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Noise effect on fidelity of two-qubit teleportation
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We investigate the effect of noise on a class of four-qubit entangled channels for two-qubit teleportation
from Alice to Bob. These entangled channels include both parallel Bell pairs and inseparable channels with
genuine multipartite entanglement. For the situation where only Bob’s share of the entangled channel is subject
to decoherence, we show by deriving a general expression for the teleported state that teleportation using noisy
inseparable channels is equivalent to teleportation using noisy Bell pairs. When Alice’s qubits are also subject to
noise, we find that the inseparable channels never give a higher teleportation fidelity than Bell pairs, even in the
presence of collective noise. Our results can shed some light on practical two-qubit teleportation.
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Quantum teleportation, a protocol that transports an un-
known quantum state from Alice to Bob without transferring
the physical carrier of the state, is one of the most unusual
communication tasks enabled by quantum theory [1]. The
quantum resource that makes teleportation possible is the
shared entangled state. A maximally entangled state enables
perfect teleportation not only of a qubit, but also of the state of
a composite system. However, unavoidable interaction with
the environment results in decreasing or even sudden loss
of entanglement [2]. A nonmaximally entangled quantum
resource affects the quality of teleportation [1,3–6]. Optimal
protocols for teleporting a single particle have been studied for
both pure [4] and mixed [5] nonmaximally entangled channels.
The dynamics of teleportation fidelity in the presence of some
specific types of noise has also been investigated for single-
qubit teleportation [6]. Interestingly, the fidelity of single-qubit
teleportation is not a monotone of the entanglement [7] and
can even be increased by local noise for some mixed states [8].

For teleportation of a composite system, there are generally
two methods that achieve unit fidelity in the noiseless case.
One method is to teleport it “piece by piece” using parallel
entangled channels containing only pairwise entanglement
[9,10], which has been experimentally realized [11]. One can
also teleport the system as a whole using an inseparable en-
tangled channel containing genuine multipartite entanglement
[12–14], where multiqubit operations are required. For two-
qubit teleportation, an explicit protocol E0 has been proposed
[13] and extended to the case of noisy entangled channels [14].
In the regime of E0, the enhancement of fidelity by local noise
has also been observed [15].

In this Brief Report, we aim at solving the following
problem: To teleport a two-qubit state, which of the entangled
channels, Bell pairs or inseparable channels, are less affected
by local noise? For the case where only Bob’s partition of the
channel is subject to noise, we derive a general expression for
the teleported state and find that teleportation using the noisy
inseparable channels is equivalent to teleportation using the
noisy Bell pairs in the regime of E0. When Alice’s qubits are
also subject to noise, we investigate the effect of some specific
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noises and find that a tensor product of Bell pairs is less affected
by local noises, even when collective noises are considered.
The interesting effect of enhancing the teleportation fidelity
by local noises is also discussed.

As a preparation, we first give a general description of
a standard teleportation protocol R0, which can be reduced
to specific teleportation protocols such as E0. Suppose Alice
wants to transport to Bob an unknown state

|ψ〉c =
d−1∑
i=0

αĩ |ĩ ′〉, (1)

where |ĩ ′〉 = S|ĩ〉, S is a given d × d unitary operator, and the
|ĩ〉’s are orthogonal state bases of a d-level particle or a system
of n particles with d = d1d2 · · · dn (where dj is the dimension
of particle j ). She prepares a bipartite maximally entangled
state

∣∣�0̃
S

〉
ab

= 1√
d

d−1∑
i=0

|ĩ ĩ ′〉ab = Ia ⊗ Sb

∣∣�0̃
I

〉
ab

(2)

and sends the partition b to Bob in order to build the entangled
channel. First, Alice projects her two partitions a and c on the
bases

∣∣�j̃

S

〉
ac

= Ia ⊗ U (j̃ )
c

∣∣�0̃
S

〉
ac

, j = 0,1, . . . ,d2 − 1. (3)

