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All-optical steering of light via spatial Bloch oscillations in a gas of three-level atoms
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A standing-wave control field applied to a three-level atomic medium in a planar hollow-core photonic crystal
waveguide creates periodic variations of linear and nonlinear refractive indexes of the medium. This property
can be used for efficient steering of light. In this work, we study, both analytically and numerically, the dynamics
of probe optical beams in such structures. By properly designing the spatial dependence of the nonlinearity, it is
possible to induce long-living Bloch oscillations of spatial gap solitons, thus providing desirable change in the
direction of the beam propagation without inducing appreciable diffraction. Due to the significant enhancement
of the nonlinearity, such self-focusing of the probe beam can be reached at extremely weak light intensities.
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I. INTRODUCTION

Beam steering is one of the most important technologies
in modern optics due to its numerous applications in such
fields as optical imaging, laser machining, and free space
communication. Various physical mechanisms have been
explored for the deflection of beams by inducing refractive
index gradient [1]. They include mechanical motion [2],
thermal gradient [3], acousto-optical interaction [4], and the
electro-optic effect [5]. Fast beam steering in photonic crystals
[6] and phased arrays [7] were also proposed.

The direction of the light propagation can also be changed
by another beam of light through interaction with matter.
In particular, a medium exhibiting electromagnetically in-
duced transparency (EIT) [8] can provide large probe-beam
deflection since the refractive index changes significantly near
the transparency center [9]. Among the related studies we
mention refractive index measurements by probe beam [10],
investigation of slow-light deflection by magneto-optically
controlled atomic media [11], and exploring a scheme of
all-optical beam steering [12]. Yet another example is elec-
tromagnetically induced waveguiding, which uses the control
field as a waveguide to confine the probe field [13].

However, the schemes proposed in the most of the previous
studies are restricted to the linear regime. They usually result
in a spread of the probe pulse because the refractive index
gradient depends on both the probe frequency and the spatial
coordinates. Fortunately, such spread can be suppressed by the
enhancement of the wave localization through the formation of
solitons. Large intrinsic nonlinearity in an EIT-based medium
allows for the existence of probe-beam solitons with extremely
weak light intensities [14]. More specifically, at low light
intensity ultraslow solitons [15], spatial solitons [16], and gap
solitons [17] can exist in such a medium.

In this work, we propose a scheme to achieve efficient
all-optical steering of light in a resonant three-level atomic
system under an EIT regime. The scheme is based on the
phenomenon of nonlinear long-living Bloch oscillations (BOs)
of gap solitons, recently reported in Ref. [18]. The system
at hand is a gas of A atoms loaded in a planar waveguide

1050-2947/2010/81(5)/053849(8)

053849-1

PACS number(s): 42.65.Tg, 05.45.Yv, 42.50.Gy

created by two photonic crystals. The control field used in
the system is a standing-wave laser beam which originates an
effective linear force (i.e., the force linearly depending on the
propagation coordinate) with respect to the coordinate and the
field amplitude force, as well as linear and nonlinear optical
lattices (OLs) affecting a weak probe beam. OLs in such a
system are flexible: Their parameters can be adjusted either by
changing the geometry and/or intensity of the control field or
by varying one- and/or two-photon detunings.

Briefly, the mechanism of the steering consists of two
ingredients: The spatially periodic linear force induces dy-
namics of the probe beam in the transverse direction, while
the combined effect of the lattices controls the direction of
the beam propagation introducing desirable and controllable
deviations. More specifically, the linear OL provides the band
structure necessary for the existence of the Bloch states,
while the nonlinear lattice is used to control the stability
properties of the Bloch states necessary for the existence of
gap solitons at both edges of each band [18]. Due to the
enhancement of the Kerr nonlinearity induced by the EIT
mechanism, stable spatial gap solitons, representing the beam
channels, can be formed even subject to extremely weak probe
light intensity and subsequently strongly deflected without
undergoing appreciable deformations and attenuations.

The article is organized as follows. In the next section,
the model is introduced. In Sec. III, the nonlinear equation
governing the evolution of the probe-field amplitude is derived.
We show that stable spatial gap solitons can exist under
properly chosen parameters of the control field. We also show
how one can implement an efficient all-optical steering of the
gap solitons. All results in this work are obtained under a
set of experimentally feasible parameters. The outcomes are
summarized in the Conclusion.

