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Analytic theory of curvature effects for wave problems with general boundary conditions
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A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic
expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and
helix-shaped structures, where alternative analytic solutions can be found, the perturbative solution is shown to
yield the same result. The present technique allows the generalization of earlier results to arbitrary boundary
conditions. The power of the method is illustrated using examples based on Maxwell’s and Schrödinger’s
equations for applications in photonics and nanoelectronics.
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The study of shape and curvature effects on physical
properties is a problem that has similarities in many different
fields of study in physics. Nanotechnology [1] has allowed
a variety of complicated heterostructures to be grown, in-
cluding helical and Möbius structures [2–7]. In photonics,
electromagnetic modes have been confined in nanowires [8].
In plasmonics, electromagnetic propagation in bent nanowires
is a current research area [9]. Nanopiezotronics involves
electromechanical phenomena in bent nanowires [10]. In
none of these cases has curvature effects been quantified.
All the cases suggest developing a formalism for treating the
phenomena either individually or coupled subject to distinct
boundary conditions.

The methodology applied so far in the literature has been
to identify the finite list of exactly solvable problems (for
example, the 11 coordinate systems in which the Schrödinger
equation is separable [11]) or in combination with differential
geometry to identify quasiseparable problems in curved
geometries [12]. Theoretical studies of shape effects for com-
plicated structures, such as helical nanotubes [13], helicoidal
ribbons and strips [14,15], elliptic tori [16], and a Möbius
strip [17], have been published for the electronic problem
subject to Dirichlet boundary conditions. In the present work,
the method used in Ref. [12] is extended to encompass general
boundary conditions and to provide analytic expressions for
eigenmode changes due to general curvature effects based on a
combination of differential geometry and perturbation theory.
Perfect agreement is demonstrated versus alternative analytic
results applicable in the case of circular- and helical-shaped
nanotubes. The possibility of addressing Neumann boundary
condition problems with the present method allows a different
class of physics problems to be solved analytically, such
as rigid-wall waveguide problems in acoustics and trans-
verse electromagnetic wave propagation in hollow metallic
waveguides.
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Consider a wire structure where the axis is given as a curve
x(s) parametrized by arc length s = u1. The tangent vector
t(s) = x′(s) = dx/ds is a unit vector field along the curve and
we can augment it with vector fields p(s) and q(s) along the
curve such that t(s),p(s),q(s) constitutes an orthonormal frame
at each point x(s) along the axis.

Let U ⊆ R3 be a tubular neighborhood around the x axis.
Consider the corresponding tubular neighborhood around the
curve x(s) parametrized by

x̃(s,u2,u3) = x(s) + u2p(s) + u3q(s),(s,u2,u3) ∈ U, (1)

where u2 and u3 are small numbers. We then have

x1 = ∂ x̃
∂s

= x′ + u2p′ + u3q′

= (1 − au2 − bu3)t − cu3p + cu2q, (2)

x2 = ∂ x̃
∂u2

= p, (3)

x3 = ∂ x̃
∂u3

= q, (4)

where

a(s) = dt
ds

· p, b(s) = dt
ds

· q, c(s) = dp
ds

· q. (5)

The metric tensor (Gij = xi · xj ) is

[Gij ] =

⎡
⎢⎣

(1 − au2 − bu3)2 −cu3 cu2

+(cu2)2 + (cu3)2

−cu3 1 0
cu2 0 1

⎤
⎥⎦ . (6)

The above formulation contains arbitrariness in the choice
of p and q as a function of u1. We use the so-called minimal
rotation frame (MRF), where p and q are chosen such that
c = 0. In MRF, the Laplacian reads

� = Gij ∂2

∂ui∂uj
+

(
Gij

∂G
∂uj

2G
+ ∂Gij

∂uj

)
∂

∂ui

=
(

∂2

∂(u2)2
+ ∂2

∂(u3)2

)
−

(
a

∂

∂u2
+ b

∂

∂u3

)
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−
(

a2u2
∂

∂u2
+ b2u3

∂

∂u3
+ abu2

∂

∂u3
+ abu3

∂

∂u2

)