Here the unitary operations U (j̃ ) are orthogonal in the sense that
Tr(U (j̃ )†U (k̃)) = dδj̃ k̃ , which ensures that Alice’s measurement
bases are normalized and orthogonal. The result j̃ is then sent
to Bob through a classical channel, and Bob knows that the

(unnormalized) state of his partition becomes ac〈�j̃

S |(|ψ〉c ⊗
|�0̃

S〉ab) = (1/d)U (j̃ )†|ψ〉b, so he needs only to implement the
unitary operation U (j̃ ) on his partition to perfectly recover the
unknown input state.

This protocol R0 reduces to T0 for single-qubit telepor-
tation when d = 2, S = U (0̃) = I ≡ σ 0, and U (1̃) = σx ≡
σ 1, U (2̃) = iσ y ≡ σ 2, U (3̃) = σ z ≡ σ 3 (where I is the identity
operator and σx,y,z are Pauli matrices). In contrast, R0 reduces
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to E0 when d = 4, {0̃,1̃,2̃,3̃} = {00,01,10,11}, U (ij ) = σ i ⊗
σ j ,

S = V (θ,φ) ≡

⎛
⎜⎜⎜⎝

cos θ 0 0 sin θ

0 − sin φ cos φ 0

0 cos φ sin φ 0

− sin θ 0 0 cos θ

⎞
⎟⎟⎟⎠ , (4)

where θ,φ ∈ (−π/2,π/2], and the entangled channel
|�00

V (θ,φ)〉ab ≡ |Y 00(θ,φ)〉1234. It is easy to check that, for
θ = φ = 0 or θ = φ = π/2, |Y 00(θ,φ)〉1234 is a tensor product
of two Bell pairs, and otherwise it is an inseparable channel.
When a mixed entangled channel is considered, E0 is revised
such that the parameters θ ′,φ′ in Alice’s measurement basis
|�ij

V (θ ′,φ′)〉ac ≡ |Y ij (θ ′,φ′)〉1256 are chosen to maximize the
teleportation fidelity.

Here consider the following case: Alice prepares a four-
qubit entangled state 	1234(θ,φ) = |Y 00(θ,φ)〉1234〈Y 00(θ,φ)|
and sends qubits 3 and 4 to Bob through a noisy channel
ε34(·) = ∑

i E
(i)(·)E(i)†, where the E(i)’s are the operator

elements satisfying
∑

i E
(i)†E(i) = I. We prove the follow-

ing statement: Teleportation of an unknown input state
|ψ〉56 through the noisy entangled state �1234(θ,φ) = I12 ⊗
ε34(	1234(θ,φ)) using E0 is equivalent to transferring it through
the noisy channel

ρ tele
34 = 1

16

∑
ijk

U (jk)E(i)T U (jk)†|ψ〉34〈ψ |U (jk)T †E(i)†U (jk)†,

(5)

where T takes the form T = W (α,β) = cos α(|00〉〈00| +
|11〉〈11|) + cos β(|01〉〈01| + |10〉〈10|) + sin α(|00〉〈11| −
|11〉〈00|) + sin β(|10〉〈01| − |01〉〈10|), and α and β are cho-
sen to maximize

∑
i |Tr[E(i)W (α,β)]|2.

Notice that Eq. (5) is independent of the parameters θ

and φ in the initial entanglement resource. Recalling that
these are the only elements that determine whether mutipartite
entanglement exists in the entanglement resource, we can
safely say that in E0 the inseparable channels and Bell pairs are
equally affected in the case where Bob’s two qubits are exposed
to noise. This result can be generalized for any protocol in the
regime of R0. Now we begin to prove the statement.