II. THE MODEL

A. Preliminary arguments

We consider a cold gas of lifetime-broadened A-type
atoms loaded into an antirelaxation-coated planar hollow-core
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FIG. 1. (a) The geometry considered in the present work. The
direction of propagation of the probe beam (z direction) is orthogonal
to the OL axis (x direction). 6, = arctan(k/k.) is the half angle
between the two input control beams and 6, is the output angle of
the probe beam. (b) Left, A-type atomic system interacting with two
laser beams. €2, and . are, respectively, the Rabi frequencies of the
probe and control fields. A; and A, are, respectively, the two-photon
and one-photon detunings. Right, the waveguide cross section. The
dotted region denotes the core filled in with the atomic gas and limited
by the Bragg mirrors. 2b and h, + h,, are the thicknesses of the core
and different materials of the Bragg mirrors, respectively.

photonic crystal waveguide, schematically shown in Fig. 1. (It
is relevant to note that both room-temperature and ultracold
atoms have been successfully loaded into hollow-core photonic
crystal fibers [19] and have further been used to study EIT [20]
and all-optical switching [21].) As in any A system, the atoms
can populate three states: the ground state | 1), the excited state
|2), and the low-energy state |3) [see Fig. 1(b)]. Transitions
between states |1) and |3) are forbidden.

For the particular choice of the atomic gas and geometry of
the system, we take into account two facts. First, in order to
contribute to the nonlinear polarization, the matrix elements
of the transition between the lower states and the excited state
must be nonzero, and hence the population of the excited state
must also be nonzero (see, e.g., [17]). Thus, one has to explore a
gas with weak atomic losses due to spontaneous emission from
the excited state. A particular system having such properties is
the laser-cooled alkaline-earth-metal atoms, such as strontium
atoms [22], where the atomic states |1), |2), and |3) can be
chosen as 'Sy, 3P, and 3Py, respectively. The transition 150-Py
is highly forbidden. One of the advantages of such a system
is that the atoms possess a long lifetime even in their excited
states: the lifetime of state |2) is about 0.1 ms, corresponding
to the decay rate 7.5 kHz. Therefore, in what follows we use
this system for the sake of the numerical studies (see Figs. 2, 3,
and 4).

The second fact to be taken into account is the smallest
possible size of the system. Our aim is to execute effective
steering of light using OLs. In order to make the periodicity
appreciable in a finite structure, one has to require the system
to have the width of at least ten lattice periods or more.
Hence, the desirable OL should be created by the beam
with the highest possible frequency. In our case, there are
only two electromagnetic waves in the system, which provide
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the transitions 1 <> 2 and 3 <> 2. Thus, we are interested
in the geometry where the strong control field connects the
ground |1) and excited |2) states, while the probe weak wave
links states |3) and |2). In the case of the strontium atoms,
the wavelength (center frequency) of the probe laser beam
is A, =53 um (w, = 3.5 x 10" s=1) while the wavelength
(frequency) of the coupling field is A, =689 nm (w, =
2.7 x 10 s~1). Requiring the modulation of the nonlinear
polarization to have at least 20 lattice periods, we conclude
that the width of the waveguide should be of the order of
14 um.

Finally, since we are considering stationary beams, we
neglect any possible cavity broadening for the atoms (a
factor which can also be controlled through manufacturing
the waveguide). We also notice that the proposed scheme has
high tolerance with respect to Doppler broadening. Indeed
the closest level that may affect the present scheme from the
exploited levels of the strontium atoms is 3p,. However, the
transition 'Sy-P, is highly forbidden and the frequency of
the 3P,-3P; transition (=7.3 x 10'3 s7!) is twice as large as the
one of the 3P, -3P, transition.

B. The geometry of the system

Now we can describe the geometry of the system at hand,
as shown in Fig. 1. The waveguide created by two parallel
Bragg mirrors is placed in the x-z plane. A strong control field
consisting of a superposition of counterpropagating waves
with frequency . and wave vectors k. +k = (0,0,k.) +
(k,0,0) (k < k), couples the excited state |2) and the ground
state |1). The excited state |2) is also coupled to the low-energy
state |3) by a weak probe field of frequency w),, and wave vector
k, = (0,0,k,) (i.e., it propagates along the z axis). We consider
a planar waveguide with the transverse (i.e., along the y axis)
width small enough so that only one transverse mode of the
probe beam needs to be considered (see the Appendix). We
concentrate on the Oth mode designated as so(y). Therefore,
the probe field can be presented in the form

E,(r,1) = e,,(x,2)s0(y)e ) +c.c., ey

where e, is the polarization vector and £,(x,z) is the slowly
varying envelope of the probe field.

