long-distance pairs at an opti-
mal rate) would always combine optimal subprotocols for

entanglement distribution, distillation, and connection [13].
Hence distribution of entangled pairs between neighboring
stations should occur at an optimal rate for a whole range
of useful short-distance fidelities. This tunability of optimal
efficiency versus fidelity and, in particular, near-unit fidelity
pair distribution is impossible to obtain in the HQR scheme
based on coherent states and homodyne detection [12].

There were several proposals for modifying the original
HQR scheme, mainly differing in the type of measurements
used. These variations then do allow for tunability and
near-unit fidelity entanglement distribution, but the required
Positive Operator-Valued Measures (POVMs) involve experi-
mentally demanding non-Gaussian detection schemes such as
cat-state projections [14], photon-number-resolving detectors,
or at least, detectors discriminating between vacuum and
non-vacuum states [15,16]. A benchmark on the fidelity versus
success probability plane can be derived based on the non-
Gaussian POVM achieving optimal, error-free unambiguous
state discrimination (USD) of coherent states [15]. This
benchmark covers the whole range of useful fidelities, and
it can be approached or even attained through non-Gaussian
photon detectors [15,16].

In this Rapid Communication, we address whether it is
possible to switch back from the rather demanding and less
practical non-Gaussian schemes to a scheme fully based
on Gaussian resources and operations without loss of per-
formance. We answer this question to the affirmative, and
in particular, we show that even the coherent-state USD
benchmark can be beaten in a Gaussian protocol that allows for
just the right amount of measurement-induced overlap errors.
For this we introduce two innovations involving Gaussian
resources: the use of optical squeezed states instead of coherent
states and the reamplification of the signal amplitude at each
repeater station. Squeezing improves the distinguishability
of the final states along certain directions in phase space
(see Fig. 1). Reamplification is a strategy reminiscent of
classical repeaters—a modification that would be impossible
in single-photon-based schemes.

Here we optimize Gaussian communication for the HQR
scheme with the only restriction being that the initial probe
beam is in a pure state, and under the natural assumption
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FIG. 1. (Color online) Entanglement distribution using squeezed-
state (|α,ξ〉) communication with reamplification [D̂(β)]. Reampli-
fied phase-rotated squeezed states can be better discriminated through
homodyne detection than unamplified coherent states.

that the initial squeezing direction and the final quadrature
projection axes coincide. We will combine ingredients already
exploited in Ref. [12], that is, dispersive atom-light interac-
tions, a beam-splitter loss model, and homodyne detection
with squeezing and reamplification.

For the initial entanglement distribution in an HQR,
two neighboring stations are each equipped with a cavity
containing a two-level system (qubit)1 and connected by a
channel that can carry a quantized optical mode (qumode
[17]). The qumode is initially in a displaced squeezed
vacuum state, |α,ξ 〉 = D̂(α)Ŝ(ξ )|0〉, with ξ = reiπ , real pa-
rameters α and r , and the displacement and squeezing
operators D̂(α) and Ŝ(ξ ), respectively [18]. The initial
atomic states are each (|0〉 + |1〉)/√2. Now a dispersive
off-resonant interaction, Ûint = exp(iθ n̂σz/2), on the first
qubit, where n̂ is the photon number and σz = |0〉〈0| −
|1〉〈1| is the Pauli Z operator, leads to a conditional
phase rotation of the qumode, Ûint[(|0〉 + |1〉/√2) ⊗ |α,ξ 〉] =
(|0〉 ⊗ |α0,ξ0〉 + |1〉 ⊗ |α1,ξ1〉/

√
2), with αk = eiθ(−1)k/2α,

ξk = e(−1)k iθ ξ , where k = 0,1. After this first interaction, the
qumode travels to the other cavity and interacts with the second
qubit in a similar way. For a loss-free channel, the final
qubit-qubit-qumode state is given by [|0〉|0〉|eiθα,e2iθ ξ 〉 +
|1〉|1〉|e−iθα,e−2iθ ξ 〉 + (|0〉|1〉 + |1〉|0〉)|α,ξ 〉]/2. By measur-
ing the qumode in an appropriate way, one can distinguish its
initial state |α,ξ 〉 from the phase-rotated states and condition-
ally create an entangled state between the two cavities [12].

In the realistic scenario, two neighboring repeater stations
are separated by a distance of at least 10–20 km, linked by a
lossy channel of this length. Thus the qumode will be subject
to attenuation and thermalization, especially when its initial
state differs from a pure coherent state. In order to describe the
resulting mixed-state density matrices, we define the operator
L̂jk (see Eq. (2) in [19]); it characterizes our system after the
interaction in the first cavity and the transmission through the
lossy channel (the derivation of L̂jk and more details about
the noise model can also be found in [19]).