Proof. The total state of the qubits to be teleported and
the entangled channel is � = |ψ〉56〈ψ | ⊗ �1234(θ,φ).
According to E0, the state of Bob’s qubits 3 and
4, after the teleportation process, takes the form
ρ tele

34 = ∑
jk U

(jk)
1256〈Y jk(θ ′,φ′)|�|Y jk(θ ′,φ′)〉1256U

(jk)† = ∑
ijk

|ϕijk〉34〈ϕijk|, where |ϕijk〉34 = 1
4U (jk)E(i)W (�θ,�φ)

U (jk)†|ψ〉34 and �θ = θ − θ ′,�φ = φ − φ′. Here we have
used the equations Ô|k〉 = ∑

l Ôlk|l〉 and V (θ,φ)V †(θ ′,φ′) =
W (�θ,�φ). Now our task is to determine θ ′ and φ′. As shown
in Ref. [14], the average teleportation fidelity associated
with mixed entangled channel � is f = (4G + 1)/5, where
G = maxθ ′,φ′ 〈Y 00(θ ′,φ′)|�|Y 00(θ ′,φ′)〉 is the generalized
singlet fraction (GSF). It is straightforward to check that the
GSF of the entangled channel �1234(θ,φ) is

G34 = max
�θ,�φ

1

16

∑
i

|Tr[E(i)W (�θ,�φ)]|2. (6)

Clearly, we should set �θ = α and �φ = β, completing the
proof.

Until now, we have studied the dynamics of teleportation
fidelity when Bob’s qubits 3 and 4 of the entangled channel
	1234(θ,φ) are subject to noise. What would happen if Alice’s
qubits were also exposed to noise? After some calculations,
we arrive at the GSF for this situation:

G1234 = 1

16
max
θ ′,φ′

∑
ij

∣∣Tr
[
E

(i)
34V (θ,φ)E(j )T

12 V †(θ ′,φ′)
]∣∣2

, (7)

where the E
(i)
12 ’s and E

(i)
34 ’s are the operator elements of the

decoherence channels on Alice’s and Bob’s qubits, respec-
tively. Here the average fidelity does depend on θ and φ. In the
following, we will investigate the effect of some specific types
of noise acting on the entangled channels {|Y 00(θ,φ)〉1234}, in
order to find out which of the entangled channels are the least
affected by the noise.

Before starting the calculation, we briefly discuss the
classical limit of the average teleportation fidelity. As proved
in Ref. [16] recently, state estimation is equivalent to 1 →
∞ quantum cloning. From Ref. [17], the optimal fidelity
of N → M quantum cloning of a d-level qudit state is
fN→M (d) = N/M + (M − N )(N + 1)/M(N + d). By set-
ting N = 1,M → ∞, and d = 4, we arrive at the optimal
estimated fidelity of a two-qubit state, fest = 2

5 , so the
teleportation is nontrivial only when its fidelity surpasses fest;
otherwise just the estimate-and-rebuild process will do the job.
Correspondingly, the classical limit of the GSF is Gcla = 1

4 .
When qubits are located separately, they interact with

their own environment independently, causing single-qubit
decoherence. The operator elements of the usual single-qubit
decoherence channels are well defined [18]. Therefore, we
are ready to calculate the dynamics of the teleportation
fidelity from Eq. (7) with {E(l)

a } = {E(i)
1 ⊗ E

(j )
2 } and {E(l)

b } =
{E(i)

3 ⊗ E
(j )
4 }. When the two local qubits 1 and 2 (or 3 and 4)

are placed closed to each other, they interact with the common
reservoir, causing collective decoherence. In the Markov limit,
such a decoherence process can be described by the following
master equation:

∂ρ

∂t
= γ12

2
(2L12ρL

†
12 − L

†
12L12ρ − ρL

†
12L12)

+ γ34

2
(2L34ρL

†
34 − L

†
34L34ρ − ρL

†
34L34), (8)

where γij is the coupling strength between qubits i and j

and the reservoir, Lij = Li + Lj , and Li is the Lindblad
operator acting on qubit i. After analytically solving this
master equation with the initial condition ρ(t = 0) = 	(θ,φ),
we calculate the dynamics of the GSF. In the following, we
present the main results concerning the properties of average
teleportation fidelities f1234(θ,φ) associated with the noisy
entangled channels.

