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Size dependence of second-harmonic generation at the surface of microspheres
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The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene
microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength
for two different second-harmonic-enhancing dyes—malachite green and pyridine 1. The two dyes gave the
same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to
the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model
predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with
respect to the strong modulations. The standard NLRGD model was found to fail altogether in the present particle
size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models
give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle
refractive indices instead of those of the surrounding medium extended its applicability range by almost an order
of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is
close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate
to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface
have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the
optimal one for SHG.
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I. INTRODUCTION

Second-harmonic generation (SHG) at the surface of small
centrosymmetric particles was first demonstrated about a
decade ago [1–3]. Since then it has been employed to probe
numerous physical and chemical processes occurring at the
surfaces of such particles and its application to colloids
provides complementary or unique tools in medicine and
technology [4,5]. Examples of these uses include the char-
acterization of molecular adsorption on polymer beads as well
as clay and carbon black particle surfaces [6–8], emulsions
and sprays [6,9], and biological vesicles [10]. Moreover, SHG
was used to observe molecular transport across a biological
membrane [10–12] and was found to be sensitive to the
membrane potential of individual cells [13]. The most recent
advances include the observation of SHG from single spheres
in solution [14], complementing the earlier demonstration for
a sphere fixed on a substrate [15], the development of a theory
for the implementation of whispering gallery modes [16], as
well as the observation of the large SHG enhancement due
to covalent bonding of the nonlinear molecules to the surface
of the dielectric spheres in colloidal crystalline arrays with
photonic crystal properties [17].

The practical interest of SHG from small particles has
spurred a growing number of investigations on the related
fundamental physical phenomena [4,5]. For surface-related
SHG, the exploration has been restricted mainly to spherical
nanoparticles and clusters for which the size parameter kω

ma �
1, with kω

m denoting the incident wave-vector magnitude in
the surrounding medium and a the particle radius. In this
Rayleigh scattering regime, the studied fundamental physical
properties are the particle size and shape effects [18–21], the
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particle concentration dependence [22,23], the polarization
dependence, and the angular distribution of second-harmonic
(SH) light [18,20–22,24–30]. It was shown that the total
SH scattering intensity per particle scales monotonically as
(kω

ma)6 [26].
The few studies dealing with microspheres (i.e., kω

ma ∼ 1)
[14,21,24,25,27,30], have revealed a considerably more com-
plex dependence on the particle size. The angular distribution
of SH light changes dramatically with kω

ma [21,25] and the
overall SHG increases less rapidly than in the Rayleigh
range [14]. This is in accordance with calculations based on
full nonlinear Mie scattering theory [18,21], which indicate
that the total SH scattering intensity in this range develops
an oscillatory variation with kω

ma. Arguably, however, the
employed boundary conditions at the surface of the sphere
in these calculations are not quite adequate for systems with
resonance enhancement from an adsorbate layer, in which
case a polarization sheet model [26] seems more appropriate.
So far, no applications of the polarization sheet model to
systems of the kind in the present experimental study have been
published. However, the two different treatments of the particle
boundary region were found to yield significantly different
SH scattering properties of small metallic particles [18,26],
which means that one could suspect qualitatively similar
deviations for adsorbate-enhanced optical SHG from dielectric
microspheres.

In view of the prevailing uncertainty adhering to the
treatment of the boundary layer in the rigorous nonlinear
Mie scattering calculations, we resort here to the significantly
simpler nonlinear versions of the Wentzel-Kramers-Brillouin
(NLWKB) [27] and Rayleigh-Gans-Debye (NLRGD) models
[22,24–27,29,30]. The frequently employed NLRGD model
was found to reproduce measured SH polarization properties,
angular distributions, and size dependence for nanoparticles
with kω

ma � 1 [28,29], and it has been suggested [25] that
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the NLRGD model correctly describes these properties for
microparticles as well. Despite the apparent success [25], the
validity of the RGD approximation in the latter size range
can be questioned, as it is inadequate already for linear Mie
scattering [31]. For particles of this size, NLWKB theory [27]
is appropriate. Its applicability, however, could be expected to
rely on the refractive indices of the medium and the particle
not being too different [32].

Here we address the issue of the size dependence of optical
SHG at the particle surface and the validity of the NLRGD,
in a generalized form to allow for a dispersive medium, and
NLWKB theories for kω

ma � 1. For this purpose, micron-sized
polystyrene (PS) spheres in an aqueous solution of organic dye
were chosen. To get an indication of the relative importance
of the geometric versus molecular properties for the SHG
efficiency, we employed two dyes to effect surface SHG
resonance enhancement: the malachite green (MG) molecule,
commonly used in the present context [1–8,10,23,24,28,29],
and the previously not used pyridine 1 (Pyr1) dye, also known
as LDS698. For a fundamental wavelength of 850 nm, we
report an experimental observation of strong modulation in
the total scattered intensity for particles with 0.45 < a <

1.5 µm or, correspondingly, 4.3 < kω
ma < 14.2. Moreover,

the size variation, within experimental uncertainty, is the
same for both adsorbed dyes, which indicates that the size
dependence is quite insensitive to the particular properties of
the adsorbate and thus the geometric variation is the decisive
condition. We derive an analytic expression for the total
scattering intensity within the generalized NLRGD model and
show that neither it nor the NLWKB theory reproduces the
measured oscillations which were predicted qualitatively in
full nonlinear Mie scattering calculations [21]. Nevertheless,
the NLWKB model does reproduce the overall trends in the
size dependence, whereas the generalized NLRGD theory does
not.

The outline of the paper is as follows. In Sec. II we derive
a generalized NLRGD expression for the scattered SH field,
allowing for a dispersive medium and choice of reference for
the refractive indices, and relate it to those of the standard
NLRGD and the NLWKB models. The experimental setup,
sample preparation, and signal extraction are then detailed
in Sec. III. The chemical and physical properties of the
two dye adsorbate layers and the factors influencing them
are established in Sec. IV. The results of the calculations
and experiments then are shown in Sec. V and discussed in
Sec. VI. Finally, the main conclusions of our work are
summarized in Sec. VII.

II. THEORETICAL

Consider a plane wave of angular frequency ω incident on
a spherical particle with a SHG enhancing homogeneous layer
of molecules adsorbed on its surface. The optical properties
of the particle (p) and its surrounding medium (m) are taken
to be characterized by the real refractive indices nω

p and nω
m

for the incident light and n2ω
p and n2ω

m at the SH frequency. In
the present context, it turns out, the relevant quantity at each
frequency is the relative refractive index

ηi = ni
p/ni

m, i = ω,2ω. (1)

FIG. 1. Cartesian (X,Y,Z) and spherical (r,θ,φ) coordinate sys-
tems and vectors defining the SH scattering geometry. See text for
details.