+ ∂2

∂s2
, (7)

where G = det(Gij ) and Gij = (Gij )−1. Terms proportional
to ∂2

∂(u2)2 , ∂
∂u2

, u2
∂

∂u2
are kept, assuming small cross-sectional

dimensions; similarly, for terms involving u3 and derivatives
in u3 and mixed terms in u2,u3. We emphasize that these
assumptions are the same as in earlier works [18–21], and that
good agreement with exact results has been demonstrated in
the Dirichlet case for a nanowire radius-to-curvature radius up
to 10%. [22]. A term proportional to (u2)2 ∂

∂u2
is of order u2

and hence negligible for curved structures with large aspect
ratios (small cross-sectional dimensions compared to the
length dimension).

We first present the theory for transverse-electric (TE)
electromagnetic propagation in a curved metallic-covered
nanostructure where Neumann boundary conditions apply. The
wave equation is

(∇2 + µεω2)H3 = 0, (8)

where Hi is the Hertz vector component along ui (i = 1,2,3),
ω

2π
is the wave frequency, µ is the permeability, and ε is the

permittivity. The TE boundary condition for a plane curved
nanowire center-line curve is

∂H3

∂n
= 0, (9)

where n denotes the boundary normal.
In the particular case of a center-line curve located in the

u1-u2 plane, the Laplacian curvature contribution W reads in
MRF [c = 0, a = κ(u1), b = 0] [23]

W = −κ(u1)
∂

∂u2
− κ(u1)2u2

∂

∂u2
, (10)

where κ(u1) is the centerline curvature. We then have

�
( − µεω2

nlm

) = 〈nlm|W |nlm〉 +
∑
n′l′m′

|〈nlm|W |n′l′m′〉|2

µεω2
nlm − µεω2

nlm,0

= −3

4
(1 − δl0)κ2, (11)

where the latter equality applies to the constant curvature
case keeping terms up to second order in the curvature [23],
δl0 = 1 if l = 0 (δl0 = 0 if l �= 0), and |nlm〉 is an unperturbed
eigenstate. In Eq. (11), n,l,m are integers corresponding to the
unperturbed separable wave parts in u1,u2,u3, respectively.
For example, the unperturbed u2 wave parts in the case with
Neumann boundary conditions are

|2l〉 = 1√
(1 + δl0)ε2

cos

(
2lπ

2ε2
u2

)
,

(12)

|2l + 1〉 = 1√
ε2

sin

(
(2l + 1)π

2ε2
u2

)
,

where l = 0,1,2, . . . , and 2ε2 defines the nanowire u2 range:
−ε2 � u2 � ε2. As a corollary, for plane center-line curves,
Eq. (11) shows that there is no eigenvalue shift for states with
l = 0 in the Neumann boundary case as the corresponding

unperturbed solution is independent of u2 [Eq. (12)]. The
result now follows as matrix elements of the perturbation W

between l = 0 states vanish identically according to Eq. (10).
For all other states (l �= 0), there is a shift in frequency
given by �ω2

nlm = 3
4

κ2

µε
. Evidently, the strength of the present

perturbative differential-geometry procedure is that it can
be easily carried out in the general case with a nonplanar
center-line curve subject to a varying curvature.

Combining Eq. (11) with the unperturbed eigenfrequencies
ω0,nlm, we obtain

�ω2
nlm

ω2
0,nlm

= 3κ2

4

(1 − δl0)(
nπ
L

)2 +
(

lπ
2ε2

)2
+

(
mπ
2ε3

)2 , (13)

where −ε3 � u3 � ε3 defines the nanowire u3 range. We now
apply the theory to a metallic-dielectric coaxial structure,
where the dielectric is a Si nanowire similar to those considered
experimentally by Tong et al. [24] with 2ε2 = 800 nm and a
sharp circular-shaped bend (R = 800 nm). We find a relative
eigenfrequency shift for the mode with l = 1,m = 0,n = 0
equal to

�ω2
010

ω2
0,010

= 3

π2

(ε2

R

)2
= 0.076 (14)

(i.e., a non-negligible 8%). This example provides a clear
picture of the importance of curvature for this type of
structures.