(a) Inseparable channels never give a higher average
fidelity than Bell pairs with θ = φ = 0. Since the multipartite
entanglement contained in the inseparable channels is fragile
under single-qubit decoherence, we focus on the effect of
local two-qubit collective noise. It has been suggested [12]
that inseparable channels for two-qubit teleportation might be
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more robust under a collective noise, but we will show that
this is not true.

For the situation where collective phase-damping (CPD)
channels are applied locally to Alice’s qubits 1 and 2 as well
as Bob’s qubits 3 and 4, we solve Eq. (8) with γ12 = γ34 =
γ,Li = LPD

i ≡ a
†
i ai , and obtain the GSF

GCPD
1234(θ,t) = 1

8 max
θ ′

[
4e−γ tcos�θ+(1+e−4γ t )cos2�θ

− 1
2 (1 − e−2γ t )2 sin 2θ sin 2θ ′ + 2

]
, (9)

which reaches its upper bound GCPD
1234(t)= 1

8 (3 + 4e−γ t +
e−4γ t ) for θ = 0,π/2. Obviously, the tensor product state
|Y 00(0,0)〉1234 satisfies this condition; in other words, even
when collective phase damping is present, total teleportation
does not occur prior to a series teleportation of two qubits.
For the collective amplitude-damping (CAD) channels, we
solve Eq. (8) with Li = LAD

i ≡ ai . The expression for the GSF
GCAD

1234 (t) is quite complicated, so we present only the result in
the limit t → ∞:

GCAD
1234 (t → ∞) = 1

16 [2 + (cos θ + cos φ)2]. (10)

The upper bound of this GSF is reached only for θ = φ = 0.
The average teleportation fidelity f CAD

1234 = (4GCAD
1234 + 1)/5 is

depicted in Fig. 1 for various values of θ and φ. Clearly, the
parallel entangled pairs with θ = φ = 0 (curve B) can always
give higher teleportation fidelity than the inseparable channel
with θ = 0,φ = π/2 (curve C). This means that parallel
Bell pairs with θ = φ = 0 give strictly more teleportation
fidelity than inseparable channels in the presence of collective
amplitude damping.

Here we discuss the reason that independent channels are
not more robust than Bell pairs when collective decoherence
is present. Although the bipartite entanglements E13|24 and
E14|23 are nonzero for inseparable entangled channels, the
pairwise entanglements E1|2 and E3|4 are zero. The priority
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FIG. 1. (Color online) Average teleportation fidelity as a function
of γ t for the CAD case. Curves A, B, and C stand for the evolution
of f CAD

34 , f CAD
1234 (0,0), and f CAD

1234 (0,π/2), respectively.

of multipartite entanglement under collective noises is lost
when qubits 1 and 2 (or 3 and 4) are exposed to a common
reservoir, because no quantum correlation exists between the
two qubits 1 and 2 (or 3 and 4), just the tensor product of two
singlets. Since multipartite entanglement is fragile, it is not
surprising that |Y 00(0,0)〉1234 is the most robust of the class of
states {|Y 00(θ,φ)〉1234}.

(b) Enhancement of fidelity by local noise. The average
teleportation fidelity can be increased by local noise for some
mixed entangled channels [8,15]. It is of interest to characterize
such mixed channels and the local noises. Here, we find that
local two-qubit collective amplitude damping and single-qubit
amplitude damping can increase the fidelity of some mixed
entangled channels.