We assume that SHG occurs neither in the bulk of the particle
nor in the surrounding medium.

The coordinate systems and vectors used to describe the
SH scattering process are shown in Fig. 1. A right-handed
laboratory Cartesian coordinate system (X,Y,Z) with the
corresponding basis vector set {�i, �j,�k} is placed with its origin
at the particle center. The wave vector �kω

m of the incoming field
dependent on position �r ,

�Eω
0 (�r) = �e0E

ω
0 ei�kω

m·�r , (2)

is taken to define the Z axis. The X axis is taken to lie in
the scattering plane spanned by the Z axis and a particular
direction of SH light scattering conveniently described in
a spherical coordinate system (r,θ,φ) with basis vectors
{�er ,�eθ ,�eφ}, as indicated in the figure. Thus, we can write the
incoming field polarization vector as �e0 = cos φ �i − sin φ �j ,
where p and s components correspond to those of �i and
�j , respectively. Similarly, the scattered SH wave far away
from the particle is characterized by the wave vector �k2ω

m =
k2ω

m �er which, by definition, lies in the XZ plane for any
direction of �e0. Its polarization vector can be decomposed
into an s component parallel to �eφ and a p component in the
direction of �eθ . Finally, we define the SH scattering vector
�q 2ω = 2�kω

m − �k2ω
m = q2ω�ν; its direction is given by the unit

vector �ν.
The scattered SH field �E2ω

sc (�r) originates in the polarization
�P 2ω(�r ′) = ε0χ

(2)(�r ′) �Eω
inc(�r ′) �Eω

inc(�r ′) induced by the incident
electric field �Eω

inc(�r ′) and mediated by the second-order suscep-
tibility tensor χ (2)(�r ′) multiplied by the vacuum permittivity
ε0. The incident field �Eω

inc(�r ′) is the incoming field �Eω
0 (�r ′)

modified, in general, by propagation through the particle. Only
the adsorbate layer is assumed to contribute to the SHG. Ac-
cordingly, we take χ (2)(�r ′) to be of the form χ (2)

s (θ ′,φ′)δ(r ′ −
a), where χ (2)

s (θ ′,φ′) is the second-order surface susceptibility
tensor and δ(r ′ − a) is a Dirac delta function where r ′ = | �r ′|
and a is the particle radius. The χ (2)

s (θ ′,φ′) term is related to the
molecular hyperpolarizability β(2) by spatial averaging over
the orientations of adsorbed molecules [33]. Here we assume
that the homogeneous adsorbate layer possesses either 4mm,
6mm, or ∞mm local symmetry. For SHG this means that there
are only three nonvanishing and independent elements of χ (2)

s ,
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namely, χ (2)
⊥⊥⊥, χ (2)

⊥‖‖, and χ
(2)
‖⊥‖ = χ

(2)
‖‖⊥, where ⊥ and ‖ refer to

the local directions perpendicular and parallel to the surface,
respectively [34]. Note that from the form of χ (2)(�r ′) it follows
that only the fundamental field at the particle surface �Eω

s (�r ′)
is relevant; that is, in the expression for �P 2ω(�r ′) we can make
the substitution �Eω

inc(�r ′) → �Eω
s (�r ′).

The differential SH power radiated into the direction �er is
obtained as

dW 2ω(θ,φ)

d

= 1

2

√
ε2ω

m

µ
r2

∣∣ �E2ω
sc (�r)

∣∣2
, (3)

in which ε2ω
m is the dielectric function of the medium at the SH

frequency and µ is the corresponding magnetic permeability.
Consequently, the integrated SH power in a finite solid angle

 is

W 2ω

 =

∫



d
′ dW 2ω(θ ′,φ′)
d
′ . (4)

For comparison between calculated and measured signals, we
introduce a fractional SH scattering efficiency into the solid
angle 
,

Q2ω

 = 1

4π

√
µ

ε2ω
m

W 2ω



a2
(
Wω

0

/
A

)2 , (5)

where Wω
0 /A is the average intensity (i.e., power per unit

area) for an incoming beam of cross section A. By definition,
then, Q2ω


 is independent of the incident intensity and the
surrounding particle medium.

A. Generalized NLRGD approximation

The simplest model to be treated in detail here is NLRGD.
In the spirit of the linear RGD approximation [31,35], the
propagations of the incident and scattered fields are taken to
be unperturbed by the presence of the particle. In its usual
formulation, dispersion in the materials is ignored so that
one can introduce a frequency-independent relative refractive
index η. The wave vectors, likewise, do not depend on the
medium and the magnitudes can be replaced by k2ω = 2kω.
These approximations taken together lead to the set of validity
conditions

{|η − 1| , |ρ| , |ζ − 1|} � 1, (6)

where ρ = 4kωa(η − 1) and ζ = n2ω/nω. The analytical ex-
pression for �E2ω

sc (�r) obtainable under these conditions has been
discussed by several authors [26,27,29,30]. Note, however,
that these formulations differ from each other in different and
nontrivial ways, which we return to below. Before that, we
derive an analytical expression for �E2ω

sc (�r) within a generalized
NLRGD (gNLRGD) theory. For this purpose, we retain the
basic RGD approximation for the incident and the SH fields
but relax the restriction on the zero dispersion within the media;
that is, we allow ζ 	= 1. The driving field at the particle surface
is �Eω

s (�r ′) = �Eω
0 (�r ′) in this approximation. This allows us to

use an integral equation formulation analogous to the linear
scattering case [36]:

�E2ω
sc (�r) = 1

4πε2ω
�∇ × �∇ ×

∫
d3 �r ′ e

ik2ω |�r−�r ′ |

|�r − �r ′|
�P 2ω(�r ′). (7)

Rewriting this in terms of the SH scattering vector �q 2ω yields,
for the Cartesian components of the scattered SH field at a
large distance from the particle,

E2ω
sc,i(�r) = 1

4π

(
2ω

c

)2
eik2ωr

r

(
Eω

0

)2
a2(δij − er,ier,j )

×
∫

4π

d
′ei �q 2ω · �R′
χ

(2)
s,jkl(θ

′,φ′)e0,ke0,l , (8)

where �R′ = a �er
′ is a point on the particle surface, δij is the

Kronecker delta, and the Einstein summation convention is
implied. The difference from the simplest NLRGD theory
enters here through the SH scattering vector, which by our
generalization is given by

�q 2ω = −2kω[ζ sin θ�i + (ζ cos θ − 1)�k], (9)

for which q2ω = 2kω
√

1 + ζ 2 − 2ζ cos θ . The corresponding
NLRGD expression is easily obtained by setting ζ = 1;
however, this is not necessary in order to obtain an analytical
solution of the integral in (8). To this end, we re-express the
surface susceptibility in the form