As a second example, we consider a nanowire one-particle
Schrödinger equation. A general parametrization gives

Hψ = Eψ,H = H0 + W, (15)

H0 = − h̄2

2m0

(
∂2

∂(u2)2
+ ∂2

∂(u3)2
+ ∂2

∂t2

)
+ V (r), (16)

W = − h̄2

2m0

[
−

(
a

∂

∂u2
+ b

∂

∂u3

)

−
(

a2u2
∂

∂u2
+ b2u3

∂

∂u3
+ abu2

∂

∂u3
+ abu3

∂

∂u2

)

+
(

1

x′ · x′ − 1

)
∂2

∂t2
− x′ · x′′

(x′ · x′)2

∂

∂t

]
, (17)

where t is the coordinate for the parametrization of the
nanowire center line, h̄ is Planck’s constant divided by
2π ,m0 is the particle mass, and V (r) is the potential (as-
sumed to be zero inside the nanowire). The renormalized
wave function used in, e.g., Refs. [19,20], differs from our
unrenormalized wave function ψ by a factor of

√
G. We

emphasize the advantage in performing a perturbative analysis
in ψ since a Neumann boundary condition problem in ψ

does not correspond to a simple Neumann problem in the
renormalized wave function used in Refs. [19,20].

Since eigenstates for the unperturbed problem are parity
eigenstates, terms changing parity in one or more coordinates,
such as a ∂

∂u2
, do not contribute in first-order perturbation

theory but they do contribute in second order. Eigenvalue
contributions to lowest order in a (or b) cannot occur and
contributions to higher order than a2, etc. are too small and
will be discarded henceforth. Thus, the additional terms in the
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Laplacian involving a or b lead to energy eigenvalue changes
�Enlm in the unperturbed eigenstate |nlm〉 given by

�Enlm = h̄2

2m0
〈nlm|

(
a2u2

∂

∂u2
+ b2u3

∂

∂u3

)
|nlm〉

+ h̄4

4m2
0

∑
n′l′m′

′
∣∣∣〈nlm|

(
a ∂

∂u2
+ b ∂

∂u3

)
|n′l′m′〉

∣∣∣2

E0
n′l′m′ − E0

nlm

− h̄2

2m0
〈nlm|

(
1

x′ · x′ −1

)
∂2

∂t2
− x′ · x′′

(x′ · x′)2

∂

∂t
|nlm〉

− h̄4

4m2
0

∑
n′l′m′

′
∣∣∣〈nlm| ( 1

x′ ·x′ −1
)

∂2

∂t2 − x′ ·x′′
(x′ ·x′)2

∂
∂t

|n′l′m′〉
∣∣∣2

E0
n′l′m′ − E0

nlm

,

(18)

where E0
nlm is the unperturbed eigenvalue, and n,l,m are

the quantum indices associated with the u1,u2,u3 coor-
dinates, respectively. Hence, it is possible to obtain the
influence of bending effects on eigenvalues of a general
bent structure by solving (computationally fast) integrals in
known unperturbed eigenstates. From now on, only struc-
tures with rectangular cross sections will be considered for
concreteness. A normalized unperturbed Dirichlet eigenstate
|nlm〉 is

|nlm〉 ≡ ψnlm = ψ1
nψ2

l ψ3
m, (19)

where

ψ1
n (u1) =

√
2

L
sin

(nπ

L
u1

)
, (20)

ψi
2l−1 = 1√

εi

cos

(
(2l − 1)π

2εi

ui

)
, (21)

ψi
2l = 1√

εi

sin

(
lπ

εi

ui

)
, (22)

with i = 2,3; n,l,m = 1,2, . . . ; L defines the u1 range 0 �
u1 � L, and 2εi defines the range of ui : −εi � ui � εi .

