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Quantum tunneling time of a Bose-Einstein condensate traversing through a
laser-induced potential barrier
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We theoretically study the effect of atomic nonlinearity on the tunneling time in the case of an atomic Bose-
Einstein condensate (BEC) traversing the laser-induced potential barrier. The atomic nonlinearity is controlled
to appear only in the region of the barrier by employing the Feshbach resonance technique to tune interatomic
interaction in the tunneling process. Numerical simulation shows that the atomic nonlinear effect dramatically
changes the tunneling behavior of the BEC matter wave packet and results in the violation of the Hartman effect
and the occurrence of negative tunneling time.
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Quantum tunneling of a wave packet through a potential
barrier is one of the fundamental topics in quantum physics
[1–3]. The issue of tunneling time has attracted a lot of
attention for decades since it was first put forward by Condon
[4]. In the early 1960s, Hartman predicted that tunneling
time becomes independent of barrier length for thick-enough
barriers, ultimately resulting in unbounded tunneling velocities
[5]. Such a phenomenon, termed the Hartman effect later on,
seems to imply the superluminal velocities inside the barriers
and leads to a wide interest in many different fields [6–9].

Mathematically, quantum tunneling is governed by the
Schrödinger equation, which is a linear equation describing
the quantum wave nature of a single particle. So far the
Hartman effect or related topics studied in the literature are
limited to the single-particle linear case. After the mid-1990s,
there are significant advancements in the realization of atomic
Bose-Einstein condensates (BECs), a macroscopic quantum-
mechanical wave packet with nonlinear behavior due to
interatomic interactions. Such a macroscopic coherent-matter
wave packet of BEC opens a new window for studying
the nonlinear quantum dynamics governed by the nonlinear
Schrödinger equation or the mean field Gross-Pitaevskii (GP)
equation [10]. No doubt, the tunneling of a BEC wave packet
would exhibit different behaviors compared with the single-
particle tunneling in linear quantum mechanics. In fact, there
already exist in the literature many studies on BEC tunneling
through different kinds of potentials [11–13].

In this article, we theoretically investigate how the inter-
atomic interaction affects the tunneling time in the case of
a coherent BEC wave packet traversing through a potential
barrier created by a laser beam. We consider a BEC wave
packet confined in a quasi-one-dimensional atomic waveguide
to traverse a potential barrier created by a far blue-detuned
laser beam, which is shown in Fig. 1. Suppose that the quasi-
one-dimensional atomic waveguide is a transverse trapping
harmonic potential, and the dynamics of atomic BEC can
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be described by the three-dimensional nonlinear Schrödinger
equation
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where � is the normalized macroscopic wave function of
BECs, r⊥ = (y,z), m the atomic mass, and ω⊥ the trapping
frequency in the radial (transverse) direction. g = 4πh̄2as/m

describes the interatomic interaction, with as being the atomic
s-wave scattering length. N is the total number of atoms in
the condensate, and V (x) is the potential barrier created by the
blue-detuned laser beam.

When transverse confinement is very strong, the transverse
motion of BEC atoms may be considered to remain in the
ground state. As a result, we can approximate the total wave
function of the BEC as

�(x,r,t) ≈ ψ(x,t)ϕ⊥(r)e−iω⊥t , (2)

where ϕ⊥(r) is the transverse ground-state wave function of
the BEC, which can approximately be replaced by a Gaussian
function in the weak nonlinear limit
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with a⊥ = √
h̄/mω⊥ being the ground-state length of har-

monic trapping potential. The longitudinal wave function
ψ(x,t) is governed by the effective one-dimensional nonlinear
Schrödinger equation:

i
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= −1
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ψ + V (x)ψ + g|�|2ψ. (4)

In Eq. (4), we express x in units of a⊥ , t in units of ω−1
⊥ ,

the dimensionless nonlinear interaction g = 2asN/a⊥ , and
the dimensionless wave function ψ = ψ/

√
a⊥ . V (x) is the

potential barrier experienced by the BEC wave packet and
written in the form

V (x) = V0f (x), (5)
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FIG. 1. (Color online) Schematic diagram of a BEC wave packet
traversing a blue-detuning laser beam in an atomic waveguide.

where V0 is the peak value of the potential normalized by h̄ω⊥
and f (x) is the barrier profile, which is controlled by the laser
beam.