χ
(2)
s,ijk = χ

(2)
1 er,ier,j er,k + χ

(2)
2 er,iδjk + χ

(2)
3 (er,j δik + er,kδij ),

(10)

where χ
(2)
1 = χ

(2)
⊥⊥⊥ − χ

(2)
⊥‖‖ − 2χ

(2)
‖‖⊥, χ

(2)
2 = χ

(2)
⊥‖‖, and χ

(2)
3 =

χ
(2)
‖‖⊥. Then the scattered SH field (8) can be written in terms

of the components of �ν = �q 2ω/q2ω and ν0 = �ν · �e0 as

E2ω
sc,i(�r) = i

4π

(
2ω

c

)2
eik2ωr

r

(
Eω

0

)2
a2(δij − er,ier,j )

× (
χ

(2)
1

{
(νj + 2e0,j ν0)F2(q2ωa)

− νjν
2
0 [3F2(q2ωa) − F (3)(q2ωa)]

}
−χ

(2)
2 νjF

(1)(q2ωa) − 2χ
(2)
3 e0,j ν0F

(1)(q2ωa)
)

(11)

through the functions F2(x) = F (2)(x)/x − F (1)(x)/x2 and
F (β)(x) = 4πdβj0(x)/dxβ , where j0(x) is a spherical Bessel
function of the first kind [37]. This is our analytical represen-
tation of the scattered SH field within the gNLRGD model.

As noted in connection with (9), the gNLRGD field (11)
reduces to the standard NLRGD one if n2ω → nω, and it is at
this point interesting to compare with previous and differing
formulations for this limit. Our SH field then is consistent
with that of de Beer and Roke [30] in the limit of SHG. It
is similar to that of Dadap et al. [26], except that their field
misses a factor 1/(q2ωa) without which the total SH intensity
does not follow the expected (kω

ma)6 scaling in the Rayleigh
scattering limit. Moreover, their SH scattering vector lacks the
medium dependence displayed in expression (9). Compared to
the NLRGD field in [29] there are discrepancies with respect
to the angular distributions, whereas the angular distribution in
[27] is consistent with the one obtained here. The two restricted
NLRGD expressions by Yang et al. [25] and Martorell et al.
[24] are in full compliance with the appropriate limit of the
gNLRGD formulation presented herein.
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B. NLWKB approximation

The NLWKB theory [27] partially takes into account
the effects of differences in the refractive indices of the
incident and scattered waves in the particle and those of
the surrounding medium. Namely, each wave is assumed to
propagate without refraction at the particle-medium boundary,
whereas the difference in wavenumber in the particle and in
the surrounding medium is accounted for. We can then write
the modified incident field acting on the surface of the sphere
as

�Eω
s (�r ′) = 2

ηω + 1
�Eω

0 (�r ′)ei(ηω−1)(�kω
m· �r ′+|�kω

m· �r ′ |). (12)

This field is the same as in [27] but modified by the scaling
factor 2/(ηω + 1). The latter represents the transmission factor
for a plane wave incident normally on a medium with refractive
index nω

p from a medium with refractive index nω
m [32,35].

We introduce this factor in analogy to the linear WKB
approximation of Klett et al. [32], where it was used for a better
estimate of the internal field in the particle in order to correct
the scaling of the extinction. Using this factor also implies that
we must assume the driving field for SH polarization at the
surface of the particle to be the interior field of the particle,
which agrees with the literature [21,26].

Inserting this field into (7) and making a similar phase
correction to the scattered SH field [27], the ith component of
the far scattered SH field is obtained as

E2ω
sc,i(�r)

= 1

4π

(
2ω

c

)2
eik2ω

m r

r

(
2

ηω + 1

)2 (
Eω

0

)2
a2(δij − er,ier,j )

×
∫

4π

d
′ei �q 2ω · �R′+i(η2ω−1)(−�k2ω
m · �R′+|�k2ω

m · �R′ |)

× e2i(ηω−1)(�kω
m· �R′+|�kω

m· �R′|)χ (2)
s,jkl(θ

′,φ′)e0,ke0,l (13)

for which no analytical solution to the integral was found. As
required, this field reduces to the gNLRGD one in the limit
{ηω,η2ω} → 1. This limit is ambiguous, however, as it can
be reached by either ni

p → ni
m for both of the frequencies or

ni
m → ni

p in the reverse direction, where the first case is the
one consistent with the standard NLRGD formulation. This
indicates a further generalization of the latter theory, which
we discuss in more detail later.

III. EXPERIMENTAL

A. Apparatus and samples

A schematic drawing of the apparatus used in our exper-
iment is found in Fig. 2. A femtosecond Ti:sapphire laser
(Tsunami, Spectra Physics) provided pulses at about 850 nm
with a repetition rate of 82 MHz and averaged beam power of
0.7 W and a pulse duration of 120 fs. The linearly polarized
laser beam was focused by a lens (f = 7.4 cm) into a fused
silica cuvette with 2 mm sample thickness. Generated SH
light was collected by an aspheric lens (f = 3.7 cm) and
focused into a spectrometer (H-20 VIS, Jobin Yvon) by a
combination of a plano-convex and a meniscus lens, each with
f = 40 cm. The diameter of all lenses after the sample was

FIG. 2. Schematic experiment setup. The Ti:sapphire laser pro-
vided linearly polarized 120-fs pulses at 850 nm with a repetition
rate of 82 MHz and averaged beam power of 0.7 W. The polar angle
α defining the effective solid angle of detection 
exp in the 2-mm
cuvette was 25◦. PMT, photo multiplier tube. See text for further
details.

50 mm. A 3-mm-thick BG28 glass filter (Schott) was used
to suppress the background from fundamental light entering
the spectrometer. The effective collection solid angle 
exp

in the liquid was measured to be confined to the polar angle
α ≈ 25◦. Single-photon counting was performed by means of a
photomultiplier tube (PMT) (R4220P, Hamamatsu) connected
to a dual-channel gated photon counter (SR400, Standford
Research Systems).

Undyed plain PS microspheres (Polysciences and Bangs
Laboratories) with a mean diameter in the range of 0.87 to
2.88 µm were used, which corresponds to 4.3 � kω

ma �
14.2. The size distribution was assumed to be the same as
stated by the manufacturer based on dynamic light scattering
experiments for a < 1.3 µm and following the Coulter
principle otherwise [38]. The stated standard deviations in
size vary from 0.3% to 23%. The undiluted PS samples in
several cases contained a specified concentration, 3.5 mM, of
sodium dodecyl sulfate (SDS) surfactant. Unfortunately, this
information was not available for all samples, but the SDS
concentration would also be expected to be similar in these
cases. The samples were not washed to remove SDS, but rather,
when it proved to be important (i.e., for MG solutions), SDS
(10% in 18 M
 water, Sigma-Aldrich) was added in large
excess to guarantee stable adsorption conditions [39,40] (see
also Sec. IV). The overall spectral resolution in the detection
was about 10 nm at the SH wavelength.