The frequency (amplitude) of the control field w. [E.(r,?)]
is much higher than that of the guided probe beam w),
[E,(r,t)]. This leads to a the effective refractive index of
the Bragg mirrors for the control field in the claddings to
be of order one (see the Appendix ), allowing us to neglect
its transverse distribution (we emphasize, however, that this
design is introduced only for the sake of simplicity). The
control field can be presented in the form

E.(r,t) = 2e.E.(x,2) f(x) cos(kx)e'®i=@D fcc.  (2)

Here e, stands for the polarization vector, the function f(x)
describes the slowly varying distribution of the control field in
the x direction, and &£.(x,z) is the complex amplitude of the
control field. In experiments, the desired space dependence of
f(x) can be achieved with the help of beam masks.

The total electric field can be written down as E(r,t) =
E,(r,t) + E.(r,7) and considered classically. A large differ-
ence between the frequencies of the probe and control fields
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(we > w)) allows us to split the equations for E, and E., while
a large difference between the field amplitudes (E. > E,)
allows us to consider E, to be constant in the equation for the
probe beam [8]. Now the equation governing E, can be written

as follows:
1 82 1 92
vVi- —— |E,=——P. 3
( c? BIZ) P e a2 )

Here P is the probe beam polarization defined by the properties
of the atomic gas in the waveguide core and by the properties
of the Bragg mirrors in the waveguide claddings; that is,

B { Peag (v < =b.y > b),

“4)

Pcore (_b <y< b)

Following the standard procedure [23], P14 can be determined
by calculating the effective refractive index of the Bragg
mirrors n from Eq. (A3): Pgag = eo(n® — DE,.

C. Nonlinear polarization

In order to compute Py, one introduces the bosonic field
operators 1/7j, 1/}; of the states |j) (j = 1,2,3), as well as
the electric dipole matrix elements p;; associated with the
transitions between states |7) and |j). Then the polarization
can be obtained as

Peore = paa(Pid )= e c. (5)

The steering of the light in which we are interested
is performed through the proper spatial and/or temporal
modulations of P.q. In order to link it directly to the probe
field E,, we have to address the Heisenberg equations for
the operators 1 ;j describing the atomic medium. This can be
done neglecting the atomic kinetic energy, which leads to the
system as follows (its derivation repeats the steps outlined, say,
in [17]):

0 N N
iEIIM = =AY — 297 f(x) cos(kx)y, (6a)

9 . A A A
i—n = (A — iy2)¥n — 2Q. f(x) cos(kx) P — Q, s,

at
(6b)
0 = -y 6
io Vs ==, (6¢)

Here Q) = p»3&,/h and Q. = p,1E./h are the Rabi frequen-
cies of the respective fields and A, = (w2 — w3) — w, and
A = (w3 — ) — (0w, — wp) present one- and two-photon
detunings, respectively (see Fig. 1). In Egs. (6), we keep only
the dissipation of state |2) due to spontaneous emission by
adding the decay rate y,, phenomenologically. Usually, the
decay rates of the lower states |1) and |3) are much smaller
than that of the exited state and can be safely neglected. For
a particular choice of the atomic gas and assuming that the
decay rate of the excited state is much less than the two-photon
detuning (y» < Aj), one may consider the loss of the atoms
from the system as a small perturbation (see also the discussion
in [17]).

Since the two-photon detuning is nonzero (i.e., A; # 0),
the pure dark state (corresponding to v/, = 0) cannot exist.
However, we explore the situation where the atomic system
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is close enough to the dark state. To this end we look for a
solution of Egs. (6) in the form /;(r,t) = ¢*'$;(r), where the
exponent A is slowly varying in space and can be obtained as a
root of the respective characteristic equation. We are interested
in a root having the smallest imaginary part [24]; that is,

A=A+ ik, (7
(IAi] < |A-]), with
N — A1,
TOA A + 42 F2(x) cos(kx) + |2, 2
- A7
1974

Then the expectation value (1@; VY») can be readily computed
from (6) and (7):

i Al — APQ
WaV2) = (AR T 116 — AR+ 4IARF0r) coston)”
®)

Here we introduced the dimensionless functions Q = /2,
and

A
A = = Ar —+ iAi, (9)
€2
where
8§11
A, = >
8182 + 4 f2(x) cos2(kx) + |2|2
)72 2
i = —A ’
QP2

as well as the parameters §; = A; /|| (j =1,2) and y» =
12/1€2.|. Since the probe field (decay rate of the excited state)
is assumed to be weak in comparison with the control field,
we have that || < 1 [ < |Q|*> <« 1; see Eq. (11) and the
related discussions].