Now we have obtained a general dimensionless equation (4)
to describe the BEC wave packet transmitting through a barrier.
As pointed out in Ref. [14], Eq. (4) is invariant under the
scaling transformation {x,t,ψ,V0} → {xη,tη2,ψ/η,V0/η

2},
where η is a dimensionless constant. To cover different
experimental situations, it is convenient to introduce such
scaling transformation in numerical simulation. In this article,
we set ω⊥ ≈ 2π × 100 Hz and η = 10, then for 87Rb atoms,
a⊥ ≈ 1 µm. In principle, Eq. (4) can describe a BEC wave
packet transmitting through an arbitrary barrier. To simplify the
problem, without loss of physical feature, in this article we just
consider a rectangular barrier case. Such a rectangular barrier
can be approximated by a super-Gaussian laser beam with a
large-enough order [15–17]. Therefore, the barrier profile f (x)
has the form

f (x) =
{

1, −L
2 < x < L

2 ,

0, x < −L
2 or x > L

2 .
(6)

In the following, we simulate finite wave packets traversing
through the rectangular barrier via the split operator method
[18]. Assume the normalized initial wave packet is Gaussian,

ψ(x,0) = 1√√
π�x

exp

[
− (x − x0)2

2�x2
+ ik0(x − x0)

]
, (7)

where x0, �x, and k0 are the initial center position,
the initial half width, and the initial center momentum of the
wave packet, respectively. From Eq. (4) we can find that the
interatomic interaction will induce the self-phase-modulation
(SPM) [19,20] of a matter wave packet. The SPM occurs in
both the free region and the potential and causes confusion of
the nonlinear effect on the tunneling process inside the barrier
with the SPM process outside the barrier region. To avoid this
confusion we shall eliminate the nonlinear interaction outside
of the potential region, that is, make the s-wave scattering
length as vanish outside of the potential region. In principle,
this can be realized by employing the Feshbach resonance
technique to tune the atomic scattering length via a spatially
varying magnetic field [21]. For a spatially varying magnetic
field, the scattering length as(x) = as0{1 − �B/[B(x) − B0]},
where as0 is the background scattering length, �B the
resonance width, B0 the magnetic field of resonance, and
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FIG. 2. (Color online) The normalized transmitted wave packets
(solid curve) at time t = 440 with nonlinear interaction: (a) g0 =
−16, (b) g0 = 0, and (c) g0 = 200. Other parameters are V0 = 1,
L = 12, and k0 = 1.2. The freely propagating reference wave packet
is represented by the dashed curves.

B(x) the magnetic field. In our work, we set the profile of
the scattering length to be consistent with that of the barrier,
namely, g(x) = g0f (x). Considering the finite width of initial
atomic BEC wave packet used in experiment, we set �x = 50
in all of the following simulations, corresponding to a half
width 500 µm for a BEC wave packet composed of 87Rb
atoms.

With the preceding assumptions, we now investigate the
tunneling of a BEC wave packet through the barrier with
atomic nonlinearity. In Fig. 2 we present the transmitted wave
packets with different nonlinear interaction at time t = 440,
at which the transmitted wave packet just emerges from
the barrier. Meanwhile, we also show the freely propagating
wave packet as a reference, for which both the barrier and
the nonlinear interaction are set to zero. From the top panel,
one observes that the transmitted wave packet with negative
nonlinearity slightly lags behind the reference one. The middle
panel is the linear case, where the nonlinear interaction is
neglected. In contrast to the negative nonlinear case, the
transmitted wave packet is ahead of the reference one, due to
the finite-width effect of the incident wave packet, as has been
pointed out in previous works [22–24]. In the bottom panel,
we find the transmitted wave packet with positive nonlinearity
is far ahead of the reference, which is quite different from
the other two cases. Figure 2 shows us that the nonlinear
interaction indeed, as expected, affects the tunneling process
of a BEC wave packet through the barrier. In what follows, we
explain the physics behind the numerical results in detail.

We consider the transmitted spectra in the momentum
space. Due to the SPM-induced spectral broadening, as well
as the filtering of the barrier [3,25], the center-transmitted
momenta exhibit great differences in the linear, positive, and
negative nonlinear cases, as shown in Fig. 3. The filtering of
the barrier takes effect on both the linear and the nonlinear
cases, while the spectral nonlinear broadening only occurs in
the nonlinear cases. The combination of the filtering effect
and nonlinear broadening leads to a large transmitted central
momentum in the positive nonlinear case. Therefore, with
the same barrier parameters and incident wave number, the

055602-2



BRIEF REPORTS PHYSICAL REVIEW A 81, 055602 (2010)