Aqueous dye solutions were prepared by dissolving MG
hydrochloride (80%–85% purity, Sigma-Aldrich) or Pyr1
powder (unknown purity, Radiant Laser Dyes) in deionized
water and used without further purification. The PS-dye
suspensions were quickly mixed without extensive shaking.
The particle concentration was chosen low enough to avoid
turbidity effects [5,6]; that is, depending on particle size, the
order of magnitude of the polystyrene particle concentration
([PS]) was 106 to 107 ml−1. Typical dye concentrations were
30–50 µM and for MG experiments [SDS] ∼ 1 mM, whereas
with Pyr1 the [SDS] was of the order of 1 µM.

All experiments were done at room temperature and during
their course no evidence of degradation of the samples was
seen. There were reversible changes in the SHG on the time
scale of tens of seconds, however, that we attributed to particle
trapping in the laser focus.
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B. Signal extraction and normalization

The measured quantity of interest is the SH signal arising
from the adsorbate layer on the PS particles, S2ω

SHG. The size
dependence of this signal is converted to a relative fractional
SH scattering efficiency [cf. (5)], by

Q2ω
exp = S2ω

SHG

a2
(
Wω

0

/
A

)2
[PS]

. (14)

However, in general the measured signal at the SH frequency,
S2ω

det , contains contributions from several sources. The signifi-
cant ones here are SHG at the particle surface, hyper Rayleigh
scattering (HRS), and two-photon induced fluorescence (TPF).
Including background scattering from various parts of the
apparatus and the PS particles, S2ω

app, we can extract the desired
S2ω

SHG from the measured signal as

S2ω
SHG = S2ω

det − S2ω
HRS − S2ω

TPF − S2ω
app, (15)

where S2ω
HRS and S2ω

TPF are obtained from the dye solutions
without particles and S2ω

app is measured with only the PS
particles in a pure water solution. This relatively simple signal
extraction procedure relies on the fact that we have chosen to
work with low enough [PS] to avoid turbidity effects.

For each particle size, S2ω
det was measured for at least ten

different [PS] to yield an average Q2ω
exp with well-defined

statistical uncertainty. All error limits indicated in the figures
that follow correspond to two standard deviations, except
where otherwise stated.

IV. MALACHITE GREEN AND PYRIDINE 1 ADSORBATES
AS SH SOURCES

The surface SHG process here is resonance enhanced
by adsorption of a suitable dye on the PS particle surface.
Malachite green was used in the pioneering work [1–3]
and ever since it has been the workhorse for studies of the
fundamental properties of SHG from nano- and microparticles.
Nevertheless, we find the need to briefly comment on the
effect of the SDS surfactant on the SHG from malachite green
adsorbates. In contrast, the pyridine 1 molecule has not been
previously utilized for the present purpose. Thus, we prove in
the second part of this section that the Pyr1-PS system behaves
similarly to the MG-PS system with respect to SHG.

A. Malachite green

The SHG from MG-PS microparticles has been the subject
of numerous studies [1–8,10,23,24,28,29] and therefore we do
not discuss the signal contributions and adsorption processes in
any detail other than that we verified that our signal reproduced
the expected dependences on MG and PS concentrations.

Importantly, however, and previously unreported, for this
dye there is a major impact of SDS surfactant [39,40] even
with [SDS] as low as a few micromoles (see Fig. 3). The
[SDS] dependence of the signal in Fig. 3 is typical for all
particle sizes. Thus, there is an initial very steep variation
below 100 µm, then a plateau extending to about 1 mM and
finally a gradual monotonic decrease for even higher [SDS].
We do not find the details of this behavior essential for the
present purpose, but we contend that it is consistent with a
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S
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 2
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ou

nt
s/
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FIG. 3. Second-harmonic signal as a function of SDS concen-
tration for a PS-MG-SDS suspension. [MG] = 30 µM, [PS] =
1.0 × 107 ml−1, and kω

ma = 6.7.

process involving coadsorption of MG and SDS on the PS
surface and that this process has reached a stable equilibrium
for [SDS] ∼ 1 mM. Moreover, the similarity of the [SDS]
dependences for particles of different sizes indicates that the
adsorbate layers at the plateau concentrations are equivalent.

The strong signal dependence on [SDS] in the µm range,
which are typical concentrations that ensue from the dilution
of the PS samples to obtain the experiment sample, potentially
causes severe problems because of uncertainties in the SDS
concentration. Here we avoid this problem by choosing to
work in the plateau region of the [SDS] dependence for large
[MG] in which the excess of added SDS is large enough to
ensure that any initial SDS present in the diluted PS sample is
negligible.

The PS-MG-SDS samples behaved similarly in every aspect
of SHG to that previously reported for PS-MG particles. Thus,
we refrain from reporting redundant data and refer the reader
to the literature for details [1–8,10,23,24,28,29]; however,
in view of the lack of discussion on the presence of SDS
surfactant in the PS samples, we would at this stage caution
against taking the previously reported adsorption mechanisms
and Langmuir adsorption parameters too literally.

B. Pyridine 1

Pyridine 1 has not previously been used to investigate
surface SHG from nano- or microspheres. We therefore reserve
some space here to provide evidence that Pyr1 mostly behaves
analogously to MG with respect to resonance enhancement of
surface SHG and dye concentration dependence. However, in
one important aspect it is different from MG: there is no clear
dependence of the SHG on [SDS] in the micromolar range.
On the other hand, the Pyr1 suspension shows evidence of
aggregate formation at [SDS] > 6 µM (see below).