An important conclusion follows from Eq. (6¢): The
quasidark state, characterized by the small population of the
excited state |2), requires |A| < [€2,[, and hence |A] < 1.

In what follows we are interested in a particular choice
f(x) =1 —ax, where a is the mask parameter considered
to be small. More specifically, we consider the beam prop-
agation (i.e., distributions of €2 in space) characterized by
finite deviations from the x axis. As we mentioned in the
Introduction, the deviation occurs due to BOs of the beam.
Thus, if we assume that the amplitude of BOs measured in
units k! [see Eq. (13)] is X, the smallness of a is determined
by the requirement that aX/k ~ Q? « 1. This allows us to
achieve further simplification for the polarization by defining

v(kx) = 818, + 4 cos*(kx). (10)

Performing the expansion of the right-hand side of Eq. (8) in
the Taylor series with respect to 2 we get

By ~ 5Q - 8ax cos2(kx)
3P20 7 k) v(kx)
- 512—5152+2v(kx)|9|2 L i
v(kx)? v(kx)?

Q. (11
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Here we have neglected the Q°-order terms and assumed that
in the domain of BOs the condition |2|? < v(x) is satisfied.
Notice that the requirement v(x) 7 0 holds in the whole space
provided

616, >0 or 616, < —4. (12)

This condition is imposed in what follows.

D. The equation for the beam envelope

We are particularly interested in the beam dynamics result-
ing from the interplay of diffraction and nonlinearity when
the probe field passes through the atomic cloud. Therefore,
we concentrate on stationary solutions, requiring €2 to be
independent of time. Substituting Eqs. (1) and (11) into Eq. (3),
taking into account (A1), and leaving only the leading order
terms, we arrive at the dimensionless equation for the slowly
varying function :

a2 | 20 UEQL+EFEQ—GEIQPQ+ITENR=0
l¥+3_§'2+ EQR+EFEQR-GEIQ"Q+iT(E)Q=0.

13)

Here £ = kx and ¢ = (k2/2kp)z are the dimensionless in-
dependent variables, v(§) = v(kx) is given by (10), and we
define

Uo 8a'Uy cos? (&)
UE)= —>, Fg)= =017
é) oG é) 226
CoUp[8%2 — 818, +2 S1 72U
G = SYld e VOl e o
with
_ Nipa2lk;
°7 Theok?Q, "

and a’ = a/k. The constant Cy, depending on the particular
choice of the Bragg mirrors, is computed in the Appendix.

The obtained dimensionless Eq. (13) implies that all the
terms are of the order one or less. More specifically, it is
necessary to require that Uy ~ 1. This last constraint can
be satisfied by different means. Notice that the parameter
k,/k can be experimentally controlled by the geometry of
the laser beams (see Fig. 1); we thus fix k,/k = 0.2 and
adjust other parameters (in particular 6; and €2.) to satisfy
the constraint. For a typical set of data explored in what
follows, that is, the atomic concentration A ~ 10'* cm™3
and A; = Q. = 1.0 x 107 s7! (8; = 1), we obtain Uy = 4.7,
satisfying the desired order of magnitude. Meanwhile, the
dissipation is very small [I"(§) < 1] in the considered system
since 7» = 7.5 x 107% « 1.

III. SPATIAL GAP SOLITONS AND ALL-OPTICAL
STEERING

A. Spatial gap solitons

We study the situation when the effects of the linear force,
nonlinearity, and dissipation are small enough. Therefore, we
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first notice that for ¥ =0, G =0, and I' = 0 one arrives at
the familiar framework of the band theory, where by means of
substitution © oc e~K«¢ Eq. (13) is reduced to the eigenvalue
problem

Lite (&) + Ko(q)te (§) = 0. (14)

Here £ = —9%/9£2 — U(£) and Uq,q(&) is a Bloch function
with indexes o and ¢ standing, respectively, for the band
index and for the wave vector in the first Brillouin zone
(BZ), that is, for ¢ € [—1,1] in the case at hand. The physical
meaning of the eigenvalue K,(q) is the propagation constant.
In what follows, we concentrate on the lowest energy band
(¢ = 0) and therefore, for the sake of brevity, omit the band
index.