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

k

N
or

m
al

iz
ed

 |ψ
(k

)|

FIG. 3. The corresponding momentum spectra of transmitted
wave packets in Fig. 2. The solid curve stands for the case without
nonlinearity and the dashed and dash-dotted curves for the cases with
positive and negative nonlinearity, respectively.

positive nonlinear case spends the least time in the barrier.
However, we note that the transmitted central momenta of
negative nonlinear and linear cases are less than that in the
positive nonlinear case. This can also be well understood
from the discussion in what follows. In fact, when the
interatomic interaction exists, the atomic nonlinearity modifies
the potential barrier and the atoms “see” an effective potential,

Veff = V0f (x) + g(x)|ψ(x,t)|2. (8)

For a repulsive interaction, the nonlinear term has a positive
sign. Consequently, the height of the linear barrier is raised, and
vice versa for an attractive interaction. In terms of Hartman’s
calculation [5], the wave packet traverses faster through a
higher barrier than a lower one with the same and wide-enough
barrier width. Therefore, the transmitted wave packet with
negative or positive nonlinearity spends more or less time than
the linear one in the barrier.

Now we turn our attention to the quantitative calculation
for the tunneling time of the BEC wave packet through a
laser-induced barrier. For a finite wave packet transmitting
through a barrier, we cannot use the usual stationary phase
method to find the transmission time of the transmitted
wave packet because the condition for the stationary phase
method is not satisfied in this situation. However, the widely
used time-of-flight method is applicable for measuring the
transmission time of the transmitted wave packet [26]. The
method is described as follows. Assume that the incident
wave packet is placed at position x(0) = −x0 (x0 > 0) at time
t = 0, somewhere to the left of the barrier, and let it move
to the right with initial momentum k0. After transmitting
through the barrier, the position of the transmitted wave
packet is located in x(tT ) at time t = tT . Due to the effect
of the barrier and nonlinear interaction, the transmitted wave
packet is usually deformed. In this case, the appropriate way
to describe the center of the transmitted wave packet is to
define the expected position of the transmitted wave packet
as x(tT ) = ∫

x>0 x|ψ(x,t)|2dx/
∫
x>0 |ψ(x,t)|2dx [27]. In this

way, one gets the tunneling time

�t = tT − x(0) − L/2

k0
− x(tT ) − L/2

k̄0
, (9)
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FIG. 4. Tunneling time as a function of nonlinear interaction
strength. Other parameters are k0 = 0.6, V0 = 1, and L = 6.

where k̄0 is the center transmitted momentum, defined as

k̄0 =
∫

k|ψT (k)|2dk, (10)

with ψT (k) the momentum distribution of the transmitted wave
packet.

First, we study the dependence of tunneling time on the
nonlinear interaction. Figure 4 plots the behavior of the
tunneling time via nonlinear interaction strength. Obviously,
the tunneling time decreases as the nonlinear interaction
strength increases. This means that the stronger the repulsive
interatomic interaction is, the faster the BEC wave packet
traverses through the barrier. It is interesting to note that
the tunneling time is negative for large positive nonlinearity.
The negative tunneling time implies that the transmitted wave
packet exits the barrier just before the incident wave packet
arrives at the barrier. Such a phenomenon has been found and
discussed in the literature for many situations [28,29]. Here
the negative tunneling time is due to the repulsive interatomic
interaction and is completely a nonlinear quantum mechanical
phenomenon for an atomic Bose-Einstein condensate.
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FIG. 5. Tunneling time as a function of barrier width with
nonlinear strength g0 = 0 (solid line), g0 = 5 (dashed line), and
g0 = −2 (dash-dotted line). Other parameters are k0 = 0.6 and
V0 = 1.
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Now, we examine the dependence of tunneling time on the
barrier width as shown in Fig. 5. We find that tunneling time in
linear and positive nonlinear cases decreases, but it increases
in the negative nonlinear case with increasing barrier width.
These results imply that the Hartman effect is violated in both
nonlinear and linear cases. For the linear case, such a violation
is due to the finite width of the incident wave packet. This
has been touched on in many theoretical and experimental
works [22–24].

In summary, we have numerically studied the effect of
nonlinear interatomic interaction on the quantum tunneling
time of a BEC matter wave packet through a laser-induced
barrier. Analysis shows that both the sign and the strength of
nonlinear interaction significantly affect the tunneling time.

As a result, the so-called the Hartman effect in linear quantum
mechanics could be violated in nonlinear quantum mechanics
with a macroscopic matter wave packet of a Bose-Einstein
condensate.
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