While decoherence or thermalization are unavoidable in the
lossy channel, the effect of attenuation may be corrected by
an additional displacement operation D̂(β). Thus, before the

1As for the discrete spin variables, we may refer to “atoms,”
although these could as well be quantum dots, donor impurities in
semiconductors, etc.

interaction in the second cavity, we displace the light field by a
suitably chosen, real β. The total state of the system (qumode
and two qubits) after the second interaction is given by

ρ̂ =
1∑

l,m,j,k=0

|j,l〉〈k,m|e iθn̂
2 (−1)l D̂(β)L̂jkD̂

†(β)e
iθn̂
2 (−1)m, (1)

where the l,m indices label the atomic states in the second
cavity, while the indices j,k refer to the first cavity. Now
measuring the qumode subsystem of ρ̂ leads to a conditional
4 × 4 two-qubit density matrix. In the case of homodyne
detection of the p quadrature, that is,

∫ pc

−pc
〈p|ρ̂|p〉 dp, we

effectively select from ρ̂ those terms corresponding to a
mixture of |�±〉 = (|01〉 ± |10〉)/√2 Bell states; the resulting
phase-flip errors (±) stem from photon losses, minimal for
small amplitudes α; the finite overlaps of the Gaussian peaks
in the homodyne-based approach lead to additional bit-flip
errors, minimized for large amplitudes α [15]. However, in
our generalized scheme, we have as additional parameters
the squeezing r and the reamplification amplitude β, which
have a significant impact on the preceding trade-off between
channel decoherence and homodyne-based Gaussian-state
distinguishability.

The final fidelity compared to the ideal Bell state |�+〉 now
becomes F = ∫ pc

−pc
〈�+|〈p|ρ̂|p〉|�+〉 dp/Ps. The normaliza-

tion factor, Ps = Tr[
∫ pc

−pc
〈p|ρ̂|p〉 dp], after tracing over the

conditional qubit states, determines the probability of success,
that is, how frequently we actually obtain a measurement result
within the postselection window 2pc. Exact expressions for F

and Ps are given in Eqs. (3) and (4) of [19].
Although the fidelity F (Eq. (3) in [19]) is a highly

oscillating function, we shall focus on its upper envelope FAbs,
calculated from F by taking the absolute value instead of the
real part of the last term in Eq. (3), as we may always undo the
corresponding local phase (see Refs. [12,20] for details). From
now on, we assume fixed phase shift θ = 0.01 and transmission
T , with losses corresponding to 0.17 dB/km. The fidelity then
becomes a function of the squeezing parameter r , the initial
amplitude α, the displacement β, and the selection window
2pc. Varying α, β, and r for every pc, the maximum of FAbs can
be found. Figure 2 shows the maximal FAbs with corresponding
Ps for different distances between repeater stations. We see that
now near-unit fidelities can be achieved owing to squeezing
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FIG. 2. (Color online) Fidelity FAbs and corresponding probabil-
ity of success Ps as a function of the selection window width pc for
transmission distances 10, 15, 20, and 25 km, rotation angle θ = 0.01,
and loss 0.17 dB/km. Free parameters used for optimization were
initial α, squeezing parameter r , and displacement β.
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FIG. 3. (Color online) Maximal probability of success Ps for
given FAbs and different pc and r (rotation angle is set to θ = 0.01, loss
is set to 0.17 dB/km, and distance L0 is 10 km). Maximal fidelity FAbs

obtained choosing optimal initial α and displacement β for r = 0.8
and r = 1.15 and pc = 0.1, pc = 0.25, pc = 0.5, respectively, is
shown. The dashed orange curve is the USD bound [15], the ultimate
quantum mechanical bound for the rank-2 coherent-state scheme.

and reamplification: For the selection window pc → 0, the
maximal fidelities approach unity, at the expense of success
probabilities tending to zero. This regime was previously
accessible only through non-Gaussian measurements such
as USD or in conceptually different single-photon-based
schemes.