The effect of the periodic linear force originated by the
control beam can be described by the equations

dg dK.(Q) dQ
=tanf = , — =
d¢ dQ dg

where E and Q denote the coordinates of the center of the
Bloch wave packet in the real and reciprocal spaces, respec-
tively. 6 is the refraction angle with tan6 = 2(k,/k)tan 6,
[see Figs. 1(a) and 3(a)]. A peculiarity of our case is that
F (&) is an oscillating function, which has a nonzero mean

value,
4a’'Uy

1 T
F = — F == ’
Vo 7T fo © [8182 + 4]/ (8162 + 45162

and hence results in the oscillation behavior of the Bloch
wave packet in the real and reciprocal spaces (i.e., in BOs).
The dimensionless amplitude (along the x axis) and period
(along the z axis) of such oscillations can be calculated as
X = AK/2(F), with AK denoting the width of the lowest
allowed band of the periodic potential U(§), and Z = 2/|(F)]|,
respectively.

In order to describe the effect of the nonlinearity, we employ
the standard multiple-scale expansion assuming smallness of
the averaged force; that is, (F) < 1. This last requirement is
equivalent to the condition a < k, which is consistent with
the constraints on the BOs amplitude discussed in Sec. IIC
provided X < 1.

Next we introduce the scaled variables (£;,¢;) = u//?(€,¢)
(j=1,2,...), where u is a small parameter estimated by
u ~ (F) < 1. The probe field can be written in the form
of the expansion Q = Z?’;l w2QU(Ey,¢1), where in the

arguments of the functions Q) we have indicated only the
most rapid variables. I'(€) = u?R(&). Substituting this ansatz
into Eq. (13) and collecting the terms at each order of u'/?,
we obtain a set of equations which can be solved order by
order (see, e.g., [25]). Omitting the details, we turn directly to
the equation for the slowly varying amplitude A(x,Z>), which
is defined through the relation Q" = A(x,%)e' X (@%u (&),
where x = & — tan[6(&,)] ¢1 and the dependence Q = Q(&)
and 6(¢&,) are obtained from Eqgs. (15). In the third order of the
asymptotic expansion, O(u/2), we obtain

—F(B), 5)

9A 8% A .
i— +D(Q)7— — G(AIAI"A+iR(QA =0, (16)
00 ax
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where the coefficients of the diffraction D and the effective
nonlinearity G are given, respectively, by

1 d*K(Q)
2 do?

R(Q) = /0 RE)Iuo®)dE.

D(Q) = G(0) = /0 G(®)uo(®)|*de.

We notice that both D and G can be either positive
or negative depending on the signs of detunings and on
the position of the center of the wave packet (i.e., on ¢).
Therefore, in a general case, BO oscillations are accompanied
by significant change of the width of the beam, due to the
diffraction. This undesired effect, however, can be dramatically
reduced if the conditions for self-focusing of the beam
are satisfied (and hence compensate the diffraction) at any
coordinate ¢,. These requirements (which are also referred to
as conditions for the gap soliton existence or, alternatively, as
conditions of the modulational instability of the Bloch waves)
are well known and read [25,26]

D(Q)G(Q) < 0. a7

If condition (17) is satisfied for all (or almost all) wave vectors
0, the self-focusing of the beam occurs along the whole (or
almost whole) trajectory of the beam.

Thus, as the third step, for achieving the best performance of
the device one has to design the system (geometry of the beams
or photon detunings) in a way to ensure the condition (17) for
all Q. The procedure of performing this task was described
in the previous works [18,26] and here we report only the
final result. More specifically, in Fig. 2(a), we show the
domains on the plane (6;,8,) where the optimal conditions
are satisfied (empty regions)and not satisfied (gray regions)
and where the parameter requirement (12) is violated (black
regions). In Figs. 2(b) and 2(c), we plot the curves D(Q),
G(Q), and D(Q)G(Q) versus Q with almost-optimal design
[point A in panel (a)] and nonoptimal design [point B in
panel (a)] of the OLs. We mention that always there exists a
small range of the wave vectors where spatial gap solitons do
not exist (i.e., where D(Q)G(Q) > 0). This range, however,
can be made small enough [less than 10% of the whole
BZ, as happens in point A; see Fig. 2(b)] and therefore has
no appreciable destructive effect on the beam dynamics [see
Fig. 3(a)]. On the contrary, point B in panel (a) corresponds to
the case in which the BOs of the beam are rapidly destroyed,
leading to strong defocusing of the outcome beam [see
Fig. 3(b)].