The absorption spectrum of Pyr1 features the S1 transition
as a broad peak at 480 nm [41–44] and the observation
of resonance-enhanced SHG in this wavelength region has
been reported for Pyr1 adsorbates on fused silica [45,46].
Thus, S1 resonance-enhanced SHG might also be expected
to be effective on polystyrene substrates, which we, indeed,
find to be the case. For a start, Fig. 4 shows the scattered
spectrum resulting from 860-nm irradiation of samples of

053850-5



VIARBITSKAYA, KAPSHAI, VAN DER MEULEN, AND HANSSON PHYSICAL REVIEW A 81, 053850 (2010)

400 450 500 550 600
0

5

10

λ (nm)

S
 (

10
3  c

ou
nt

s/
s)

FIG. 4. Total emission S spectra for PS (dotted curve), Pyr1
(dashed curve), and PS-Pyr1 (solid curve) solutions and suspensions
with λω = 860 nm. In the various cases [Pyr1] = 50 µM and
[PS] = 5.0 × 106 ml−1, as applies, and kω

ma = 13.

various compositions. The curve with PS suspension in pure
water illustrates the typical background signal S2ω

app and it is
not significantly different from that of pure water (not shown).
There is a small contamination from Pyr1 remaining after
cleansing of the cuvette, contributing about 50 counts/s at
480 nm and 200 counts/s at 430 nm. In the present case,
this background signal is negligible compared to that from
the aqueous Pyr1 solution without PS particles. The shape of
that spectrum indicates that there is a significant S2ω

HRS, which
is different from the MG solution for which HRS was below
detectable levels. Connected to the HRS peak, which naturally
shifts with laser wavelength, there is a structure approximately
30 nm to the red that shifts with laser wavelength as the HRS
peak does. The likely mechanism behind this peak is hyper
Raman scattering, which has been shown to produce such
features in similar molecules [47,48]. Finally, there seems to
be a small TPF contribution with a band shape similar to
that of the S1 band. This is a bit surprising, as time-resolved
studies [43,44] of the S1 relaxation of Pyr1 in other solvents
have indicated a fast and efficient process that causes the
main TPF to appear at around 650 nm, which was outside
the detection capacity of our apparatus. To further consolidate
our assignment of the peak at 430 nm to HRS, we note that
this is an incoherent second-order process and as such it would
be expected to scale linearly with [Pyr1] [33]. This, indeed, is
what we observe for the assigned S2ω

HRS.
Upon addition of the polystyrene particles to the Pyr1

solution, there is a strong enhancement of the peak at the
expected wavelength of SH light, but little else happens.
Thus, the induced difference ought to be due to SHG from
Pyr1 adsorbed on the PS surface. The total signal S2ω

det ≈
S2ω

SHG + S2ω
HRS should scale quadratically with the incident laser

intensity, as is found to be the case from inspection of Fig. 5.
Moreover, as SHG is a coherent process, for small [Pyr1] the
S2ω

SHG should scale quadratically with the surface concentration
of Pyr1, provided the molecular surface density in this range
is proportional to [Pyr1]. The required quadratic dependence
is nicely illustrated in Fig. 6. In the same figure, it is also
shown that the S2ω

SHG as a function of [Pyr1] over a wider range
varies qualitatively as in the MG system. Thus, above a certain
[Pyr1], the PS surface seems to be saturated by dye molecules
and the surface density of Pyr1 in this [Pyr1] range should be
representative for all particle sizes.

4.5 5.0 5.5 6.0 6.5

6

8

10

12

Ln (W ω
0

 / W
1
)

Ln
 (

S
 2

ω
de

t / 
S

1) Slope 2.3 ± 0.2

FIG. 5. Total signal at the SH wavelength for a PS-Pyr1 sus-
pension (points) and a linear least-squares fit (line). [Pyr1] =
50 µM, [PS] = 1.0 × 107 ml−1, and kω

ma = 13. The unity constants
W1 = 1 mW and S1 = 1 s−1 ensure that the logarithm arguments are
dimensionless.

In view of the dramatic effect of the presence of low
concentrations of SDS on the SHG from the MG-PS system,
we also investigated this issue for the Pyr1 case. As illustrated
in Fig. 7, there is no discernible correlation between the
average signal and the [SDS]. There is a correlation, however,
when comparing similar graphs for the various particle sizes:
a consistent increase of the variance of S2ω

SHG for [SDS] >

6 µM. Furthermore, for [SDS] in the millimolar range, there is
rapid precipitation of the sample. Thus, we take the increased
uncertainty in the S2ω

SHG for [SDS] > 6 µM as an effect of the
onset of aggregation of Pyr1 and SDS. This is well above
the SDS concentration in our diluted PS particle samples,
however, and in view of the manifested independence of S2ω

SHG
on [SDS] in this case, we expect the somewhat uncertain SDS
concentrations not to cause any trouble and use the diluted PS
particle samples as such.

Clearly, Pyr1 adsorbate on PS is an efficient SH source
and thus is a readily available alternative to the frequently
applied MG molecule to study surface SHG by nano- and
microparticles. A drawback, however, is that very little is
known of the nonlinear properties for Pyr1 in general [42] and
the second-order ones in particular [45,46]. A comparison to
closely related molecules in [49] indicates that the molecular
hyperpolarizability β(2) for Pyr1 should be of a magnitude
similar to that for MG [50].

V. RESULTS: SIZE DEPENDENCE OF SHG

In general, the SH scattering depends on the effective
surface susceptibility χ (2)

s . To bring out some general features
of the size dependence and their manifestation in the measured
data, in Sec. V A we show calculations using the NLRGD,
gNLRGD, and NLWKB models restricted to the case of a
purely radial susceptibility tensor (i.e., χ (2)

s ≡ χ
(2)
⊥⊥⊥). The

influence of the particular form of χ (2)
s within the models is then

investigated by comparison of calculations for each of the three
possibly nonvanishing χ (2)

s components. The latter procedure
is essential in order to assess the reliability of the measured
size dependence, because of the above-mentioned uncertainty
regarding the exact form of χ (2)

s in the experiments: for Pyr1
it is unknown, whereas for MG conflicting results have been
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FIG. 6. SH signal (points) as a function of Pyr1 concentration for a PS-Pyr1 suspension. [PS] = 3.0 × 107 ml−1 and kω
ma = 8.1.

(a) Linear graph over a range in [Pyr1] wide enough to indicate saturation behavior and a least-squares fit of the modified Langmuir
model [3]. (b) Logarithmic graph in the presaturation region and a linear least-squares fit (line). The unity constants C1 = 1 µM and S1 =
1 s−1 ensure that the logarithm arguments are dimensionless.

reported [25,28]. In Sec. V B we present the measured SH size
dependence for the two different adsorbates and compare to
calculations.

A. Model predictions

As pointed out in connection with (13), the gNLRGD
limit can be reached in two ways within the NLWKB model,
corresponding to the SH scattering being governed by the
refractive indices of the medium, nω

m = 1.33 and n2ω
m = 1.35

[51], or the particle, nω
p = 1.58 and n2ω

p = 1.62 [52]. The first
case corresponds to that of the standard NLRGD theory and the
second is what we refer to as particle-governed SH scattering.
Below, we use an index gNLRGDm/p to distinguish these two
limiting cases. Because of the value of ζ being very close to 1
for the present system, the gNLRGDm model yields curves that
in no essential way differ from the NLRGD curves. Therefore,
to avoid cluttering of the graphs we do not show the gNLRGDm

curves and plot only gNLRGDp results.
The overall SHG efficiency as a function of the size

parameter kω
ma calculated within the NLRGD, gNLRGDp and

NLWKB models is shown in Fig. 8. For small size parameter
values, the models predict similar behavior with the expected
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FIG. 7. Total signal at the SH wavelength as a function of
SDS concentration for a PS-Pyr1-SDS suspension. [Pyr1] = 50 µM,
[PS] = 1.0 × 107 ml−1, and kω

ma = 4.9.

a4 scaling in the Rayleigh scattering regime [21,26]. The
discrepancies remain small up to kω

ma ∼ 1, at which point the
models develop qualitatively very different kω

ma dependences.
Beyond the illustrated range up to kω

ma = 100, the NLRGD
curve increases monotonically whereas the gNLRGDp one
goes through a weak maximum at kω

ma ≈ 30 and levels out at
a value of 0.7 (arbitrary units) in Fig. 8. The NLWKB curve,
on the other hand, indicates an oscillatory behavior with a
minimum at kω

ma ≈ 50 with very low SHG efficiency and a
maximum again at twice the size parameter value.