The first-order perturbation contribution proportional to a2

is [from Eq. (18)]

�E
(1a)
nlm = 1

2

(
− h̄2

2m0

)∫ L

0
ψ1

n (u1)a(u1)2ψ1
n (u1)du1. (23)

The other terms in Eq. (18) are similarly obtained.
In the case of an arc-length parametrized circular-bent or

helical-bent structure with constant curvature κ , an analytic
evaluation of the four perturbative contributions in Eq. (18)
gives the following result, independent of the quantum indices
to second order in the curvature:

�Enlm =
(

− h̄2

2m0

)
κ2

4
. (24)

The present result, obtained perturbatively, agrees with the
result obtained in previous works [12,18–20,22]. We empha-
size that Eq. (18) applies to cases with general boundary
conditions (e.g., Dirichlet, Neumann, or Robin) while pre-
vious works [12,17–20,22] require Dirichlet conditions. For
a general bent structure, a simple analytic result as Eq. (24)
cannot be found but the fast computation of eigenstate and
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FIG. 1. (Color online) Squared curvature for a Möbius-shaped
nanowire structure with parameters c1 = 3 nm, c2 = 2 nm, and c3 =
0.5 nm.

eigenvalue changes for bent structures based on Eq. (18) still
applies.

The above result applies to the ZnO ring structure examined
experimentally by Kong et al. [25]. For R = 1

κ
= 0.5 µm,

2ε2 = 30 nm, m0 = 0.27 (in units of the free-electron mass),
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FIG. 2. (Color online) Ground-state (top) and first-excited (bot-
tom) states of a Möbius-shaped nanowire with parameters c1 = 3
nm, c2 = 2 nm, and c3 = 0.5 nm. Solid and dashed lines indicate the
unperturbed and perturbed eigenstates, respectively.
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TABLE I. Energy shifts due to bending for a Möbius-shaped
nanowire. Values are in meV.

�E1 (ground) �E2 (first) �E3 (second)

−121.5 −62.45 −299.1

and 2ε3 = 1 µm, we find

�E011 = −1.4 × 10−4 meV, E011 = 1.55 meV. (25)

In other words, the shift in energy is negligible for these
rather big nanostructures. The theory also allows an analytic
calculation of the energy shift for nanohelices [25], a result
that could otherwise only be obtained numerically.

Finally, as an illustration of a nontrivial problem, the
formalism is applied to a Möbius-shaped nanowire structure.
The parametrization is given by

x(u1) = (c1 sin(u1), c2 sin(2u1), c3 cos(3u1)), (26)

where ci are coefficients. We choose c1 = 3 nm, c2 = 2 nm,

c3 = 0.5nm, and assume small cross-sectional dimensions
compared to the center-line length. In Fig. 1, the squared
curvature is plotted versus u1 corresponding to a nanowire
length equal to one-quarter of a full Möbius period (i.e.,
for a parameter interval, 0 � u1 � π/2). The u1 dependence
of the ground and first excited states is shown in Fig. 2.
We emphasize that the assumption of small cross-sectional
dimensions ensures that significant perturbative wave-function
corrections have the same u2 and u3 functional dependence as
the corresponding unperturbed wave function. Wave-function

perturbations are significant mainly where the curvature is
highest as expected. The corresponding changes in meV
are shown in Table I. For the ground state, the first three
contributions in Eq. (18) to the change in energy are −0.358,
0.179, and 0.058 eV, respectively, with the fourth contribution
being negligible. The large curvature is seen to have a
significant impact on the eigenvalues. Furthermore, one can
explain why the energy change for the first excited state is
relatively smaller, as the wave function has a zero near the
region of high curvature. Our study reveals that curvature can
be an important tool in controlling the electronic properties of
nanostructures.

In summary, an analytic method for evaluating the influence
of curvature effects on three-dimensional eigenmodes is
presented. The method is able to treat arbitrary boundary
conditions by using a methodology of combining differential
geometry with perturbation theory. Results are in perfect
agreement with alternative analytic methods applicable only in
the cases of simple curved structures. The technique presented
here allows one to quickly and accurately quantify the effect
of curvature for a variety of physical phenomena and shapes.
The formalism is applicable to structures with large aspect
ratios but generalizable to cases where this assumption is
relaxed. Thus, it was shown that curvature effects have
little influence on the electronic properties of current ZnO
nanorings and nanohelices [25] but are not negligible for
the electromagnetic properties of curved Si waveguides [24].
Even more pronounced curvature effects were predicted for
Möbius-type structures [4]. The present work opens up a whole
new field of analysis of coupled multiphysics phenomena
of complex three-dimensional structures subject to arbitrary
boundary conditions.

