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Solution and entanglement dynamics of a cavityless optomechanical system with Gaussian states
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We use the symplectic transformation of the known linear optical elements to investigate the dynamical
evolution of a three-mode cavityless optomechanical system and give explicit formulas for the input and output
covariance matrices of the three mode fields when the initial state is Gaussian. Unlike the conventional approaches,
the present one does not necessitate solution of the equation of motion of such a system. We study the dynamical
behavior of bipartite entanglement in this system when the mirror vibrational mode is initially in a single-mode
squeezed vacuum state and each of the two reflected optical sideband modes is in the vacuum state. It is found that
the entanglement configuration alternates between a fully separable state and a continuous-variable entangled
state during evolution.
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Quantum entanglement is one of the most striking prop-
erties of the quantum world and has played a crucial role in
some of the studies connected with the foundations of quantum
mechanics [1] and in quantum computing and quantum
information processing [2], for which an important goal is to
generate entangled states of discrete- and continuous-variable
quantum systems. It is well known that quantum continuous
variables are intrinsically easier to manipulate experimentally
than their discrete counterparts by use of linear optical
elements. In continuous-variable settings, the information is
encoded in the two quadrature phase amplitudes of quantum
systems such as optical fields and atomic ensembles, which can
be efficiently measured by homodyne detection. Therefore,
there has recently been increasing interest in the generation of
entangled continuous-variable systems. A known example is
optomechanical entanglement in a cavityless optomechanical
system where the radiation pressure of an optical beam incident
on a mirror can realize an effective coupling between a mirror
vibrational mode and the two reflected optical sideband modes
of the incident carrier beam [3]. There are two different
approaches to analysis of the dynamical evolution of such
a system. One approach is to derive the expressions for the
time-dependent boson operators of the quantum system from
the Heisenberg evolution of motion. The other approach is the
phase-space one, that is, the master equation of the density
operators is mapped into the resulting Fokker-Plank equation
using the standard operator correspondence. However, in such
methods, the sets of coupled differential equations for the
time-dependent coefficients need to be considered, and this
is difficult. Hence, the results in previous work have been
limited to some rather special cases, for example, the two
sideband modes in the vacuum state and the mirror vibrational
mode in the thermal state. No explicit formula for the general
input states is given there.

Gaussian states are essential in quantum information
processing with continuous variables. Experimental schemes
for generation of multimode entangled states have already
been proposed and demonstrated [4]. In particular, there
have been many studies of the production of multipartite
entanglement via beam splitters using many different input
Gaussian states [5]. It is, therefore, of interest to find the
solution of the evolution equations for a cavityless optome-
chanical system when the initial input states are Gaussian.

In this Brief Report, we are going to use a distinct method.
That is, we first change the interaction Hamiltonian of the
studied system into the beam-splitter Hamiltonian, including
a collective mode and one vibrational mode of the mirror
applying the canonical transformation. Then, by means of the
symplectic transformation of the beam splitter, we can obtain
an explicit formula for the covariance matrix of the output state
if the initial state of the system is a rather general Gaussian
state. Compared with the methods mentioned previously, the
advantage of our method is that there is no need to solve the
sets of coupled differential equations for the time-dependent
coefficients, and accordingly it is simple and efficient.

Our model system consists of a perfectly reflecting mirror
and intense quasimonochromatic laser beam incident on its
surface (see Fig. 1 in Ref. [3]). When the laser beam
impinges on the mirror, it is reflected into an elastic carrier
mode characterized by the annihilation operator b̂ and two
additional weak inelastic sideband modes characterized by the
annihilation operators â1 and â2, respectively. The effective
Hamiltonian describing the interaction can be written as
(h̄ = 1) [3]

Ĥ eff = −iµ(â1b̂ − â
†
1b̂

†) − iν(â2b̂
† − â

†
2b̂), (1)

where µ and ν are coupling constants proportional to
√

P ,
with P the incident laser power. In what follows, we derive
the covariance matrix of the evolved state by means of the
symplectic transformation of the known beam splitter. With
this aim, we need to introduce a 6 × 6 matrix,