B. Long-living BOs and all-optical steering

Now we turn to the final step of numerical descriptions
of the BOs of a spatial soliton and of the light steering. In
Fig. 3(a), we show the dynamics of the Bloch wave packet
launched normally in the atomic media with almost-optimal
design of the OLs [point A in Fig. 2(a)]. The result was
obtained by employing numerical integration of Eq. (13). The
existence of the long-living BOs of the gap soliton, with the
amplitude and period well matching the theoretical estimates,
can be observed. Due to the very small dissipation, there
is only a tiny decrease of the soliton intensity due to the
absorption of the medium. More specifically, one can see the
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FIG. 2. (a) The white domains correspond to the choice of the
detuning, such that (17) is valid for 90% of wave vectors in the first
BZ; in the black domains the requirement (12) is not satisfied and thus
the approximation Eq. (13) fails; the gray domains show the parameter
region where our approximation is valid, but the conditions (17) are
not satisfied for more than 10% of the wave vectors in the BZ. The
system parameters are given in Sec. Il A. (b) The coefficients D(Q)
(dashed line), G(Q) (dash-dotted line), and D(Q)G(Q) (solid line)
vs Q with the parameters Uy = 4.7, A} = Q. = 1.0 x 107 s7!, and
Ay =—1.0 x 10® s7! [point A in panel (a)]. (c) The same as in
panel (b) but with A, = —0.6 x 10% s~! [point B in panel (a)]. The
dynamics of the Bloch wave packets for points A and B is shown in
Figs. 3(a) and 3(b).

highly concentrated beam in the output with the direction of
propagation determined by the nonzero angle 6. For the sake of
comparison, in Fig. 3(b), we show the dynamics of the same
Bloch wave packet in the nonoptimally designed OL. [The
parameters used in this panel are the same with those used in
Fig. 2(c).] In this case, the beam undergoes strong spreading
out due to the alternating diffractive and self-defocussing
regimes. The intensity profiles of the output beam vs the input
beam are shown in panels (c) and (d). One observes that there
is no apparent deformation between the output beam and the
input beam in panel (c), while an obvious destruction appears
in panel (d).

The maximum input intensity of the probe beam in Fig. 3(a)
can be estimated by the formula /n. = (c/2)elE, max |-
Using the parameters given in Fig. 2(b), we obtain [, &
4.5 uW cm~2. Thus, the generation of the spatial gap soliton in
the system at hand requires only very low input light intensity.
We remark that the intensity of a single 500-nm photon per
nanosecond on an area of 1 um? is Iy, = 0.04 W cm™2. This
estimation shows that our system makes it possible to manage
the weak beams characterized by single-photon wave packets.
This is drastically different from the spatial optical soliton
generation in a conventional waveguide, where an input laser
pulse with very high peak power ~10% kW is needed in order
to bring out a sufficient nonlinear effect [27].

The existence of long-living BOs of spatial optical gap
solitons can be used to implement efficient all-optical steering
of probe beams. Different from all linear systems where the
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FIG. 3. (Color online) (a) The long-living BOs of the beam in
the almost-optimally designed OLs [point A in Fig. 2(a)] obtained by
direct numerical integration of Eq. (13). The amplitude and the period
ofthe BOs are X = 14.47 (=49 um) and Z = 578.98 (=787 um). (b)
BOs of the wave packet in the nonoptimally designed OLs [point B
in Fig. 2(a)]. In the both cases the initial condition is a stationary gap
soliton located at £/ X = 0. The intensity profiles of the output beam
(dashed blue line) vs the input beam (solid red line) corresponding
to cases (a) and (b) are respectively shown in the panels (c) and (d)
obtained at ¢ = Z.