Consider a class of mixed entangled channels 	CAD
1234 (θ,φ) ≡

εCAD
34 (	1234(θ,φ)) which are obtained from 	1234(θ,φ) by

subjecting qubits 3 and 4 to two-qubit CAD. By solving
Eq. (8) with γ12 = 0, γ34 = γ , and Li = LAD

i , we analytically
calculate the GSF of 	CAD

1234 (θ,φ), GCAD
34 (t) = 1

4 (1 + e−γ t )2, and
plot the associated fidelity f CAD

34 (t) as curve A in Fig. 1. Notice
that GCAD

34 (t → ∞) = 1
4 = Gcla; Alice’s exposing of qubits 1

and 2 of the channel 	CAD
1234 (θ,φ) to CAD can increase the

average teleportation fidelity after some critical time tc, as
long as GCAD

1234 (t → ∞) > GCAD
34 (t → ∞), and, equivalently,

cos θ + cos φ >
√

2.
Consider another class of mixed entangled channels,

	AD
1234(θ,φ) ≡ εAD

3 εAD
4 (	1234(θ,φ)) obtained by subjecting

qubits 3 and 4 of the ideal channels 	1234(θ,φ) to independent
amplitude damping (AD). The operator elements of chan-
nel AD are [18] E

AD(0)
i = |0〉〈0| + √

1 − p|1〉〈1|, E
AD(1)
i =√

p|0〉〈1|, where p is a function of t : p = 0 for t =
0 and p = 1 for t → ∞. From Eq. (6), the GSF of
the channel 	AD

1234(θ,φ) is GAD
34 = 1

16 (1 + √
1 − p)4. After

Alice’s qubits 1 and 2 are also exposed to AD, the as-
sociated GSF GAP

1234(θ,φ) can be directly calculated from
Eq. (7). By setting θ = θ ′ and φ = φ′, we obtain the
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FIG. 2. (Color online) Average teleportation fidelity as a function
of γ t for the AD case. Curves A, B, C, and D are, respec-
tively, the evolution of f AD

34 , and the lower bounds of f AD
1234(0,0),

f AD
1234(0, arcsin

√
0.1), and f AD

1234(0,π/2).
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lower bound of the GSF, GAP
1234(θ,φ) � 1

4 [1 + (1 − p)2]2 −
1
4p2(2 − p)2 sin2 θ − 1

2p2(1 − p) cos2 θ sin2 φ. We plot the
lower bound of the associated teleportation fidelity f AP

1234(0,φ)
with φ = 0, arcsin

√
0.1, and π/2, as well as f AP

34 = (4GAD
34 +

1)/5, in Fig. 2. Notice that f AP
1234(0,π/2) (curve D) becomes

larger than f AP
34 (curve A) after it has fallen below the classical

limit fest = 2/5, so the enhancement of fidelity by noise on
Alice’s qubits is trivial. For φ = 0 or arcsin

√
0.1 (curves B

and C), there exist regions of p where f AP
1234(0,φ) > f AP

34 � fest

holds. This means that, after Bob’s qubits 1 and 2 have
inevitably been subjected to individual amplitude damping,
Alice’s exposing of her two qubits to individual amplitude
damping can enhance the ability of the four-qubit entangled
channel to teleport the two-qubit quantum state. Recalling that
single-qubit amplitude damping cannot increase the GSF of the
class of mixed entanglement resource discussed in Ref. [15],
we see that our result gives a complementary result for those
states whose associated fidelity can be enhanced by local
noise.

In summary, we have investigated two-qubit teleportation
through a class of four-qubit noisy entangled states and found
that, in the presence of noise, the tensor product of Bell pairs
is more suitable as an entangled channel than inseparable
entangled channels. For the situation in which Bob’s partition
of the entangled channel is subject to decoherence, we have
shown that Bell pairs and inseparable channels are equally
affected. For the case where Alice’s qubits 1 and 2 are also
exposed to noise, we have investigated the effect of some
explicit noises by calculating the associated teleportation
fidelity of the noisy entangled channels. Both single-qubit
and local two-qubit collective noisy channels have been
considered, and we concluded that inseparable entangled
channels never give a higher teleportation fidelity than the Bell
pairs.
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