B = 1

µ�

⎛
⎜⎜⎜⎝

0 −µ2 −ν2 ν�

−µ2 0 ν� −ν2

−µν 0 µ� −µν

0 −µν −µν µ�

⎞
⎟⎟⎟⎠

⊕ (
1 0

0 1

)
,

(2)

with �2 = ν2 − µ2, such that the old operators are related to
the new operators by

(â1,â
†
1,â2,â

†
2,b̂,b̂†)T = B(ĉ1,ĉ

†
1,ĉ2,ĉ

†
2,b̂,b̂†)T . (3)

It is easy to verify that these new operators satisfy the
commutation relations [ĉi ,ĉ

†
j ] = δij (i,j = 1,2). Under this
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canonical transformation, the effective Hamiltonian Eq. (1)
can be given in the form

Ĥ eff = i�(ĉ1b̂
† − ĉ

†
1b̂). (4)

One sees that the time-evolution operator Û (t) for such a
Hamiltonian is equivalent to a beam-splitter operator with the
field mode b and the reduced mode c1 as its input ports, and is
given by

Û (t) = exp[�(ĉ†1b̂ − ĉ1b̂
†)], (5)

where � = �t determines the transmissivity τ = cos2 �. It
is shown that, under the action of the beam splitter, the
output states preserve their Gaussian form if the input states
are Gaussian. Then, the input-output covariance matrix of a
two-mode Gaussian state through a beam splitter is found
as [6] σout = ST

BSσinSBS, where the symplectic transformation
SBS associated with the evolution operator (5) of the beam
splitter can be written, in terms of phase-space quadrature
variables, as

SBS =

⎛
⎜⎝

√
τ I2 0

√
1 − τ I2

0 I2 0

−√
1 − τ I2 0

√
τ I2

⎞
⎟⎠ , (6)

where I2 is the 2 × 2 identity matrix, and for the sake of
completeness of notation later, the mode c2 has been taken
into account in Eq. (6).

We assume that the three modes are initially in a pure
Gaussian state represented by the characteristic function
χ ({ξ1,ξ2,ξb},0) = exp[− 1

2�T V3(0)�] with V3(0) being the
initial covariance matrix. Using Eqs. (2) and (6) and by a
simple calculation, we find that the time-dependent matrix of
the three modes is given by

V3(t) = GT V3(0)G, (7)

where G = BESBSE−1B−1
is given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 0 0 g1 0 −g2

0 f1 g1 0 −g2 0

0 −g1 f2 0 −g3 0

−g1 0 0 f2 0 −g3

0 −g2 g3 0 f3 0

−g2 0 0 g3 0 f3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where f1 = [ν2 − µ2 cos(�t)]/�2, f2 = [ν2 cos(�t) − µ2]/
�2, f3 = cos(�t), g1 = µν[cos(�t) − 1]/�2, g2 = µ sin

(�t)/�, g3 = ν sin(�t)/�, and E = ⊕3
n=1

1√
2
( 1 i

1 −i
).

It is seen that the calculation becomes an easy task and our
method provides an intuitive picture of the evolution process
governed by the Hamiltonian (1). That is, the total transforma-
tion G consists of the linear canonical transformation B, the
unitary transformation E, and the symplectic transformation
SBS of the beam splitter, but the last plays a central role in
the derivation of the matrix (7). It is interesting to note that
the effective Hamiltonian (1) describes in fact two interlinked
bilinear interactions occurring among the three modes. One
is a nondegenerate parametric amplifier (two-mode squeezer)
via which continuous-variable entanglement can be produced

between modes 1 and b. The other is a parametric converter
(beam splitter) that can lead to the possibility of exchange
of quantum information between modes 2 and b. Therefore,
one might expect that the total transformation G should be
a mixture of the symplectic transformations of the two-mode
squeezer and the beam splitter. In order to see this point clearly,
let us apply the canonical transform E on the matrix (8),
leading to