Alternatively, we may obtain maximal Ps for fixed F,
pc, and r (see Fig. 3) with 0.66 � FAbs � 1, L0 = 10
km, pc ∈ {0.1,0.25,0.5}, and r ∈ {0.8,1.15}. For comparison,
we included the coherent-state USD bound [15] (orange
dashed line), previously obtainable only through non-Gaussian
POVMs [16]. Our choice of squeezing parameters corre-
sponds roughly to 7 dB and 10 dB of noise reduction,
values within current experimental reach [21,22]. We observe
that for sufficiently small selection windows, our scheme
combining squeezed light, reamplification, and homodyne
detection performs better then those based on single-photon
detectors. Similar but slightly smaller improvements over
the USD bound can be obtained for a distance of the order
of the attenuation distance, L0 = 20 km. A comparison of
the standard HQR scheme [12] and ours with squeezing
and reamplification is given in Fig. 4 and Table I. The
differences are significant. For L0 = 10 km, both fidelities
and probabilities of success are much higher in our scheme;
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FIG. 4. (Color online) Fidelity FAbs as a function of initial α.
Dashed lines correspond to a coherent state as initial qumode state
and no amplification, solid gray lines to a coherent state amplified,
and solid black lines to a squeezed state (r = 1.5) amplified after
transmission. The distance between cavities is L0 = 10 or 20 km,
and amplification is just a displacement by D̂(β).

TABLE I. Fidelities F max
Abs and probabilities of success Ps corre-

sponding to parameters from Fig. 4.

Initial state
of light

Squeezed,
amplified

Coherent,
amplified

Coherent, no
amplification

Distance pc F max
Abs Ps (%) F max

Abs Ps (%) F max
Abs Ps (%)

10 km 0.1 0.99 9 0.85 7 0.80 8
0.25 0.96 23 0.83 18 0.80 20
0.5 0.89 40 0.80 33 0.77 36

20 km 0.1 0.98 4.5 0.79 5 0.68 9
0.25 0.93 12 0.77 13 0.67 21
0.5 0.81 26 0.71 26 0.63 39

for L0 = 20 km, fidelities are highly increased at the expense
of smaller success probabilities.

The results presented here are restricted to an elementary
segment of a full HQR. Obviously, the present scheme gives
a lot of freedom regarding optimal fidelity and probability of
success as a starting point for the subsequent procedures of
entanglement swapping and purification. Even though, in our
generalized scheme, initial fidelities are high, we should stress
that the resulting two-qubit entangled-state density matrices
have nonzero elements for all four Bell states, as opposed to,
for instance, the non-Gaussian USD-based scheme [15]. The
rank-2 mixtures there [15] are typically easier to purify than the
full rank-4 mixtures obtained from both photonloss-induced
phase-flip and measurement-induced bit-flip errors, as in our
scheme. We leave a full analysis, incorporating our scheme into
a complete HQR including rank-4 purifications and swappings,
for future research. The reason why in our scheme we can
suppress the loss-induced errors to a great extent is because we
may keep the initial amplitudes α relatively small but still have
only small amounts of measurement-induced errors owing to
squeezing and reamplification.

We note that different from existing proposals for distribut-
ing discrete entanglement through dynamical entanglement
transfer from two-mode squeezed [23] or general two-mode
states [24] to discrete systems, our scheme makes explicit use
of weak (dispersive, off-resonant) light-matter interactions and
employs local measurements including postselection; photon
losses are primarily assumed to occur in the channel as a
limiting factor to the communication distance, instead of
distance-independent dissipation during the local interactions
[23–25].

Finally, we address the question whether the idealized,
controlled phase rotation in our scheme can indeed be
approximately realized, especially when the qumode starts
in a nonclassical, squeezed state. First, the effective Jaynes-
Cummings-based interaction for the limiting case of large
detuning in the off-resonant, dispersive regime holds for
any input state of the qumode. However, in a cavity-QED
setting, the internal cavity mode and the external fields are no
longer identical; in particular, atomic spontaneous emissions
(unwanted in-out couplings) and a finite desired cavity in-out
coupling have to be taken into account. The master equation
derived in Ref. [20] under the Born approximation holds
for any qumode state; in the relevant regime of α values,
semiclassical calculations are sufficient; however, we have to
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assume that a squeezed state coupled into the cavity at least
remains a Gaussian state at all times. As a result, non-Gaussian
effects become negligible, similar to the case of coherent-state
inputs of Ref. [20]. The crucial parameter is then a sufficiently
large cooperativity (“good coupling/dissipation”) at weak or
intermediate coupling.

Squeezing may even turn out to be beneficial for the fidelity
of the dispersive interaction [26]. In our model, coupling
inefficiencies may be absorbed into the transmission parameter
T , corresponding to reduced distances. Alternatively, the

optical squeezing operation may be postponed until the
very end, performed online [27] on phase-rotated coherent
states. Besides CQED, approaches less sensitive to local
dissipations may involve free-space light-matter couplings
[28,29].
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