The SH angular distribution also varies with the particle
size, as illustrated with graphs for a few representative kω

ma

in Fig. 9. In the Rayleigh scattering regime at very small
kω

ma, the three models predict similar wide-angle scattering
with vanishing intensity in the forward direction, as expected
from [28,29]. As kω

ma increases, the angular distribution
folds into the forward direction and develops side lobes. For
kω

ma ≈ 1, the gNLRGDp and NLWKB distributions are still
identical, whereas the NLRGD one is shifted to larger angles.
This difference grows rapidly with the particle size, while
the two former models stay in reasonable agreement up to
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FIG. 8. Calculated total SH scattering efficiency as a function of
size parameter for all three models: NLRGD (solid curve), gNLRGDp

(dash-dotted curve), and NLWKB (dashed curve). χ (2)
s = χ

(2)
⊥⊥⊥ in all

cases.
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FIG. 9. Calculated SH angular distribution in p-in/p-out polarization configuration for selected particle sizes and for all three models:
NLRGD (solid curve), gNLRGDp (dash-dotted curve), and NLWKB (dashed curve). Note that the gNLRGDp and NLWKB curves in
(a) coincide. In all cases, χ (2)

s = χ
(2)
⊥⊥⊥. The kω

ma values are (a) 0.49, (b) 2.5, (c) 4.3, and (d) 14.

kω
ma ≈ 2.5. At even larger kω

ma, clear discrepancies develop
as the NLRGD and gNLRGDp models produce essentially
constant envelopes of the scattering pattern, whereas NLWKB
exhibits a redistribution of the overall scattering intensity
over a significantly wider angular range. Nevertheless, the
gNLRGDp model still fits the NLWKB scattering pattern
very well for small angles. In all cases, the scattering in the
exact forward direction is zero, in accordance with symmetry
requirements [53].

The variation in SH angular distribution has an effect on
the measured SHG size dependence through the restricted solid
angle of detection. This is directly reflected by the detection
efficiency

N = W 2ω
exp

/
W 2ω

4π , (16)

where the detected intensity W 2ω
exp is obtained from (4) with


 = 
exp, shown in Fig. 10 as a function of the size parameter.
Accordingly, all three models yield very small detection
efficiency in the Rayleigh scattering range in which large-angle
SH scattering dominates. For small and moderately large kω

ma,
the general shape of the angular distributions in the models is
quite similar and the predicted detection efficiencies remain
close, but beyond 2.5 they diverge as a consequence of the
aforementioned broadening of the NLWKB distribution. The
strong deviation among the NLRGD and gNLRGDp models,
on the one hand, and the NLWKB model, on the other hand,
for large kω

ma is not surprising in view of the severe violation
of the validity restrictions on the linear RGD size parameter
in this kω

ma range. For smaller particles, in the presumed

validity range of the standard NLRGD formulation [25], we
note that its prediction deviates significantly from that of the
NLWKB already for kω

ma on the order of 0.1. The gNLRGDp

curve remains indistinguishable from the NLWKB one up to
kω

ma ≈ 2.5.
It remains to establish the sensitivity of the detected signal

to the explicit form of the χ (2)
s tensor. To this end, Fig. 11

shows the calculated variation of the SH scattering efficiency
into the detection solid angle, Q2ω

exp, for all three possibly
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N

FIG. 10. Calculated SH detection efficiency as a function of size
parameter for all three models: NLRGD (solid curve), gNLRGDp

(dash-dotted curve), and NLWKB (dashed curve). χ (2)
s = χ

(2)
⊥⊥⊥ in all

cases.
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FIG. 11. Calculated fractional SH scattering efficiency in the
detection solid angle for various χ (2)

s components as a function of
size parameter for all three models: NLRGD (solid curve), gNLRGDp

(dash-dotted curve), and NLWKB (dashed curve). For each model,
the three lines correspond to χ (2)

s = χ
(2)
⊥⊥⊥,χ

(2)
⊥‖‖,χ

(2)
‖‖⊥, in order from

bottom to top.

nonzero χ (2)
s components. In Q2ω

exp, both the size and the angular
distribution variations are included and we see that all models
predict a qualitatively similar kω

ma dependence of the measured
partial SH scattering efficiency for all tensor components.
The variation, which we see shortly from the comparison
to measured data, is less than that from other effects not
incorporated in the models. Accordingly, we arbitrarily choose
the overall surface susceptibility to be represented by a purely
radial one; that is, we take χ (2)

s ≡ χ
(2)
⊥⊥⊥.

B. Measurements

The particle size dependence of the second-harmonic
generation measured with both malachite green and pyridine
1 as adsorbate is shown in Fig. 12 in terms of the fractional
SH scattering efficiency in the detection solid angle. The cor-
responding NLWKB and gNLRGDp results are also indicated
together with the those of the nonlinear Mie scattering theory
by Pavlyukh and Hübner [21]. In the case of MG, to ensure
uniform adsorption conditions, the measurements were made
at the stability plateau of the [SDS] around 1 mM (Fig. 3). It
should be noted that if this precaution is not taken, the size
dependence measurements yield perfectly reproducible but
significantly dissimilar results to those presented here [40].
For the Pyr1 experiments, on the other hand, the requirement
to avoid sample aggregation meant that the [SDS] was
kept as low as possible (Sec. IV B) (i.e., on the order of
1 µM).