[1] T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1992).

[2] V. Ya Prinz, D. Grutzmacher, A. Beyer, C. David, and B. Ketterer,
Nanotechnol. 12, S1 (2001).

[3] O. G. Schmidt and K. Eberl, Nature (London) 410, 168
(2001).

[4] S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and
N. Hatakenaka, Nature (London) 417, 397 (2002).

[5] Z. Hens, D. Vanmaekelbergh, E. J. A. J. Stoffels, and
H. van Kempen, Phys. Rev. Lett. 88, 236803 (2002).

[6] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles,
and J. L. Goldman, Nature (London) 425, 274 (2003).

[7] P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L.
Wang, Science 309, 1700 (2005).

[8] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind,
E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

[9] S. Lal, S. Link, and N. J. Halas, Nat. Phot. 1, 641 (2007).
[10] Z. L. Wang, Adv. Mater. 19, 889 (2007).
[11] L. P. Eisenhart, Ann. Math. 35, 284 (1934).

[12] J. Gravesen and M. Willatzen, Physica B 371, 112 (2006).
[13] V. Atanasov and R. Dandoloff, Phys. Lett. A 372, 6141 (2008).
[14] R. Dandoloff and T. T. Truong, Phys. Lett. A 325, 233 (2004).
[15] E. L. Starostin and G. H. M. van der Heijden, Phys. Rev. Lett.

101, 084301 (2008).
[16] M. Encinosa and M. Jack, Phys. Scr. 73, 439 (2006).
[17] J. Gravesen and M. Willatzen, Phys. Rev. A 72, 032108 (2005).
[18] H. Jensen and H. Koppe, Ann. Phys. (Leipzig) 63, 586 (1977).
[19] R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).
[20] R. C. T. da Costa, Phys. Rev. A 25, 2893 (1982).
[21] J. Goldstone and R. L. Jaffe, Phys. Rev. B 45, 14100 (1992).
[22] J. Gravesen, M. Willatzen, and L. C. Lew Yan Voon, J. Math.

Phys. 46, 012107 (2005).
[23] M. Willatzen, J. Gravesen, and L. C. Lew Yan Voon (unpub-

lished).
[24] L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and

E. Mazur, Nano Lett. 5, 259 (2005).
[25] X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303,

1348 (2004).

060102-4

http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1038/35065525
http://dx.doi.org/10.1038/35065525
http://dx.doi.org/10.1038/417397a
http://dx.doi.org/10.1103/PhysRevLett.88.236803
http://dx.doi.org/10.1038/nature01996
http://dx.doi.org/10.1126/science.1116495
http://dx.doi.org/10.1126/science.1060367
http://dx.doi.org/10.1038/nphoton.2007.223
http://dx.doi.org/10.1002/adma.200602918
http://dx.doi.org/10.2307/1968433
http://dx.doi.org/10.1016/j.physb.2005.10.102
http://dx.doi.org/10.1016/j.physleta.2008.08.032
http://dx.doi.org/10.1016/j.physleta.2004.03.050
http://dx.doi.org/10.1103/PhysRevLett.101.084301
http://dx.doi.org/10.1103/PhysRevLett.101.084301
http://dx.doi.org/10.1088/0031-8949/73/5/004
http://dx.doi.org/10.1103/PhysRevA.72.032108
http://dx.doi.org/10.1016/0003-4916(71)90031-5
http://dx.doi.org/10.1103/PhysRevA.23.1982
http://dx.doi.org/10.1103/PhysRevA.25.2893
http://dx.doi.org/10.1103/PhysRevB.45.14100
http://dx.doi.org/10.1063/1.1829376
http://dx.doi.org/10.1063/1.1829376
http://dx.doi.org/10.1021/nl0481977
http://dx.doi.org/10.1126/science.1092356
http://dx.doi.org/10.1126/science.1092356