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 0 g1 0 g2 0

0 f1 0 −g1 0 −g2

−g1 0 f2 0 g3 0

0 g1 0 f2 0 g3

g2 0 −g3 0 f3 0

0 −g2 0 −g3 0 f3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

We can easily see that, for the case of µ = 0, the matrix (9)
corresponds to the symplectic transformation of a beam splitter
with transmissivity τ = cos2(νt), whereas ν = 0 means that it
is the symplectic transformation of a two-mode squeezer with
squeezing r = µt . So we call the matrix (9) the symplectic
transformation of the Hamiltonian (1). In addition, it is
interesting to find that the same symplectic transformation (9)
may be available in terms of the symplectic transformation of
a two-mode squeezer by setting ĉ1 = (1/�)(µâ1 − νâ

†
2) and

ĉ2 = (1/�u)[u(�â
†
2 + νâ2) − ν(νâ

†
1 + �â1)].

As an example of our approach, let us consider the situation
in which the mirror is initially in a squeezed vacuum state and
the two other modes are in the vacuum states, namely, the
initial covariance matrix of the system can be written as

V3(0) =
⊕
n=1,2

(
1 0

0 1

) ⊕ (
cosh r sinh r

sinh r cosh r

)
, (10)

with the parameter r ∈ R. Substituting Eq. (10) into Eq. (7)
and using a local linear unitary Bogolinbov operation [7], we
find the time-dependent covariance matrix for the three modes:

V3(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V11 0 V13 0 V15 0

0 V22 0 V24 0 V26

V ∗
13 0 V33 0 V35 0

0 V ∗
24 0 V44 0 V46

V ∗
15 0 V ∗

35 0 V55 0

0 V ∗
26 0 V ∗

46 0 V66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where the asterisk means the complex conjugate, and the
matrix elements are given by

V11 = x4 + cos2(�t) + h1

(x2 − 1)2
+ er sin2(�t)

|√x2 − 1|2 , (12a)

V22 = x4 + cos2(�t) + h1

(x2 − 1)2
+ e−r sin2(�t)

|√x2 − 1|2 , (12b)

V33 = x4 cos2(�t) + h1 + 1

(x2 − 1)2
+ x2er sin2(�t)

|√x2 − 1|2 , (12c)

V44 = x4 cos2(�t) + h1 + 1

(x2 − 1)2
+ x2e−r sin2(�t)

|√x2 − 1|2 , (12d)
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FIG. 1. Time evolution of Gi|(jk) for four different cases: (a) x = 0.5, r = 0.3, (b) x = 1.5, r = 0.3, (c) x = 0.5, r = 2, and (d) x = 1.5,

r = 2. In all subplots the solid line refers to G1|(2b), the dotted to G2|(1b), and the dashed to Gb|(12).

V13 = −x(1 + x2)[1 − cos(�t)]2

(x2 − 1)2
− xer sin2(�t)

|√x2 − 1|2 , (12e)

V15 = −2x2 sin(�t) + h2

(x2 − 1)3/2
− er sin(�t) cos(�t)

(
√

x2 − 1)∗
, (12f)

V24 = x(1 + x2)[1 − cos(�t)]2

(x2 − 1)2
+ xe−r sin2(�t)

|√x2 − 1|2 , (12g)

V26 = 2x2 sin(�t) − h2

(x2 − 1)3/2
+ e−r sin(�t) cos(�t)

(
√

x2 − 1)∗
, (12h)

V35 = −x[h2 − 2 sin(�t)]

(x2 − 1)3/2
− xer sin(�t) cos(�t)

(
√

x2 − 1|)∗ , (12i)

V46 = −x[h2 − 2 sin(�t)]

(x2 − 1)3/2
− xe−r sin(�t) cos(�t)

(
√

x2 − 1)∗
, (12j)

V55 = (1 + x2) sin2 �t

|√x2 − 1|2 + cos2(�t)er , (12k)

V66 = (1 + x2) sin2 �t

|√x2 − 1|2 + cos2(�t)e−r , (12l)

where h1 = [1 + cos2(�t) − 4 cos(�t)]x2, h2 = (1 + x2)
sin(�t) cos(�t), and x = ν/µ.