Allowing for the statistical and systematic uncertainties in
the experiments, the two adsorbates yield very similar depen-
dence of Q2ω

exp on the particle size, as shown explicitly by the
shading in Fig. 12. Thus, irrespective of the expected different
molecular hyperpolarizabilities—MG having a dominating
β(2)

zxx component [54], while following the arguments in [49]
we expect the β(2)

zzz to dominate in Pyr1—the overall properties
of the adsorbate layers are similar enough with respect to
SHG in the general forward direction to eliminate significant
dependence on the chemical identity of the adsorbate. This
finding is reassuring as it indicates that the measured variation
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FIG. 12. Fractional SH scattering efficiency in the detection solid
angle as a function of size parameter measured for both adsorbates,
MG (squares) and Pyr1 (circles), and calculated for gNLRGDp (dash-
dotted curve) and NLWKB (dashed curve) models and the nonlinear
Mie scattering model by Pavlyukh and Hübner [21] (solid curve). The
shading shows the difference between the two measured data sets. The
measured data sets were normalized to each other at kω

ma = 13. In all
cases, χ (2)

s = χ
(2)
⊥⊥⊥. The error bars in both directions correspond to

a statistical error of one standard deviation. (Standard deviations in
size vary from 0.3% to 23%.)

in Q2ω
exp with kω

ma is due to the SHG size dependence
only.

Comparing the measured data to the calculated Q2ω
exp curves

in Fig. 12, we see that the NLWKB model captures very well
the overall trends in the size dependence. The RGD-based
models fail altogether in this respect. All of these models
yield weak oscillations due to the regular evolution of the
SH angular distribution, but none is close to the strong
modulation observed in the measurements. The nonlinear Mie
scattering model, on the other hand, shows more pronounced
modulations.

VI. DISCUSSION

The main point to be discussed here is the particle-size
dependence of the SH scattering efficiency. For this purpose,
the measured data are analyzed within the framework of the
NLWKB model and qualitatively compared to the nonlinear
Mie scattering theory by Pavlyukh and Hübner [21]. Restric-
tions on the applicability of the NLRGD and gNLRGD models
are identified as well.

Before delving into a detailed interpretation of the SHG
dependence on the particle size, we need to discuss possible
influences by apparatus or chemical nature. Jen and Dai [29]
observed that the SHG efficiency from a MG adsorbate layer
was affected by the chemical composition of the polystyrene
particle surface. That work considered particles with diameters
an order of magnitude smaller, however, for which different
manufacturing procedures had been used for the various
particle sizes. This should not be the case for the particles used
here and, indeed, measurements of MG “adsorption isotherms”
for different particle sizes (not shown) could be well fitted
with a single pair of modified Langmuir model parameters
[39,40], indicating chemically equivalent PS surfaces. This
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conclusion is further corroborated by the fact that the MG and
Pyr1 adsorbates give similar measured SHG dependences on
particle size. The quite different chemical structures of the two
adsorbates suggest that they would respond rather dissimilarly
to changes in the adsorption environment, which is observed
with respect to the effect of the presence of SDS surfactant in
the solution.

Evidence against apparatus-related artifacts strongly in-
fluencing the observed SHG size dependence is indirectly
provided by the sensitivity of the MG-PS system to the
presence of SDS in the solution. Namely, as noted in
Sec. IV A, the measured size dependence, including the
modulation pattern for the MG system, is very different
from that in Fig. 12, unless care is taken to equalize the
SDS concentration in the samples [40]. We considered a
polarization bias of the spectrometer grating on the order of
10% insignificant in the present context.

Having ascertained the absence of significant experimental
artifacts, we turn to our central theme of the SHG dependence
on the particle size. The measured variation of Q2ω

exp is
proportional to the total SH scattering efficiency Q2ω

4π folded
with a variation of the SH angular distribution, causing changes
in the fraction of the SH light scattered into the detection solid
angle. From Fig. 8 it is seen that within the NLWKB model Q2ω

4π

varies only marginally after a rapid increase up to kω
ma ∼ 1 with

further increasing kω
ma in the displayed range. At the same time,

the envelope of the SH angular distribution broadens (Fig. 9),
which causes the reduction in the SH detection efficiency in
Fig. 10. In the NLWKB approximation, the overall form of
measured Q2ω

exp size dependence reflects almost entirely the
variation of the envelope of the SH angular distribution. This
finding opposes the prediction by Yang et al. [25] that the
angular distribution with increasing particle size becomes in-
creasingly confined to a narrow range in the forward scattering
direction. Their reasoning, however, is based on the standard
NLRGD model, which, we see from Fig. 9, fails to reproduce
the SH angular distribution for kω

ma larger than about 1.
Overall, the measured SHG size dependence follows the

smooth one of the NLWKB model, but it also exhibits super-
imposed modulations. Clearly, the physical mechanism behind
these modulations is missing in the NLWKB formulation.
Thus, the modulations cannot be explained in terms of a
simple phase shift due to rectilinear propagation through
the particle interior of interfering 2ω waves originating from
different points on the particle surface. This mechanism should
be viewed as responsible for the overall size dependence,
which would exhibit oscillations on a larger particle-size
scale. To recover the fast modulations observed here, we must
abandon the optically soft particle approximation and allow for
refraction and reflection of the waves at the particle surface.
These effects are included in the nonlinear Mie scattering
theory by Pavlyukh and Hübner [21], and we included the
results from calculations based on this theory in Fig. 12. In
view of the disputable choice of boundary conditions in the
present context, we only give significance to the qualitative
features of the SHG size dependence. Nonetheless, overall it
agrees well with the measured value and there are stronger
modulations than for the NLWKB model. These modulations
are due to oscillations in the total scattering SH efficiency and
a concomitant large variation in the SH angular distribution

with particle size [21]. Accordingly, we attribute the observed
modulations of the measured fractional SH efficiency to the
same mechanism. It results from a more complex interaction
of electromagnetic fields than that included in the NLWKB
theory. Nevertheless, demonstrably, the NLWKB model does
have the capability to predict the overall trend in the size
dependence of the forward SH scattering in the particle size
range studied here.

In sharp contrast to the NLWKB model, the RGD-based
models do not reproduce the SHG variation with particle size
at all. They are much simpler to use, however, so it is still of
practical interest to briefly discuss their applicability limits. In
order to quantify these limits, we consider a model to be out of
range when its Q2ω

4π value deviates more than 10% from that of
the NLWKB model. It is clear from (6) that the nonlinear RGD
approximations, if they apply at all, apply in the small-particle
limit. Consistently, Figs. 8–11 show that the three analytical
models give nearly identical results for the smallest particles
up to kω

ma <∼ 1, beyond which they differ increasingly. A closer
look reveals that the standard NLRGD model breaks down at
kω

ma ≈ 0.5, whereas the gNLRGDp model remains valid until
kω

ma ≈ 2. These limits are fairly less restrictive than those
in (6), which may seem surprising. But in fact, for the present
system, the linear RGD also works well outside the formal
validity range [55]. Employing the results for the applicability
limits of the linear RGD approximation from [55] to both
the fundamental and the second-harmonic waves, we get a
combined estimate which is identical to that we see for the
NLRGD calculations.