spread and attenuation of the probe pulse are unavoidable
because the refractive index gradient depends on both light
frequency and spatial coordinates, the scheme proposed here
can greatly improve the device performance due to the self-
focusing of the beam. In experiments, the optical masks and
atomic cells are usually chosen in advance. However, one can
exploit the possibility of changing the geometry or parameters
of the control field to steer the output probe beam. As an
example, by changing the angle between the input control
fields 6, = arctan(k/ k) (see Fig. 1), one can efficiently control
the refraction angle of the output probe beam. In Fig. 4, we
show the tangent of the refraction angle tan 6 versus 6. with

=z

05

tanoe
o

0.5+

1.0 0.95 0.9 0.85 0.8
10% 6,

FIG. 4. tan0 vs 6. at ¢ = Z for the almost-optimally designed
OLs [corresponding to point A in Figs. 2(a) and 3(a)].
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a particular length of atomic cells (i.e., { = Z). A wide range
of angle, 6, € [—0.98,1.19], can be achieved with the given
parameters.

IV. CONCLUSION

In conclusion, we studied (both analytically and numer-
ically) the dynamics of weak probe optical beams in a gas
of three-level A atoms subjected to a control laser beam.
The standing wave originates periodic modulations of the
linear and nonlinear parts of the dielectric permittivity of the
medium, which is “seen” by the probe beam. If the amplitude
of the control field is smoothly modulated, the probe beam
undergoes the BOs. These oscillations correspond to periodic
change of the direction of the propagation of the beam. We
have shown that it is possible to choose the parameters of the
atomic system, say, Rabi frequency of the control field and
photon detunings, to reduce the diffraction of the probe beam,
and thus the output beam is approximately the same as the
input one. In this case, the probe field distributions are nothing
but a spatial gap soliton undergoing long-living BOs. Due
to the significant enhancement of nonlinearity, such solitons
can be formed with extremely weak light intensity, below
single-photon wave-packet level. Thus, through changing the
geometry or parameters of the system, one can control the
direction of the output beam to carry out an efficient all-optical
steering of light.
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APPENDIX: THE TRANSVERSE PROFILES
OF THE PROBE FIELD

The transverse profiles of the probe field can be determined
from the eigenvalue problem [23]

92 w?
(a_yz T kf) s(0)=0, (yl<b). (Ala)

2 2w’
(8—y2 T kf) 5N =0, (yl>b), (Alb)
where w stands for either ), or w,, [ stands for the mode index
(l=0,1,...), si(y) is a normalized, that is, [*_dy|s;(y)|* =
1, profile of the respective mode, and 2b is the width of the
waveguide core.

The eigenvalue k; and effective refractive index of the Bragg
mirrors n can be obtained from the dispersion relations of the
planar waveguide,

tan’ |:b\/ w_j — kP — s 1)7T:| = e —o”

c 2

n?w? — kic?’

(A2)
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and the expression valid the finite photonic structures [28],

nw) = — [d), ~ 5 T(w)} , (A3)
wh 2

where ¢;(w) and T (w) are the total phase and the transmittance
of the complex transmission coefficient for the structure
1) = x(w) + iy(w) = V/Te'? with ¢, = arctan(y/x) + mr
(the integer m is uniquely defined assuming ¢, is a mono-
tonically increasing function) and T = x2 4 y2. h is the total
thickness of the N-period crystal h = N(h, + hp) with h,
and h;, being the thicknesses of two different materials [see
Fig. 1(b)].

As an example, we consider the probe field constrained
by quarter-wave Bragg mirrors, ng,h, = nphy = A, /4, with
ng, = 1.0 and n;, = 1.4 being the refractive indexes of the
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two different materials for claddings, N =2, and 2b =
0.1 mm; we obtain that ky = 1081 cm™! and n ~ 0.87.
At the same time, for the control field we have ko ~
91 144 cm™! and the effective refractive index of the cladding is
n =~ 1.0.

The assumption that only sy is taken into account requires
that the energy for exciting s; [corresponding to the eigenvalue
of Eq. (Ala)] is higher than that of the self-action (nonlinearity)
in Eq. (13). With the parameters given in Fig. 2, we obtain
GE)QPQ < (a)f,/c2 — klz)/k2 (ky = 873 cm™! for the probe
field); hence, we can safely neglect the higher transverse modes
(i.e.,s; forl > 0). Here, the integral Co = [, |sol*dn = 73.9.
However, the much higher frequency of the control field allows
us to neglect the differences among transverse profiles of the
control field in the waveguide core.
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