We now turn to the investigation of the entanglement
dynamics of the tripartite system under consideration. It has
been shown that the nonpositive partial transposition criterion
is necessary and sufficient for 1 × N bipartite continuous-
variable (CV) Gaussian states [8]. Recently, Adesso et al.
put forward the Gaussian contangle 1 × 2 Gi|(jk) as an

entanglement measure of 1 × 2 partition of the pure three-
mode Gaussian state [9]. The 1 × 2 Gi|(jk) is defined as [9]

Gi|(jk) := arcsinh2(√m2
i|(jk) − 1

)
. (13)

Here mi|(jk) = Det(σi) with σi being the reduced CM of the
mode i obtained from Eq. (11) by tracing over the degrees of
freedom of the two other modes.

In Fig. 1 we plot the time evolution of the 1 × 2
entanglement Gi|(jk) under different conditions. It is seen
that, in a closed system of three interacting oscillators,
the dynamics of bipartite entanglement of 1 × 2 partitions
oscillates periodically. The periods of G1|(2b) and G2|(1b) are
twice as large as that of Gb|(12). According to the classification
scheme of three-mode CV states in Ref. [10], we find that
the evolved state of our tripartite system may belong to
three different entanglement classes: (1) fully separable states,
(2) one-mode biseparable states, and (3) fully inseparable
states (or genuine tripartite entanglement). At the times
t = (2n + 1)π/� for n = 0,1,2, . . . , mode b is disentangled
from the modes 1 and 2, whereas the modes 1 and 2 are
prepared in a two-mode squeezed state with the two-mode
squeezing parameter arcsinh[4x(1 + x2)/(x2 − 1)2]. That is,
the evolved state becomes a one-mode biseparable state. When
the interaction time is t = 2nπ/� for n = 0,1,2, . . . , our
tripartite system is prepared in a mixture of the product states.
It is not difficult to see from Eq. (11) that in this case our
system evolves back to its initial state, that is, the modes 1 and
2 are in vacuum states and mode b in the squeezed vacuum
state. We also find that, except at these isolated time instants,
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the 1 × 2 entanglement Gi|(jk) is always greater than zero,
implying that each mode is in an entangled state with the
remaining two modes taken as a whole for any nonzero value
of the ratio between coupling constants x. Thus, this state is
said to be fully inseparable,that is, it contains genuine tripartite
entanglement.

Finally, we would to make some remarks on the method
presented here. We note that quantum dynamical evolution
in some physical systems can be described by the same
Hamiltonian as Eq. (1); these systems include a Bose-Einstein
condensate driven by a far-off-resonant pump laser and
interacting with a single mode of an optical ring [11], the
interlinked bilinear interactions taking place in a single-χ (2)

nonlinear medium [12], the cascaded nonlinear interaction
in an optical cavity with quansiperiodic superlattice [13],
and the coherent interaction between a laser-driven single
trapped atom and an optical high-finesse resonator [14];
therefore, their dynamical evolutions can be solved exactly
using our approach if the initial states are of Gaussian form.

We also see that the method can be exploited to investigate
the dynamics of a quadrature quantum system in which the
bilinear transformations leave the Gaussian character invariant.
Nevertheless, to date, the symplectic transformations of only a
few linear optical elements have been found [15]. Hence, our
investigation provides a direct and effective way to construct
the symplectic transformations associated with quantum sys-
tems such as multisplitter [16] and multimode squeezing [17].
In summary, we have presented an elegant way to solve the
equation of motion for a system in which a laser field impinges
on a mirror and obtained the input-output relation of the
evolved state if the initial state is Gaussian. We have studied
the bipartite entanglement dynamics in such a system when the
mirror vibrational mode is initially in a single-mode squeezed
vacuum state and two reflected optical sideband modes are in
vacuum states, and found that the evolved state may belong
to three different entanglement classes during the evolution:
(i) fully inseparable, (ii) one-mode biseparable, and (iii) fully
separable states.
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