The agreement between the results of the NLWKB,
gNLRGD, and standard NLRGD theories for kω

ma up to about
1 shows that, for SH scattering from particles in this size range,
the only relevant physical parameter is the particle diameter.
In the limit of a vanishing size parameter, the SH intensity
increases proportionally to (kω

ma)6 in all the models, while
most of the SH radiation is emitted at more or less right angles
to the incoming laser beam [28,29]. It should be noted that,
although being a rather coarse correction of the internal particle
field, the transmission factor of 2/(ηω + 1) in (12) improves
the agreement between the NLWKB and NLRGD models for
small particles.

The choice of the particle refractive index instead of that
of the surrounding medium in the gNLRGD model extends
its validity range dramatically. The optical path length for
the SH inside the particle is then included properly, and
good agreement with the NLWKB theory suggests that for
small particles this is indeed the major factor determining
the outcome of the calculation. Dispersion plays only a very
minor role here and is negligible for kω

ma up to about 8. This
is easily understood by observing that the differences in the
refractive indices between the medium and the particle are
about one order of magnitude larger than the dispersion inside
the medium or inside the particle. All in all, the previously
used standard NLRGD model based on the refractive indices
of the surrounding medium should be abandoned and could be
well replaced by the dispersionless gNLRGDp model as the
simplest analytical model for small particles.

The discrepancy between the gNLRGDp and NLWKB
models grows as kω

ma increases beyond approximately 2,
which reflects that the relative refractive indices start to play a
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significant role. From Figs. 8 and 9 it can be seen that a major
source of this discrepancy lies in the angular distribution. The
general trend in Fig. 9 is that the NLWKB model predicts
more scattering intensity than the gNLRGDp does at large
angles, and for the largest particles treated here the angular
distribution becomes very wide with most intensity outside
our experimental collection angle. In addition, the distribution
becomes quite complex with many minima and maxima. In
contrast, both NLRGD and gNLRGDp indicate that for such
large particles the SH radiation would be emitted in a relatively
narrow cone around the forward direction. These differences
in the predicted angular distribution are, of course, reflected
in the detection efficiency in Fig. 10 and reinforce the already
substantial differences in the total SH scattering efficiency
in Fig. 8, as the two are combined to yield the substantial
differences in the detected fractional SH scattering efficiency
seen in Fig. 11.

It is instructive to compare the picture emerging from the
present study with the often-cited simple model by Wang
et al. [3]. These authors found that the power of the generated
SH light should display an oscillatory behavior as a function
of particle size, that no SH radiation should be generated
for spherically symmetric particles much smaller than the
wavelength of the fundamental wave, and that the output of
SH light should be maximal for those particle sizes for which
�kpa = (2n + 1)π/2, where �kp = k2ω

p − 2kω
p is the phase

mismatch from propagation through the particle.
Our results are rather different. All three theoretical models

predict zero SH scattering intensity in the forward direction,
as well as a small, but finite nonzero, scattering efficiency for
particles with a diameter smaller than the wavelength of the
fundamental, in clear violation of the physical interpretation
given by Wang et al. [3]. Furthermore, when we use the
gNLRGDp model to extend the calculation of the scattering
parameter Q2ω

4π to values of the size parameter larger than
15 (cf. Fig. 8), a maximum in the scattering efficiency is
indeed found for kω

ma ≈ 30. After this maximum, Q2ω
4π appears

to decay monotonously and asymptotically to its nonzero
large-particle limit. No evidence for oscillatory behavior is
found. A similar calculation using the NLWKB model does
indeed show oscillatory behavior in the curve of Q2ω

4π versus
kω

ma, with maxima for kω
ma ≈ 5 and 100, respectively, and a

minimum for a size parameter of about 50. None of the maxima
correspond to a particle size predicted by the model of Wang
et al. [3]. In NLWKB calculations in which the dispersion
was switched off, or in which the refractive indices of the
medium were equated to those of the particle, the oscillation
disappears. This illustrates that both dispersion and nonequal
refractive indices for the medium and the particle are required
in order for the scattering efficiency Q2ω

4π to develop this
oscillatory behavior. Apparently, the phase mismatch between
the fundamental and the SH inside the particle does play some
role, as predicted by Wang et al. [3], but since the medium
refractive indices do not enter in their description, their model
fails to capture all of the essential physics.

VII. CONCLUSION

We measured the resonance-enhanced surface SHG from
a suspension of polystyrene microspheres as a function of

particle size in a range of the order of the fundamental
wavelength for two different resonance SH-enhancing dyes—
MG and Pyr1. Contrary to the case of MG, Pyr1 has not been
used in this context before. We found it to behave analogously
to MG in all important aspects, except that it possesses a much
larger hyperpolarizability. The Pyr1 surface SH signal is not
dramatically different from that of the MG adsorbate, which
indicates a Pyr1 surface layer of either lower density or with
less order than that of the MG layer.

The two dyes gave the same strongly modulated pattern
of the forward SH scattering efficiency. Qualitatively similar
variations were obtained in calculations based on numerical
solution of Maxwell’s equations by Pavlyukh and Hübner [21]
and were proposed by them to be an interference effect
known from linear Mie scattering (see also [18]). Such
resonances would cause large variations in both overall SH
scattering efficiency and angular distribution, which could
well combine to produce the modulations observed here.
Conversely, our measured data provide information that may
be essential for solving the issue of the appropriate choice of
boundary conditions in nonlinear Mie scattering calculations
(cf. [18,21,26,40]).

Direct comparison of the present measurements to the
NLRGD and NLWKB model predictions showed that the
NLWKB model reproduces well the overall trends in the size
dependence but fails with respect to the strong modulations.
The standard NLRGD model was found to fail altogether in
the particle size range in the experiments, which was well
beyond the upper kω

ma value of 0.5 for which the NLRGD and
NLWKB models give comparable results. A straightforward
generalization of the NLRGD model to allow for dispersion
and to use the particle refractive indices instead of those of the
surrounding medium improved its applicability range almost
an order of magnitude in particle size. The essence of this
generalized NLRGD model is that it combines the geometric
origins of the SHG contained in the NLRGD theory with
those arising from dispersion, first invoked by Wang et al.
[3], without causing a noteworthy increase in computational
efforts.

Our results show that there is an optimal SHG efficiency
from dye-coated spherical polystyrene particles in water for
kω

ma ≈ 5, corresponding to a radius similar to the fundamental
wavelength inside the particle. To capture the essential
features of SHG in this particle size range, one must primarily
abandon the optically soft particle approximation and allow
for refraction and reflection of the waves at the particle
surface. The dispersion of the media plays a negligible role
for particles of sizes up to twice the optimal size for SHG. We
expect these experimental and theoretical results to be valuable
for optimizing experimental parameters, such as particle size
and media refractive indices, with respect to the SH collection
efficiency.
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